Categorical models for BigData

Laurent Thiry, Heng Zhao, Michel Hassenforder
IRIMAS
Université de Haute Alsace
Mulhouse, France
{laurent.thiry, heng.zhao, michel hassenforder} @uha.fr

Abstract—This paper shows how concepts coming from cat-
egory theory associated to a functional programming language
can help to formalize and reason about data and get efficient
programs in a BigData context. More precisely, it shows how
data structures can be modeled by functors related by natu-
ral transformations (and isomorphisms). The transformation
functions can then serve to shift a data structure and then get
another program (eventually reducing time complexity). The
paper then explains the main concepts of the theory, how to
apply them and gives an application to a concrete database
and the performances obtained.

Keywords-Category theory, BigData, modeling, performance

I. INTRODUCTION

BigData is centered on large amount of data what directly
impacts the performances of the programs (e.g. to query
a specific information) and then requires specific architec-
tures to improve them [1], e.g. use of graph databases or
distributed concurrent computations. If a lot of technologies
are available today to put BigData into practice, theories
usable to well understand the benefits/limitations of each
architecture, to identify possible improvements or means to
combine them are more rare [2]. In this context, the paper
presents the capabilities offered by category theory together
with a functional programming language (to easily imple-
ment the concepts and facilitate experimentations) to solve
this limitation. In particular, it explains how functors can
serve to model data structures (e.g. various representations
of graphs) and natural transformations to both change data
structures and shift programs applicable to a particular data
structure to another program for an other data structure.
The concept of natural isomorphism is then used to prove
that two data structures represent the same information,
or that two programs are equivalent. Finally, the equations
representing the programs can serve to calculate computation
steps (time complexity) and compare the performances of
two equivalent programs, then show that a natural transfor-
mation is an optimization.

The paper is divided into 3 parts. Part II presents the
main elements from category theory and discusses about
its possible interests in a BigData context (in particular to
study performances and optimizations). Part III proposes a
concrete application on how to apply the theory and translate

the models into a functional programming language. This
part also develops the example of various representations of
a graph database, then the various representations of a query
and analyzes the performances obtained for each ones. Part
IV concludes by summarizing the main elements presented
and gives some of the perspectives considered.

II. CATEGORIES, BIGDATA AND PERFORMANCE

Category theory is a field of mathematics that deals with
“structures”. More precisely, a category is defined by a set
of objects, a set of morphisms between this objects, a com-
position operator written (o) for morphisms and an identity
morphism for each object [3]. The composition is associative
and has id as neutral element. A concrete example is
given by the category Set = (X;, f; : Xx — Xj,0,1d;)
where objects correspond to sets (X;);cr, and morphisms
to functions (f;);e.s. This category can be easily related to
(functional) programs by considering that sets model basic
datatypes (e.g. boolean, integer, etc.), and morphisms (e.g.
f;) correspond to programs with a parameter X}, and a result
Xy, [4].

A functor F' is a structure preserving map between two
categories (i.e. it preserves composition F'(fiof3) = F(f1)o
F(f2), and identities F'(idx,) = idp(x,)). An example of a
functor is the powerset P : Set — Set with P(X;) the set of
subsets of X; and P(f;){x1,...,xn} = {fi(x1), ..., fi(zn)}.
By considering programs, this one can serve to model
collections and simple transformations (P(f;) being viewed
as a loop applying f; to the elements of a set). Another
example is the product (bi)functor X; x X; with (f; X
fi)@i,z;) = (fi(xs), fi(x;)). By considering programs,
this one can serve to model records.

The preceding functors can be composed to model more
complex data structures. For instance, a directed unlabeled
graph can be represented by a set of edges and a functor
G(N) = P(N x N) where N represents a set of nodes
and N x N edges. With a function f : N — N’, we can
define a graph morphism m(f) = P(f x f) that changes
the nodes by preserving the structure of the graph (i.e. if
(x,y) is an edge of ¢ then (f(x), f(y)) is an edge of m(g)).
m(idy) is a identity morphism, morphisms are composable
(i.e. m(fog) = m(f)om(g)) what makes the set of graphs
and morphisms another example of a category Graph.



Graphs play an important role in BigData community and
have many applications (see, for instance, Neo4]J toolkit!),
[5]. Querying a particular information then consists in find-
ing a morphism from the graph representing a query to a
graph database [6]. Indeed, a query such as ”(X isa man)
and (X worksfor irimas)” can be viewed as a labeled graph
with two edges {isa : X — man,worksfor : X —
irimas}, where X denotes a variable as illustrated in Figure
1. By forgetting labels, the query is also represented by
{(X,man), (X,irimas)} : G(N U X). The result is then a
set of sets of pairs {{(X,laurent)}, {(X, zhao)}} and the
program finding the possible morphisms can be formalized
by query : G(N')xG(N) = P(P(XxN))if N = NUX
the union of constant nodes N plus variables X; P(X x N)
is here a shortcut for a mapping function f : X — N. Such
a program has been already detailed in the literature with in
particular [7] and [8].

p ) —
Graph (db) 4/ -7~~~ Graph (query)
france % irimas <-->x] —J—Cl— - Lirimas
\
G \
isa works for . worksfor], works for
|
|
t 1J1
country zhao ! laurent <-|r=-----X
1
i .
isa
fi
\ man <—;/ ————————— -man

Figure 1. Sample graphs and query/morphism.

Now, other representations of graphs are possible, e.g.
G'(N) = P(N x P(N)) that associates adjacent nodes to
each node. The relation between the two functors can be
represented by a natural transformation n : G'(N) — G(N)
with n(¢’) = {(z,y) | (x,ys) € g,y € ys}. This transfor-
mation is invertible and the functors/datatypes are then said
to be naturally isomorphic G'(N) =, G(N). If the two
structures represent a ’same” information, the performance
of a program depends on the structure selected. As an
example, a function/program to get the adjacent nodes, i.e.
g(n) : G(N) — P(N), will have complexity O(n) where
n is the number of edges when using G, and O(m) where
m is the number of nodes when using G’, and m < n. So,
g (n): G'(N) = P(N) is "faster” than g(n).

The change from G to G’ can be viewed as an op-
timization technique called “memorization” in the sense
that G’ memorizes the result (i.e. adjacent node) for each
input node and then eliminates extra computations [9]. The
optimized version of the program will be obtained with
g'(n) = g(n) on~! that can be simplified by using the

Uhttps:/neodj.com/

definitions of g and n~! (and is known as short-cut fusion
optimization [10]). Another common optimization technique
consists in splitting data and use parallel computations.
In the example of graphs and by considering a pair of
computers, this can be modeled with G’(N) = G(N) x
G(N). The function to get the adjacent nodes will be
now ¢"(n)(g1,92) = U o (9(n)(g1) x g(n)(g2)) with a
complexity O(max(ny,ny)) where n; is the size of g;. And
0(g") < O(g') < O(y).

III. CATEGORIES FOR BIGDATA

The elements presented have been translated in the
functional programming language Haskell [11]. Products
are then interpreted as pairs (x,y) and are associated
to the higher-order function mult f g (x,y) = (f x,9
y) . Powersets are replaced by lists [x] inductively defined
by the empty list [] and a binary operator (:) to add an
element to a list. P(f) is then represented by the map £
function.

The various representations of graphs (functors) are en-
coded as type synonyms: [ (x,x)1, [(x, [x])], etc. Natu-
ral transformations simply correspond to functions and the
following code gives the example of the 7 (eta) transfor-
mation detailed previously. An expression such as \x->y
denotes an anonymous function f(x) = v, the concat?
function concatenates a list of lists, and the dot (.) rep-
resents function composition. The function get returns the
adjacent nodes, and eta’ is the inverse of eta (the extra
parameter xs represent the nodes’ list in the graph g).

type G x = [(x%,x)]
type G’ x = [(x,[x])]
eta :: G’ x > G x
eta =
concat. (map (\(x,ys)->map (\y—>(x,y)) ys))
get :: x —> G x —> [x]
get n =
concat. (map (\ (x,y)-

if (x==n) then [y] else []))

eta’:: [x] —> G x —> G’ x
eta’ xs g = map (\x->(x,get x g)) xs

get’:: x —> G’ x —> [x]

get’” n [] =[]

get’ n ((x,ys):xs) =

if (x==n) then ys else get’ n xs

The following program can now be used to get the
adjacent nodes of a node and compare the performances for
the various representations of data and programs (i.e. does

2As another example of the cut-fusion optimization, by having the
definitions of concat and map, one can check that the complexity of
concat o map is O(n?). Now, the definitions can be used to simplify the
expression and obtain the definition of another well-known function called
filter with a O(n) complexity.



get better than get’ ?). In this program, the graph is stored
in a text file “graph.txt” that is loaded with the readFile
function, and parsed with the read function. The function
get (resp. get’) is then called and the result r displayed
with the print function; the operator (!!) returns the n-
th element of a list and is used here to get the node we
are looking for adjacent from command line arguments (see
getArgs). The code is then compiled by using the Glasgow
Haskell Compiler (see ghc below), and execution time is
measured with the shell command time.

—-— Usage: ghc —--make BigData.hs
-— time ./BigData Zulu
main = do

xs <- getArgs

f <- readFile "graph.txt"

let g = read £ G String

let r = get (xs!!0) g

print r

The dataset® considered in graph.txt describes the
relation between the concepts in Wikepedia pages, e.g.
(19th_century, Telephone), and has 119767 edges (3.8Mo
for file size). The computer(s) considered for performances’
measurement is an EliteBook(s) 820 with processor(s) Intel
i5 with 4 threads at 2.3GHz, and 16Go RAM plus 16 Go of
Swap.

The time required by each steps of the preceding program
are presented in Figure 2. Thus, the whole program takes
3.112s to get the concepts linked to ”Zulu” (that is the last
concept in the data list and the worst case to query), and
most of the time is dedicated to load/parse the data file,
i.e. 3.092s. The use of G’ and get’ will reduce the time by
0.020s = O(get) — O(get’). As a remark, if 7(g) is saved in
“graph2.txt” then the size of the file is 1.7Mo (smaller than
the original file) and read/parse will only required 1.268s.
The change of the data structure (see eta) requires 0.088s.

Program Time

read 0m3.092s

get 0m0.020s

eta 0mO0.088s

get’ 0m0.000s

10°xget’ | Om15.480s
Figure 2. Performances measured.

To eliminate the file loading/parsing, the program can
be transformed into a service (what is also the first step
to parallel and distributed computations - see G in the
preceding section) as follow. In the code, slave will load
a data file and listen to a given port of localhost. It
continuously waits for a node’s to query, then calls the get
function and sends the result. The program query simply
opens a connection to a host h at a port p and transmit a

3https://snap.stanford.edu/data/wikispeedia.html

node to query q. The main program is adapted to either start
a slave or to send a query.

slave file port = withSocketsDo $ do
f <- readFile file
let g = read £ G String
sock <- listenOn $ PortNumber port
forever $ do
(handle, host, port) <- accept sock
query <- hGetLine handle
let r = get query g
hPutStrLn handle (show r)

query h p g = withSocketsDo $ do
handle <- connectTo h (PortNumber p)
hPutStrLn handle g

r <- hGetLine handle

putStrln r

main = do
a <- getArgs
case a of
["slave", £, p] -> slave f (read p)
["query",h,p,gq] —> query h (read port) g

The distributed version of the application is then used as
follow. In case 1, a single slave with the whole database is
considered. In case 2, two slaves are considered with half
of the database. In case 3, the request is directly sent to
Wikepedia.

# case 1
./bigdata slave graph.txt 9000 &
time (./bigdata query localhost 9000 Zulu)

#case 2
./bigdata slave graph-partl.txt 9000 &
./bigdata slave graph-part2.txt 9001 &

time (./bigdata query localhost 9000 Zulu &
./bigdata query localhost 9001 Zulu)

#case 3

time (curl https://en.wikipedia.org/wiki/Spe-

cial:Search?search=Zulu)

The time required by each of the preceding cases is
presented in Figure 3. As expected, the time required to load
the file database is suppressed and the gain is about 3.092s
(case 1). The split of the database (case 2) brings a gain
of only 0.005s, and this may be explained by transmission
time introduced when using a network. A comparison with a
direct query to Wikipedia (case 3) shows that the application
presented is 50 times faster than this later. Many reasons can
explain this difference: the route to attain the Wikepedia
server is longer, the server is queried by many simultane-
ous clients and this one returns a HTML page (36.32Ko
transmitted at 867Kb/s) and not a simple lists of adjacent
concepts (approx. 2220).

Finally, despite its apparent simplicity, the application
proposed as an illustration well shows that theoretical con-
cepts such as functors (G,G’,G" etc.) and natural transfor-



case 1 | Om0.020s
case 2 | Om0.015s
case 3 | Om0.754s
Figure 3. Performances using network.

mations/isomorphisms (7) can be easily implemented in
a functional programming language (e.g. Haskell), and
conduce to efficient programs and optimizations of them. In
particular, the attentive reader can see that the distributed
version of G used in the definition of G’ can be again
improved by using get’ (faster than get as shown in the
last line of Figure 2).

As mentioned before, the application can be easily ex-
tended to other data structures, functors and natural trans-
formations. For instance, labeled graphs can be modeled
by Gi(N,L) = P(N x (L x N)) where L corresponds to
labels, or Gj(N, L) = P(N x P(L x N)), or G/(N,L) =
P(L x P(N x N)), etc. This is currently under study and
a discussion about the benefits of each representation and
the performances when querying a specific information will
be presented in the future. The application can also be
easily generalized to other subjects such as the search of
documents containing a keyword. Indeed, a set of docu-
ments having each one a set of words can be modeled by
P(DocxP(Word)) that can be changed to P(Docx Word)
with 7, that can be transformed to P(Word x Doc) with
P\(z,y) — (y,z)), and finally to P(Doc x P(Word))
with =1, The get function then serves to find a specific
word to return a set of documents.

IV. CONCLUSION

This article describes on how category theory combined
with a functional programming language can be interesting
in a BigData context. It explains how the concepts of
functors and natural transformations can serve to represent
data structures and data transformations. It then develops
the example of querying a specific information in various
representations of a graph database based on a real life
and large dataset (Wikipedia) to compare the performances
of various programs* returning a same result. If the work
presented is still in progress, the results already obtained
are encouraging.

The perspectives considered now will consist in studying
more complex models and their relations to the standards (re-
lational databases, tree structures such as XML documents,
document-oriented models such as JSON files or MongoDB
databases, or again labeled graph as found in Neo4J). The
perspectives will also study queries and the graph morphism
problem (i.e. finding a map form a subgraph representing a
query to another graph corresponding to a database, and get
answers for a precise query) that is known as a complex
problem but important in a semantic web context [8].

4Available at https://github.com/thiry/bigdata

(1]

(2]

(3]

(4]

(5]

[6]

(71

(8]

(9]

[10]

[11]

REFERENCES

M. Chen, S. Mao, and Y. Liu, “Big data: A survey”, Mob.
Netw. Appl., vol. 19, no. 2, pp. 171-209, Apr. 2014.

T. Erl, W. Khattak, and P. Buhler, Big Data Fundamentals:
Concepts, Drivers & Techniques. Upper Saddle River, NJ,
USA: Prentice Hall Press, 2016.

J. A. Goguen, “A categorical manifesto”, in Mathematical
Structures in Computer Science, 1991, pp. 49-67.

M. Barr and C. Wells, Eds., Category Theory for Computing
Science, 2nd Ed.  Hertfordshire, UK, UK: Prentice Hall
International (UK) Ltd., 1995.

1. Robinson, J. Webber, and E. Eifrem, Graph Databases.
O’Reilly Media Inc., 2013.

P. T. Wood, “Query languages for graph databases”, SIGMOD
Rec., vol. 41, no. 1, pp. 50-60, 2012.

L. Thiry, M. Mahfoudh, and M. Hassenforder, “A functional
inference system for the web”, International Journal of Web
Applications, vol. 6, no. 1, pp. 1-13, 2014.

T. Segaran, C. Evans, J. Taylor, S. Toby, E. Colin, and
T. Jamie, Programming the Semantic Web. O’Reilly Media,
Inc., 2009.

C. Okasaki, Purely Functional Data Structures. New York,

NY, USA: Cambridge University Press, 1998.

R. Bird and O. de Moor, Algebra of Programming, ser.

Prentice-Hall international series in computer science. Pren-
tice Hall, 1997.
N. Shukla, Haskell data analysis cookbook. Birmingham:

Packt Publ., 2014.



