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Abstract

Purpose Teleoperated robotic systems are nowadays

routinely used for specific interventions. Benefits of robotic

training courses have already been acknowledged by the

community since manipulation of such systems requires

dedicated training. However, robotic surgical simula-

tors remain expensive and require a dedicated human-

machine interface.

Methods We present a low-cost contactless optical sen-

sor, the Leap Motion, as a novel control device to ma-

nipulate the RAVEN-II robot. We compare peg ma-

nipulations during a training task with a contact-based

device, the electro-mechanical Sigma.7. We perform two

complementary analyses to quantitatively assess the per-

formance of each control method: a metric-based com-

parison and a novel unsupervised spatiotemporal tra-

jectory clustering.

Results We show that contactless control does not of-

fer as good manipulability as the contact-based. Where

part of the metric-based evaluation presents the me-

chanical control better than the contactless one, the

unsupervised spatiotemporal trajectory clustering from

the surgical tool motions highlights specific signature

inferred by the human-machine interfaces.
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Conclusion Even if the current implementation of con-

tactless control does not overtake manipulation with

high-standard mechanical interface, we demonstrate that

using the optical sensor complete control of the surgi-

cal instruments is feasible. The proposed method allows

fine tracking of the trainee’s hands in order to execute

dexterous laparoscopic training gestures. This work is

promising for development of future human-machine in-

terfaces dedicated to robotic surgical training systems.

Keywords Contactless Teleoperation · Hand Track-

ing · Human-Machine Interface · Robotic Surgical

Training · Unsupervised Trajectory Analysis.
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1 Introduction

The da Vinci system from Intuitive Surgical Inc. [13]

is the most commonly used telesurgical robot in the

operating room (OR). With 3,919 installed systems at

the end 2016, it allowed to perform 753,000 procedures

all over the world in 2016 (74.7% of them in the US)

[15]. Robotic-assisted surgery is becoming standard for

some procedures such as hysterectomy, prostatectomy

and partial nephrectomy [24].

From a practical point of view, telesurgery is directly

beneficial for the surgeon and makes possible ergonomic

control of the surgical instruments. However, manipu-

lating such device implies some constraints that can

lead to technical (i.e., limit of technology, robot or sur-

gical instruments malfunction) and medical complica-

tions (i.e., patient damaging, longer recovery period)

which are sometimes underestimated [2, 4]. Thus, a ded-

icated training is required to safely handle surgical in-

struments.

In this context, similarly to the Fundamentals of La-
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Fig. 1: The proposed contactless control approach with

the Leap Motion interface and the RAVEN-II robot for

surgical training.

paroscopic Surgery (FLS) that defines standard prac-

tices for laparoscopic training and evaluation, a recent

international program emerged to create standards for

robotic-assisted training, education and assessment. The

Fundamentals of Robotic Surgery (FRS) supports the

large extension of robotic usage in the OR, leading to a

real need for skill training [30], where surgical simula-

tion platforms aim to prepare surgeons [28, 35]. Never-

theless, current training systems available in the market

[25] are relatively expensive and difficult to use for resi-
dents and surgeons due to the limited access (i.e., avail-

ability and number of devices) in the different medical

centers. To increase availability of training systems for

continuous teaching, low-cost technologies are required.

In this paper we propose to compare the performance

of a new low-cost contactless interface with respect to

a high-quality mechanical interface in order to control

a telesurgical robot (fig. 1). In extension, these human-

machine interfaces (HMIs) can be employed to handle

robotic surgical simulators.

2 Related Work

Gesture motions is the most accurate and efficient com-

munication channel when the objective is to finely con-

trol instrument tooltips [31, 42]. In this context, two dif-

ferent approaches can be identified. The first approach

relies on the pose of the hand as raw input to control

a robot while the second approach uses a specific hand

pose dictionary to classify in real-time the hand pose

linked to a robot action [20, 27]. Taking into account the

large amount of gesture possibilities and the required

accuracy to safely control a surgical robot, this paper

focuses on the first approach that uses the hand pose

information as input to control surgical instruments.

Addressing hand pose robot control, multiple works

have been done with the Kinect For Windows from Mi-

crosoft. Du et al. [9] showed that the proposed contact-

less approach was suitable to control an industrial robot

with the hand pose information for a basic translation

task. Additionally, Dragan et al. [8] compared the use

of a Kinect device with other mechanical HMIs to accu-

rately control robot motions for a complex task, taking

into account online replanification for semi-autonomous

execution. However, those works highlight the limita-

tions of the Kinect for hand motion control where both

version were initially designed for a complete whole

body tracking. Consequently, these sensors do not pro-

vide enough accuracy and repeatability for fine hand

and finger tracking.

Dedicated to hand and finger tracking, recent devices

showed promising results, especially the Leap Motion.

Hernoux et al. [17] used the Leap Motion sensor to track

one human finger and mimic the writing motions with

an industrial robot. In the surgical field, Vargas et al.

[36] used the Leap Motion to control simulated surgi-

cal tools with the index finger only. Zhou et al. [41]

compared the use of the Kinect, the Leap Motion and

other devices to control the Taurus robot (equipped

with a scalpel). However, the control of the surgical

tool was not complete since they extracted the posi-

tion from the operator’s hand to control the instrument

position only. Travaglini et al. [34] employed the Leap

Motion to control a 6 Degrees of Freedom (DoFs) con-

centric tube robot and evaluated the performance of

this interface during a pituitary tumor resection task

on phantoms. Control of the robot tooltip was achieved

using the hand pose only. Their results showed that

the Leap Motion is a confident HMI even if furthers

developments are required to precisely handle surgical

instruments.

The present work deals with a complete 7 DoFs con-

tactless interaction to accurately control surgical in-

struments. Here, we focus on fine motions that are re-

quired for high-quality execution of dexterous surgical

gestures. From Despinoy et al. [7], such approach was

presented and a feasibility study with a qualitative as-

sessment was achieved. We therefore propose a modified

hand tracking model to improve mapping between the

surgical tool and the operator’s hand. Furthermore, we

propose a quantitative evaluation of the surgical instru-

ment motions when executing a pick-and-place training
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task using the RAVEN-II surgical robot, a dual-arm da

Vinci -like system dedicated to research. This analysis is

performed using two different quantitative approaches.

Where the first approach relies on metric-based com-

putations that provide raw scores of the performance,

the second one is inspired by the works from Forestier

et al. [10–12]. We develop a novel method to analyse

spatiotemporal variations between trajectories and use

an unsupervised clustering method to quantify simi-

larity between surgical instrument motions. With such

method, we want to analyse if similar manipulability is

required for the design of HMIs dedicated to surgical

training, in contrast to perioperative ones.

The remaining sections are organized as follows. In Sec-

tion 3, we present the robotic setup and the novel con-

tactless control approach, as well as the methodological

pipeline from the user hand tracking to the robot con-

trol. Section 4 presents both the dataset acquired dur-

ing the surgical training task and the metrics. Addition-

ally, we describe a complementary evaluation based on

a novel unsupervised spatiotemporal trajectory cluster-

ing for a quantitative analysis of surgical tool motions.

Section 5 details the results obtained for both analyses.

Finally, we discuss our setup and results in Section 6.

3 Teleoperation Setup

For an effective comparison of both HMIs, the RAVEN-

II robotic platform from Applied Dexterity has been

used. Similar to a dual-arm da Vinci system, this tele-

operation system is composed of two parts: the console

and the robot (fig. 2). In the following, we describe first

both interfaces to control the robot (Section 3.1). Then

we develop the method to accurately control surgical

tools with the Leap motion (Section 3.2). The last sec-

tion describes how the Raven-II robot is controlled to

achieve the teleoperation task (Section 3.3).

3.1 Human-Machine Interfaces

The console (or master manipulator side) is visible at

the left in fig. 2. It is composed of a controller, three

screens, two Sigma.7 handles, an armrest and a foot

pedal to manually activate and deactivate the remote

robot (not present in the pictures). In the next, this foot

pedal action will be referred as “clutch”. The screens

are used to display multiple information: at the center

we show on a 3D compatible screen a high-quality en-

doscopic video feedback, whereas at the left and right

sides we display information about the tracking and the

robot status. For this experiment, we added one Leap

Motion device on its support to compare manipulation

with the Sigma.7 mechanical interface and the Leap

Motion contactless device.

On the one hand, two Sigma.7 devices from Force Di-

mension are attached to the structure and oriented to-

wards the user in order to avoid any collision between

handles during manipulation. This haptic device was

designed to capture 7 DoFs from the hands including

grasping. The hand configuration is presented at the

left in fig. 3. Capable of reaching an accuracy of about

0.002mm and a refresh rate at 4kHz through USB 2.0,

this device fits the requirement for medical applications

[33]. The main advantage of the Sigma.7 interface is

the force feedback capability that can be used for hap-

tic applications. For a fair comparison, this feature was

disable during the experiment.

On the other hand, the Leap Motion device placed on

a homemade support is a tracking system able to fol-

low in real-time fingers and hands from the user. The

device consists of two cameras and three infrared LED

with a wavelength of 850 nanometers (outside the vis-

ible light spectrum). Relying on a closed API for body

part tracking (Leap Motion SDK V2), the reported ac-

curacy of the device is between 0.01mm and 0.5mm [14]

with a decent refresh rate under 120Hz using USB 2.0

interface. Originally dedicated to virtual reality manip-

ulation, preliminary experiments have shown that this

interface can reach the minimal requirements to be used

for telesurgical manipulation [7, 41]. For this device, the

hand configuration is similar than the Sigma.7 as pre-

sented at the right in fig. 3.

3.2 Control with the Leap Motion

The Sigma.7 has been designed for a complete surgi-

cal teleoperation experience and allows to fully control

articulated instruments (i.e., pose and grasping angle).

However, in the case of the Leap Motion, the mapping

between hands and surgical tools is missing. While the

main usage of this optical device is to point out or guide

in virtual environments as a mouse can do, our objec-

tive is to find the best mapping strategy to fully control

surgical instruments with intuitiveness and manipula-

bility.

In this paper, we propose a 3D model to match hand

pose with the surgical tool pose (fig. 4). For this pur-

pose, the thumb, the index and the palm center of both

hands have been used to create a robust model and

mimic surgical grasper motions attached to the robot.

Each finger represents one extremity of the tool where

the pose of the palm center corresponds to the final ar-

ticulation pose of the grasper. Where one could argue

that the wrist center could better define the hand center

of motion with respect to the instrument, preliminary
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Fig. 2: The two views of the telesurgery setup. The left picture shows the entire console to handle the distant

robot. The right picture presents the RAVEN-II telesurgical robot with all the equipments.
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Fig. 3: Hand configuration with both the Sigma.7 and

the Leap Motion devices.
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Fig. 4: Hand model mimics instrument.

experiments have shown that using this reference leads

to more disturbance when controlling the surgical tools

(i.e. adding noise and unexpected translations at the

end-effector). Finally, in order to be able to grab and

release objects with the tools, the open and close mo-

tions have been mapped with the gap angle between

fingers. Such configuration allows to fully interact with

the environment and uses 7 DoFs, guaranteeing intu-

itiveness and precision during manipulation.

3.3 Surgical Robot Control

The robot (or slave side) is visible at the right in fig. 2.

The RAVEN-II robot is an open-source platform dedi-

cated to research in robotic telesurgery [16]. Composed

of two robotic arms, actuation of the surgical tools is

achieved by 8 motors combined with a cable-driven me-

chanical architecture for a lighter structure. Each sur-

gical tool allows 7 DoFs at the tooltip. The control

software runs on top of the Robotic Operating Sys-

tem (ROS) middleware, on a real-time Linux kernel

(Ubuntu 10.04 LTS with RT-Preempt patch).

Data computed from the console are directly filtered

using a lowpass filter. For this purpose, the filter was

tuned with respect to previous studies addressing hu-

man motion characteristics [39] and human motion fil-

tering [3, 40]. The cut-off frequency has been set to
1.5Hz to preserve only fundamental hand motion fre-

quencies, with a unity gain in the bandwidth and a

high attenuation beyond 10Hz [23]. Practically, occlu-

sion appearance was managed to stop the robot during

the execution in order to ensure smooth and controlled

motions. At the end, filtered signals are sent to the

robot controller through an open UDP interface. Us-

ing the ROS middleware, motor control of the robotic

arms is realized at 1kHz and both currents and torques

are checked to fit in the required ranges for safe manip-

ulation [1].

4 Evaluation Study

To compare both HMIs for robotic training, three oper-

ators were asked to execute a predefined surgical train-

ing task on the robotic platform presented in Section 3.

By recording the surgical tool motions during the ex-
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ecution of the task, a dataset of trajectories is created

for both interfaces (Section 4.1). From these trajecto-

ries, six metrics are computed to quantify performances

for each interface (Section 4.2). Additionally, an unsu-

pervised clustering approach is proposed to both anal-

yse spatiotemporal differences between tool trajectories

and provide a score describing not only global perfor-

mance but local deviations also (Section 4.3).

4.1 Trajectory Dataset

A dataset of trajectories was acquired for both the

Sigma.7 interface and the Leap Motion. For each dataset,

the same training task was executed five times by three

different participants with different skill levels: an urol-

ogist expert who regularly performs surgeries with the

da Vinci system (named ‘C’), a last year resident who

only used few times a robotic training system (named

‘B’) and a teleoperation system engineer (named ‘A’).

All participants were right-handed. The objective be-

hind integrating various experience into the experimen-

tal protocol is to analyse if the surgical experience af-

fects the HMI comparison. Before experiments, partic-

ipants were asked to sign consents regarding the study

and were all briefed about the setup, its specificities

and the task to ensure that they would perform it ap-

propriately and consistently.

The surgical training task was directly inspired by the

FLS guidelines [6]. This task involved peg transfers to

several target locations following the workflow described

hereafter:

1. Pick the first peg with the left tool and insert it into

target 1 (leftmost pin of fig. 5),

2. Pick the second peg with the right tool and insert

it into target 2 (rightmost pin),

3. Pick the last peg with the left or right tool and

progress towards the center of the peg board. Grab

it with the other available tool in order to insert it

into target 3 (uppermost pin).

To ensure consistent acquisitions, 15 minutes of free

training with each interface were allowed, and then each

interface was selected randomly. Then, we acquired 10

trajectories for each participant with each HMI and

computed the learning curve by taking into account the

time to complete the task. Fitting a decreasing expo-

nential model and reaching a plateau, we took the last

five sessions for each configuration (i.e., participant and

interface) where the overall average standard deviation

(i.e., across all participants) regarding the time met-

ric was 2.24 seconds for the Sigma.7 and reaches 3.68

seconds for the Leap Motion.

1

23

Fig. 5: The pick-and-place training task with three dif-

ferent target locations.

4.2 Metric-based Analysis

This metric-based comparison relies on the computa-

tion of the six following metrics that have been pro-

posed to evaluate psychomotor skills in [5, 18, 26]. In

the next, position of the robotic instrument is defined

by X = [x(t), y(t), z(t)]Tt=0 and velocity of the instru-

ment by vleft and vright for each hand.

1. Time (T ) corresponds to the execution time between

the first time the foot pedal has been pressed to start

the robot (i.e., clutch), until it has been released at

the end of the task (i.e., unclutch). It is measured in

seconds.

2. Bimanual Dexterity (BD) measures the participant’s

ability to control both instruments at the same time.

BD is found by computing the correlation between

the velocity norm of the two instrument tool tips. It

has to be noticed that bimanual dexterity is a sub-

jective metric from the GOALS assessment method

[37]. For an objective approach, the metric is com-

puted from motion data [18].

BD =

∑N
n=1(vleft(n)− vleft)(vright(n)− vright)√∑N

n=1(vleft(n)− vleft)2
∑N

n=1(vright(n)− vright)2

3. Path Length (PL) is computed for both dominant

and non-dominant hands and represents the total

movement of the tool tip during the execution of the

task. It is measured in meters:

PL =

∫ T

0

√(
dx

dt

)2

+

(
dy

dt

)2

+

(
dz

dt

)2

dt

4. Average Velocity (AV ) is computed for both dom-

inant and non-dominant hands and corresponds to

the average velocity norm measured at the tool tip

of the instrument. It is measured in m/s.
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5. Motion Smoothness (MS ) is computed for both dom-

inant and non-dominant hands and corresponds to

the total jerk normalized by the duration of the task.

MS is measured in m/s3:

MS =
J

T
, J =

√
1

2

∫ T

0

(
d3X

dt

)2

dt

6. Working volume (WV ) is computed for both dom-

inant and non-dominant hands and represents the

volume of the convex hull for each trajectory. For this

purpose, the Matlab function convhull() has been

used. WV is measured in m3:

The statistical analysis was realized using the Mann-

Whitney U -test. A p-value < 0.05 was considered as

statistically significant (with ∗ for p-value < 0.05, ∗∗
for p-value < 0.01 and ∗ ∗ ∗ for p-value < 0.001).

4.3 Spatiotemporal Analysis

In this study, the trajectory shape is also analysed.

Through this approach, the objective is to determine

if the task execution from the robot point of view is

similar from one interface to the other. Adapted from

previous studies [11, 12], the following approach allows

to cluster trajectories realized with both interfaces by

taking into account their spatiotemporal similarities.

Starting with the pool of trajectories defined by X =

[x(t), y(t), z(t)]Tt=0 for each hand, the objective is to

compute a global distance matrix. For this purpose,

the Dynamic Time Warping (DTW) measure has been

used for the spatiotemporal deformation measurement

[29]. While the Euclidean distance cannot capture flex-

ible similarities (see fig. 6), DTW allows to measure

similarities between two sequences which may vary in

time or speed. Its main advantage is the computation of

a point-to-point association between two temporal se-

quences, with respect to both time and space variations.

Thus, DTW finds the optimal alignment (or coupling)

between sequences by aligning similar coordinates of

both sequences. The cost of the optimal alignment be-

tween sequences A = 〈a1, ..., aM 〉 and B = 〈b1, ..., bN 〉
is recursively computed by:

D(Ai, Bj) = δ(ai, bj) +min


D(Ai−1, Bj−1)

D(Ai, Bj−1)

D(Ai−1, Bj)


where δ(ai, bj) is the norm of the Euclidean distance be-

tween ai and bj . The overall similarity of the two time

series is given by D(A|A|, B|B|) = D(AM , BN ).

Practically, a multi-dimensional approach was employed

to outperform the standard multiple one-dimensional

Euclidean alignment

A

B
DTW alignment

A

B

Fig. 6: Comparison between Euclidean and DTW align-

ments for two different time series.

alignment [32]. That is to say, the distance between

two points (i.e., 3D points) corresponds to the euclidean

norm and not only the sum of the distance of each point.

Using such measure to compare two trajectories to-

gether, we constructed two different matrices (i.e., one

for the left and one for the right hand) that contain the

warped distance between each trial, from each partici-

pant. A third matrix was computed by adding the left

and right distance matrices, which represents the sum

of the warped distance of each hand for each trial.

The second step of the analysis consists in automati-

cally cluster similar trajectories based on a global dis-

tance matrix. We used the unsupervised Hierarchical

Agglomerative Clustering (HAC) [12] and computed

the distance between clusters with the Ward method,

which takes into account the inner squared distance

(i.e., minimum variance algorithm).

5 Experimental Results

This section reports the results obtained for both metric-

based and unsupervised clustering analyses. Data were

acquired at the end of each training. Computation of

all metrics and unsupervised trajectory analysis were

run on Matlab R2016a with an Intel Xeon E5-1650V4

@3.60GHz.

5.1 Metric-based Results

From the three participants and the two HMIs handled

for the comparison, a total of 30 acquisitions were per-

formed (i.e., 5 per participant for each interface). Fig. 7

shows bar charts of the results from the Sigma.7 and

the Leap Motion interfaces, for each experience group.

Separated values for the instrument controlled by the

dominant and the non-dominant hand are presented,

whereas time and bimanual dexterity metrics refer for

both hands.

Regarding the time metric (fig. 7a), a gap between the

interfaces is visible with p-values of 0.00762, 0.00878
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and 0.00207 respectively, whatever the experience is.

Time to accomplish the task with the Leap Motion is

significantly longer than using the mechanical Sigma.7

device, especially for the expert surgeon (C).

With the bimanual dexterity (fig. 7b), one can notice

that except for the engineer(A) where the mean value is

higher and the standard deviation larger with the Leap

Motion, no significant difference appears. Only a small

trend can be noticed for the resident (B) and expert

surgeon (C) with a higher dexterity using the Sigma.7.

Concerning the path length realized with the robotic

instrument during the execution of the surgical train-

ing task, only significant results were obtained for the

expert (C) with the non-dominant hand (fig. 7c). Here,

the path followed by the instrument when using the

Leap Motion was significantly higher than using the

Sigma.7 (p-value of 0.00817). For the dominant hand

(fig. 7d), only larger standard deviations are shown for

the resident (B) and the expert surgeon (C) but overall,

there is no tendency in favor of one of the two interfaces.

Taking into account the average velocity of the tip of

the instruments when performing the pick-and-place

task, the statistical test shows small p-values for both

non-dominant hand (fig. 7e) with 0.00576, 0.00843 and

0.00612 respectively and dominant hand (fig. 7f) with

0.00521, 0.00988 and 0.00175. Lower standard devia-

tions between sessions exist with the Leap Motion but

the Sigma.7 device allows participants (especially ex-

pert surgeon (C)) to fully use their ability with both

hands by changing the speed of their executions. At

the end, the average velocity during the training task

was reduced, which explains the increased time scores.

However, even if significant differences have been shown

for the average velocities during the task execution,

computation of the motion smoothness shows no dif-

ferences except for the expert surgeon (C) with both

non-dominant (fig. 7g) and dominant hand (fig. 7h),

where p-values reach 0.00878 and 0.00591 respectively.

Globally, for both engineer (A) and resident (B), the

smoothness is similar with both hands where for the

expert, the Sigma.7 allows better execution and less

bumps.

The last metric allows to compare the convex work-

ing volume from the surgical tools when using both the

Sigma.7 and the Leap Motion. For the non-dominant

hand (fig. 7i), only statistical difference is visible with

the expert surgeon (C) reaching a p-value of 0.00881.

Moreover, larger standard deviations can be observed

with the non-dominant hands when using the Leap Mo-

tion. However, even if the difference with the dominant

hand (fig. 7j) is significant for both the engineer (A)

and the resident (B) (p-values of 0.0244 and 0.0058),

smaller deviations are visible especially for the expert

surgeon (C) with no statistical difference.

From this first analysis, one can state that regarding

both execution time and average velocity metrics, the

Leap Motion does not offer the same regularity than

the Sigma.7 during the execution of standard gestures.

Conversely, bimanual dexterity and path length do not

highlight any differences in terms of execution when

performing with both interfaces. Where 7 of the 10

scores obtained from the expert surgeon express a clear

tendency in favor of the mechanical Sigma.7, engineer

and especially resident scores do not show such trend.

Overall, the performance with the Leap Motion is not

similar when the surgical experience changes and close

performance between both interface are observed when

participant does not have any prior experience.

5.2 Spatiotemporal Results

This analysis has been done on the 30 acquisitions from

the three candidates named ‘A’, ‘B’ and ‘C’. Each can-

didate performed five sessions with each interface, num-

bered from 1 to 5. Also the interface used during ma-

nipulation is referred as a letter: ‘S’ for the Sigma.7 and

‘L’ for the Leap Motion. Fig. 8a shows the dendrogram

from the proposed method which combines the DTW

measure and the HAC clustering. Six low-level clusters

appear when coloring each similarity group.

Regarding the aptitude of each candidate, the urologist

surgeon (‘C’) performed differently with both Sigma.7

and Leap Motion interfaces (i.e., blue and red clusters

respectively). However, the warping distance (i.e., dis-

tance between colored clusters) allows to conclude that

the intra-observer variability is low and then the HMI
does not highly impact his motions. It means that a

similar spatiotemporal strategy was used for both the

Sigma.7 and the Leap Motion interfaces. Moreover, one

can note that clusters from candidate ‘C’ with the Leap

Motion (i.e., red cluster) and from candidate ‘A’ with

the Leap Motion (i.e., yellow cluster) are directly linked

meaning that they adopted similar strategies also, which

are however separable as it can be visually expressed in

fig. 8b. With the same candidates, the distinction with

the Sigma.7 contact-based control is stronger and dif-

ferent strategies were adopted as it is shown in fig. 8c.

Conversely, clusters from candidates ‘A’ and ‘B’ with

both the Sigma.7 interface are linked (i.e., purple and

cyan clusters respectively), indicating a strong relation

in their execution. However, candidate ‘B’ with the

Leap Motion (i.e., green cluster) performed differently

from the other configurations (i.e., separated green clus-

ter). When looking at the warping distances, we can

notice that using the contactless control seems to im-

pact differently the spatiotemporal strategy, depending
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(c) Non-dominant hand path length.
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(d) Dominant hand path length.
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(e) Non-dominant hand average velocity.
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(f) Dominant hand average velocity.

Fig. 7: (a)-(j) Bar charts representation of the computed metrics from the instrument trajectories when using both

the Sigma.7 (in black) and the Leap Motion (in grey), for each experience group (A = Engineer, B = Resident, C

= Expert surgeon).

on the experience (especially for the resident). Looking

at the clusters, it can be noticed that each candidate

is distinctly separated from the other ones. In addition,

each cluster highlights one of the two HMI, indicating

that trajectories are similar for the same configuration

(i.e., participant and interface), but different enough

between configurations to be distinguished.

6 Discussions

The discussion is splitted in two parts. The first part

directly focuses on the results interpretations whereas

the second draws up perspectives of the presented work

and future improvements.

6.1 Results Interpretation

The metric-based analysis highlights significant differ-

ences especially for the surgeon that can be mainly ex-

plained by three factors. The first one is that contactless

interaction is difficult to manage especially when per-

forming a grasping task. Where the Sigma.7 offers tac-

tile perception and supports arm proprioception thanks

to the mechanical handle, free-hand interaction is more

complex and requires more time to practice. This type
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(g) Non-dominant hand smoothness.
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(h) Dominant hand smoothness.
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(i) Non-dominant hand working volume.
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(j) Dominant hand working volume.

Fig. 7: Continued.

of interaction led trainee to use the clutch in order to

pause the session for looking their hands and place them

correctly. The second factor addresses workspace lim-

itations. It appeared several times during the exper-

iments that participants stopped unintentionally the

robot due to a lack of the workspace perception. Their

hands cross the tracking limits that caused robot in-

terruption. The last factor deals with hand occlusions.
For safe control, the current implementation manages

hand occlusions to instantaneously stop the robot in

order to avoid unsafe motions and arm collision. In the

three cases (i.e., proprioception, workspace limits and

occlusions), after an interruption, the robot was able to

start again at the same place and allowed a smooth ma-

nipulation recovery. However, such event appearances

increased the execution time and reduced average ve-

locities obtained with the contactless control.

From the spatiotemporal analysis, we notice that tak-

ing motion of the surgical tooltips into account enables

detection of both participant and interface in an unsu-

pervised way. Consequently, it seems that the current

configuration (i.e., participant and interface) produces

a specific signature in the trajectory that allows detec-

tion of each of them. From the hardware point of view,

this result suggests that participants did not follow the

same strategy when using each interface, meaning that

manipulation and interactions with their hands could

be different for both devices.

However, thank to these two complementary analyses,

one can state that this specific trajectory signature is

not comparable for the surgeon and for the resident.

Where the experienced participant produced lower warp-

ing distances but highlighted significant differences in

7 of the 10 computed metrics, the novice can be dis-

tinguished by lower variations in the metric analysis

and larger ones in the spatiotemporal clustering. This

result supports the hypothesis that similar manipula-

bility is not mandatory for the design of HMIs ded-

icated to surgical training and suggests that comple-

mentary to metric-based computations, other analysis

should be perform to qualify and quantify the surgical

performance during robotic-assisted training.

6.2 Perspectives

This work shows promising potentials for new telesurgi-

cal control systems. By using the Leap Motion device to

accurately control surgical instruments, we opened new

perspectives for future developments of contactless-based

interface dedicated to robotic surgical training systems.

While stable control for safety protection is manda-

tory in the OR, current occlusion handling strategy

which consists in stopping the robot led participants

to clutch more and then reduce their scores. Providing
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Fig. 8: Unsupervised trajectory analysis results with (a) the clustering of each session from each candidate using

both interfaces and (b) and (c) show examples of respectively similar and dissimilar surgical tool trajectories from
dominant hands, acquired during training sessions.

a more detailed analysis of the different gesture work-

flows performed during the surgical task could help to

better understand variations between contactless and

contact-based control methods. For this purpose, ap-

proaches could rely on Surgical Process Models that

allow to breakdown a process into different granularity

levels that are steps, phases and activities [11, 12, 22].

In the current implementation, manipulation capabili-

ties are mainly restricted because of the occlusion strat-

egy, the workspace limitations and the proprioception

perceptions. To tackle these issues, complementary in-

formations should be provided to the operator such as

visual, auditive or tactile feedbacks [19]. Despite these

drawbacks, the Leap Motion device offers several ad-

vantages in comparison to mechanical-based interfaces.

It is drastically cheaper than two Sigma.7 (i.e., for bi-

manual teleoperation), which helps improving availabil-

ity of training systems for continuous teaching of sur-

gical skills. Also, its portability and ease of use make it

easily adaptable to different models of training systems

(i.e., virtual reality simulator or robot). Considering

perioperative situations, the contactless control offers

sterilization compatibility that simplifies the workflow

in case of medical complications. However, even if it

does not provide similar bimanual workspace and raw

accuracy, this contactless approach is accurate enough

to control surgical simulators and robots, for training

purposes only when complex motions are not always

required [21, 38].

To support our conclusion that the Leap Motion could

be a reliable alternative to high-end quality interface for

training purposes, additional surgical tasks requiring

higher accuracy such as dissection of small anatomical

structures, suturing and clip application could be stud-
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ied to extend the current results. Experiments including

more participants with different skill levels could help to

generalize our conclusion. The natural next steps of this

work is first to integrate such contactless control into a

training system and compare the performance with its

original human-machine interface in order to obtain a

reliable training tool. According to the preliminary re-

sults, the second step will be a transfer study towards

clinical practice, where surgeons will be trained with

the contactless system and then tested for improvement

in standard teleoperation, compared to no training and

other forms of training.

7 Conclusion

Surgical simulation is a key component in the initial ed-

ucation of surgeons, especially for robotic-assisted inter-

ventions. In such context, more and more advanced sys-

tems are developed with high-end mechanical human-

machine interfaces. In this paper, we proposed to re-

place such expansive interface by using a low-cost de-

vice, namely the Leap Motion, to perform telesurgical

training with a Raven-II robot. Relying on an efficient

hand model from the Leap Motion tracker, we can fully

and accurately manipulate surgical instruments. Here,

one hand mimics one surgical tool with 7 degrees of free-

dom, including grasp action. Then, we assessed the pro-

posed approach by comparing performance of several

participants on a peg transfer task. From a metric-based

quantification, results showed that the Leap Motion

based control performed differently than the mechan-

ical control reference. In addition, a novel unsupervised

clustering approach was used to compare spatiotempo-
ral trajectories of the surgical instruments with both

devices. At the end, we concluded that strategies and

motions are distinct and the contactless device does not

overtake manipulability with high-end mechanical in-

terface. However, current development highlights that

accurate control of robotic surgical tools is feasible and

could be dedicated for training purposes. Considering

cost, dimension, accuracy and asepsis, the contactless

control should be emphasized for novel generation of

robotic surgical training system to help trainee acquir-

ing basic skills and encourage the educational heuristic

“perfect practice makes perfect”.
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17. Hernoux F, Béarée R, Gajny L, Nyiri E, Bancalin
J, Gibaru O (2013) Leap Motion pour la capture de
mouvement 3D par spline L1 - Application à la robo-
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