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The hair cycle underlies regulation of Langerhans cell renewal. 
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ABSTRACT 

In the epidermis, Langerhans cells (LCs) provide an essential link between the innate and 

adaptive immune systems. They self-renew in situ and continuously transport antigen from skin 

to lymph node (LN) T cells in the steady state. The cyclic renewal of hair follicles (HF) causes 

profound alterations in the cutaneous microenvironment, however little is known about its 

impact on LC homeostasis. Here we show that mouse LCs developed normally in the absence of 

hair but perceived critical transition periods in the hair cycle. LCs underwent a proliferation 

burst during the HF growth phase (anagen). Reinitiation or abolishment of anagen as well as loss 

of the HF had direct consequences on LC self-renewal. Because dividing LCs were found close to 

the anagen HF, we searched for the proliferative signal within this structure and identified 

increased Il34 expression by HF stem cells and their progeny. Inhibition of the IL-34 receptor 

CSF-1R at the onset of anagen completely and specifically blocked LC proliferation. Altogether, 

our findings demonstrate that the hair cycle directly oversees LC self-renewal and migration. 
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INTRODUCTION 

Organized in a dense network within the epidermis, Langerhans cells (LCs) are the outermost 

sentinels of the skin immune system (Kaplan, 2017;Doebel et al., 2017). Their location allows 

them to efficiently collect antigens from keratinocytes, commensal or pathogenic 

microorganisms, or topically-applied chemicals. When activated by environmental danger 

signals, LCs migrate into skin-draining LNs where they present antigens to T cells. In the steady 

state, the traffic occurs continuously but at a lower frequency. LCs that reach LNs without prior 

exposure to danger signals are thought to contribute to immune tolerance (Steinman and 

Nussenzweig, 2002;Flacher et al., 2014;Idoyaga et al., 2013;Seneschal et al., 2012). Recently, 

molecular mechanisms governing this spontaneous emigration have been revealed (Bobr et al., 

2012;Zahner et al., 2011), although further investigations on their initiation are still needed.  

Development of the LC network requires precursors derived from the yolk sac or the fetal liver 

and recruited into the embryonic skin (Hoeffel et al., 2012;Schulz et al., 2012). Shortly after 

birth, these precursors differentiate into bona fide LCs and undergo intense but transient 

proliferation to take up residence in the newly formed epithelium (Chorro et al., 2009). In adult 

mice, the integrity of the network is maintained by a low-rate self-renewal (Giacometti and 

Montagna, 1967;Czernielewski et al., 1985;Merad et al., 2002), likely originating from a 

specialized LC subset endowed with a higher proliferative capacity (Ghigo et al., 2013). This 

unique homeostatic maintenance of LCs together with their constant traffic to the draining LNs 

raises important questions regarding the existence of local and/or temporal control mechanisms.  

The hair follicle (HF) is a complex multilayered formation that extends from the epidermis deep 

into the dermis, and integrates sebaceous glands (Schneider et al., 2009;Hsu et al., 2014). It 

protects mammals against extreme temperatures, UV light or physical trauma. However, at the 

same time, the HF provides a niche for microorganisms that can challenge the immune system 

(Polak-Witka et al., 2019). HF morphogenesis draws its origins from the interaction between 

the embryonic ectoderm and the underlying mesoderm and is completed two weeks after birth 

(Schneider et al., 2009). A key feature of HF is its cyclic renewal, which allows for the 

replacement of damaged hair shaft and seasonal adjustments to the fur coat. The cycle is 

subdivided in three main stages: growth (anagen), regression (catagen) and resting (telogen) 
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(Schneider et al., 2009). These phases are under the control of complex regulatory mechanism 

entailing periodic activation and quiescence of HF-associated stem cells (Hsu et al., 2014). The 

first cycle is synchronized for most HFs until the second telogen. Later on, HFs are uncoupled 

and their renewal occurs with variable kinetics within different areas of the skin (Hodgson et al., 

2014;Plikus et al., 2011). It has been recognized that the hair cycle impinges on skin physiology 

a number of important changes (Stenn and Paus, 2001). By using HF synchronization mouse 

models, studies have demonstrated variations in the number or activation of perifollicular 

macrophages, dendritic epidermal T cells (DETCs) and mast cells (Castellana et al., 2014;Paus et 

al., 1998;Westgate et al., 1991;Hashizume et al., 1994;Kumamoto et al., 2003). It has been 

known for a long time that LCs associate with the HF (Breathnach, 1963;Moresi and Horn, 

1997;Christoph et al., 2000), particularly in the non-cycling distal portion and the nearby 

sebaceous glands (Haid et al., 2015) that is most exposed to trauma and infection. When acute, 

inflammation-induced LC emigration requires the recruitment and differentiation of precursors 

to replenish the network (Katz et al., 1979;Ginhoux et al., 2006), HFs have been depicted as a 

portal to blood-derived precursors (Nagao et al., 2012) and as a niche for keratinocytes that 

support TGF-G-driven differentiation (Mohammed et al., 2016). Finally, deciphering the 

immunosurveillance of HFs is particularly important because they have been proposed as a 

privileged route of entry of bioactive molecules (Knorr et al., 2009).  

In spite of these elements, the effect of the periodic activation of hair renewal and regression 

on LC biology remains unknown. By establishing temporal associations with the synchronized 

hair cycle or by its physical and genetic manipulation, we present evidence that the hair cycle 

regulates LC self-renewal by CSF-1R engagement. These findings show that the dynamic changes 

in skin physiology elicited by the hair cycle can have a major impact on the cutaneous immune 

system.  
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RESULTS 

The Langerhans cell network develops in the absence of hair follicles 

The development of the LC network coincides with HF formation between embryonic day 14.5 

and post-natal day 15 (Schulz et al., 2012;Schmidt-Ullrich and Paus, 2005), and 

immunofluorescence staining of hairy (tail skin) epidermal sheets revealed a close association 

between LCs and the HF infundibulum (Fig. 1A). In light of this spatiotemporal relationship 

between LCs and HFs, we first asked whether formation of the LC network is dependent on HF 

morphogenesis. Among the different mouse models lacking hair, mice deficient for epithelial 

morphogen ectodysplasin-A (EDA), a TNF-family member, or its receptor are particularly 

relevant because they display an embryonic deficiency in HFs (Gruneberg, 1971;Headon and 

Overbeek, 1999). The Tabby mouse is a natural mutant of EDA and is completely devoid of HFs 

on the tail and behind the ears because of a complete lack of morphogenesis (Mikkola, 2008). 

Immunofluorescence staining for MHC-II in hairless tail epidermis of Tabby mice revealed the 

presence of a LC network comparable to that of wild-type mice. (Fig. 1B). Therefore, HF 

morphogenesis is dispensable for LC development and residence in the epithelium.  

A Langerhans cell proliferation burst occurs concomitantly with the anagen hair cycle phase 

To assess the impact of the hair cycle on LC renewal we took advantage of the synchronized first 

postnatal hair cycle of mouse back skin (Fig. 2A) (Schneider et al., 2009). At critical time points 

of the cycle, back skin was processed with dispase II to allow a clean separation of the whole 

epidermo-pilosebaceous unit from the dermis (Fig. S1) (Gilliam et al., 1998). LCs were then 

liberated by trypsin digestion and expression of the Ki-67 cell division marker determined by 

flow cytometry (Fig. 2B, C). As expected (Chorro et al., 2009), LC proliferation was high at d5 

and then declined. Strikingly, we found a reactivation of LC proliferation (22 ± 4.6%) 

concomitant with early anagen (d27) before the proportion of Ki-67
+
 LCs returned to the low 

levels of adults (d90). Maximal bromodeoxyuridine (BrdU) incorporation into anagen LCs 

confirmed the high proliferation rate at this phase of the hair cycle (Fig. 2D, E). However, no 

such anagen-associated increase was observed for dendritic epidermal T cells (DETCs) (Fig. S2). 

Thus, the anagen phase of the natural hair cycle is associated with a high rate of LC proliferation.  

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint (which. http://dx.doi.org/10.1101/832774doi: bioRxiv preprint first posted online Nov. 7, 2019; 

http://dx.doi.org/10.1101/832774
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 6  11/6/2019 

Hair cycle manipulation modifies Langerhans cell proliferation 

To further establish a direct relationship between LC proliferation and the growth phase of the 

hair cycle, we next tested whether physical and genetic manipulations of the cycle would affect 

LC turnover. Hair shaft removal provoked by depilation triggers synchronized hair growth in 

adults (Fig. 3A) (Chase, 1954;Paus et al., 1990). We measured LC proliferation in this model at 

different time points and observed a peak at early induced anagen (d+7) (Fig. 3B).  

A well-described side effect of cyclosporin A (CsA), a widely prescribed immunosuppressant 

drug, is the enhancement of hair growth (Paus et al., 1998). We followed LC proliferation in 

mice shaved then injected subcutaneously with CsA (Fig. S3A). As expected, the back fur grew 

back faster in CsA-treated mice (Fig. S3B). In line with this, the rate of BrdU+ LCs was increased 

5-11 days after the CsA treatment (Fig. S3C). 

Next, we investigated mice deficient for TNF-family member RANKL/TNFSF11, which are unable 

to transit into anagen (Duheron et al., 2011). Although LCs retained a normal capacity to 

proliferate shortly after birth (d14), the anagen proliferation burst observed in control mice (d27) 

was missing in Rankl
-/-

 mice (Fig. 3C, D). Finally, we made use of the Tabby mice that lack tail HFs. 

At d35 when tail hair undergoes anagen (Hodgson et al., 2014), LC division was measured in 

Tabby mice and compared with Tabby mice rescued by embryonic administration of agonist 

anti-EDAR antibody (Kowalczyk et al., 2011). At the expected time for anagen, tail LC 

proliferation of Tabby mice was clearly reduced in comparison to rescued mice (Fig. 3E, F). 

Taken together, these findings demonstrate that anagen is directly associated with a high LC 

proliferation rate. 

Dividing Langerhans cells are physically associated with the hair follicle 

To investigate the spatial relationship between proliferating LCs and cycling HFs, we labelled 

anagen skin cross-sections for Langerin and Ki-67. Similar to the epidermal sheet overview 

shown in Figure 1A and in line with previous findings (Breathnach, 1963;Moresi and Horn, 

1997;Christoph et al., 2000), LCs were found in both the interfollicular areas and the upper 

portion of the HF (Fig. 4A). The number of Ki-67
+
 LCs was determined in the interfollicular 

section (blue outline) and the HF (yellow outline). We found that the large majority of LCs 
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undergoing cell division resided in or close to the HF (Fig. 4B). This finding suggests that the 

anagen HF conveys LC proliferation signals.  

Anagen-associated Langerhans cell proliferation relies on CSF-1R signaling 

The cytokine IL-34 is expressed by epithelial cells and plays a critical role in the maintenance of 

the LC network (Greter et al., 2012;Wang et al., 2012). Because CSF-1R is the high-affinity 

receptor for IL-34 (Lin et al., 2008), and previous reports have confirmed identical effects of 

CSF-1R blocking and deficiency in IL-34 (Greter et al., 2012), we assessed the functional 

relevance of CSF-1R signaling on LC renewal. Therefore, we administered antagonistic anti-CSF-

1R antibody to mice at the onset of anagen and for 3 days, together with BrdU (Fig. 5A). This 

regimen was sufficient to impair CSF-1R signaling, as shown by a strong reduction of monocytes 

in peripheral blood (Fig. S4A) (Greter et al., 2012) without disturbing transition into anagen (Fig. 

S4B). Although the treatment did not decrease the overall percentage of LCs in the epidermis 

(Fig. S4C), CSF-1R blocking led to a substantial repression of LC proliferation (Fig. 5B, C). In 

contrast, the cell division of DETCs (Fig. S4D, E) and keratinocytes (Fig. S4D, F) remained 

unchanged. This suggests that CSF-1R signaling is implicated in LC proliferation during the hair 

cycle growth phase.  

IL-34 is expressed by anagen-activated hair follicle stem cells 

Since CSF-1R blocking affected LC proliferation in anagen, we addressed the question of 

whether the HF produces IL-34. Using Il34
tm1a 

mice that express the LacZ gene under control of 

the Il34 promoter (Greter et al., 2012;Wang et al., 2012), we observed β-galactosidase activity 

in the interfollicular epidermis and in the upper part of the HF, corresponding to the 

infundibulum (Fig. 6A). No obvious difference could be visualized when comparing HF in anagen 

vs. telogen. 

To extend this observation, we sorted the different epithelial cell types of anagen and telogen 

HFs (Fig. 6B, C) (Jensen et al., 2008;Nagao et al., 2012) and measured Il34 transcriptional 

activity in each subset (Fig. 5C). Among non-hematopoietic (CD45
neg

) cells, we first distinguished 

Sca-1
+
 CD34

-
 interfollicular and infundibulum keratinocytes. For this subset, there was no 

difference in Il34 mRNA synthesis between the two phases, similarly to our observations in the 

IL-34tm1a model (Fig. 6D). The Sca-1
-
 CD34

-
 cycling portion of the HF showed an increase in Il34 
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mRNA during anagen. An even greater induction of Il34 expression was noted for the CD34
+
 

CD49f
-
 stem cells of the bulge area, a cell subset which in addition is amplified during anagen 

(44 ± 5 % in telogen versus 77 ± 1.5 % in anagen) (Fig. 6C). Thus, although this could not be 

visualized in Il34
tm1a

 mice, HF-associated suprabasal stem cells or their progeny might contribute 

to a localized increase in IL-34 production during hair growth.  

DISCUSSION 

The immune sentinel function of LCs implies a fine regulation of their epidermal network. This 

most likely depends on matching their in situ proliferation with their rate of migration to LNs. 

Although the cyclic renewal of HF has recognized effects on skin physiology, its impact on LCs 

had so far not been addressed. In this study, we present evidence that the hair cycle exerts a 

strong influence on LC self-renewal.  

By comparing the rate of cell division between postnatal LC development, the different phases 

of the hair cycle and adult resting skin, we uncovered a strikingly high level of LC renewal during 

the first synchronized anagen phase. More precisely, it occurred at early anagen, when the HF is 

in its maximal activity. Mutants that fail to transit into anagen (Rankl
-/-

) or that are devoid of HFs 

(Tabby) lacked this proliferation burst. However, DETCs, a specialized subset of epithelial 

gamma/delta T cells also residing in the epidermis and capable of self-renewal (Honjo et al., 

1990;Sumaria et al., 2011), were unresponsive to natural anagen. These findings demonstrate a 

direct and specific relationship between the hair cycle and LC self-renewal. Moreover, LCs 

underwent increased cell division in response to synchronized anagen in the adult. Depilation is 

a well-established model to reinitiate hair growth in the adult, when otherwise the hair cycle 

occurs in a stochastic fashion (Paus et al., 1998;Plikus et al., 2011). Although it is difficult to 

totally rule out some degree of inflammation in this model, it should be noted that anagen-

associated LC proliferation occurs one week after depilation, i.e. after the acute inflammatory 

response. It is therefore probable that the hair cycle also affects LC renewal in the 

unsynchronized animal, although such measures are offset by the simultaneous occurrence of 

catagen, telogen and anagen phases in different body areas (Hodgson et al., 2014).  

CSF-1R is the high affinity receptor for cytokines CSF-1/M-CSF and IL-34 (Lin et al., 2008). A 

number of elements incited us to ask whether the CSF-1R / IL-34 axis plays a functionally 
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important role in anagen LC proliferation. First, the expression of CSF-1R is critical for LC 

development (Ginhoux et al., 2006). Secondly, only the deletion of Il34, but not Csf1, results in 

the absence of LCs (Wang et al., 2012;Greter et al., 2012). Finally, previous findings on human 

monocytes support the importance of CSF-1R in cell division (Clanchy et al., 2006;Lin et al., 

2008). We therefore tested the role of CSF-1R in anagen LC renewal. Detailed analyses of 

Il34
tm1a

 mouse skin showed the presence of Il34 expression within HFs. The use of antagonistic 

antibody against CSF-1R (Greter et al., 2012) allowed for precisely timed CSF-1R inhibition, 

thereby restricting the blocking effects to the anagen phase without interfering with 

development of the LC network (Wang, Greter). This approach revealed the importance of CSF-

1R signaling for LC proliferation during anagen. The unresponsiveness of keratinocytes and 

DETCs to the blocking antibody strongly suggests that CSF-1R blocking has no effect on the other 

epidermal cell types.  

The lack of a role for CSF-1 in LC development and homeostasis (Ginhoux et al., 2006), the 

higher affinity of IL-34 for CSF-1R (Lin et al., 2008), and the demonstration that CSF-1 is not 

expressed by murine epidermal cells (http://biogps.org/#goto=genereport&id=12977) (Greter 

et al., 2012) strongly supports that IL-34 is the CSF-1R ligand responsible for LC proliferation. 

However, our experiments do not formally exclude a contribution of CSF-1, which has been 

suggested in the context of cutaneous inflammation (Wang et al., 2016). Despite our efforts, we 

did not succeed in reliably estimating the local concentration of IL-34 protein with commercially 

available ELISA kits. Although the LacZ reporter system did not reveal any clear difference of Il34 

promoter activity between anagen and telogen HFs, Il34 transcription determined by RT-qPCR 

clearly increased in anagen in the stem cell compartment of the so-called bulge. This region lies 

just below the constant portion of the HF where reside those LCs that undergo most cell division 

during anagen. In this context, it can be noted that, in a model of human skin activation by UV, 

the majority of dividing LCs also localized to the distal part of the HF (Gilliam et al., 1998). It was 

not possible to further dissect the infundibulum from the epidermis because of lack of cell-

specific markers.  

Previous studies in the context of inflammation suggest that LC renewal and migration to LNs 

are intrinsically linked (Katz et al., 1979;Ginhoux et al., 2006). Our attempts to evaluate LC 
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density at catagen and anagen proved unreliable because the interference of the numerous HF 

in back skin precluded a clear LC visualization. In addition, the result would have been 

questionable in the context of a rapidly growing juvenile mouse. Yet, the previous finding that 

Rankl
-/-

 mice display a reduced LC density comes in support of the idea that anagen is required 

to positively adjust the network density (Barbaroux et al., 2008).  

Altogether, our study highlights a novel link between the hair cycle and LC homeostasis in 

steady-state conditions. The demonstration that LC self-renewal is regulated by the hair cycle 

should incite further investigations into factors released by this ectodermal appendage on the 

skin immune system.  
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MATERIAL AND METHODS 

Mice. Mice were housed in specific-pathogen free conditions facilities at the Institut de Biologie 

Moléculaire et Cellulaire (Strasbourg, France) and at the Faculté de Biologie et Médecine de 

Lausanne (Lausanne, Switzerland). Il34tm1a mice were provided by Dr. Frédéric Lezot (Nantes, 

France). OT-II mice were purchased from Charles River Laboratories (L’Arbresle, France). All 

experiments were carried out in conformity to the French and Swiss animal bioethics legislation. 

Rankl
-/-

 (Duheron et al., 2011) and EDA-deficient Tabby (Gaide and Schneider, 2003) mice have 

been previously described. Due to gender-related hair growth kinetics, experimental procedures 

were performed on male mice only.  

Antibodies and reagents. Anti-Ki67-PerCP-Cy5.5 (clone B56), anti-CD103-PE (M290), anti-CD45-

APC (30-F11), anti-CD4-PerCP-Cy5.5 (RM4-5) and anti-CD8α-APC (53-6.7) antibodies were 

purchased from BD Biosciences (Franklin Lakes, NJ). Anti-TCRγ/δ-PE (GL3) and anti-Ia/Ie -APC 

or –PerCP-Cy5.5 (M5/114.15.2) antibodies were purchased from BioLegend (San Diego, CA). 

Anti-CD11c-PerCP-Cy5.5 (N418), anti-CD45.1-APC or -PerCP-Cy5.5  (A20) and anti-CD4-PE (GK1.5) 

antibodies were purchased from eBioscience (San Diego, CA). Anti-CD45-PE-Cy7 (I3/2.3) 

antibody was purchased from Cell LAB (Beckman-Coulter, Brea, CA). Anti-Langerin-AlexaFluor 

(AF) 488 or –AF647 (929F3.01) antibodies were purchased from Dendritics (Lyon, France). Anti-

EpCAM (G8.8) antibody was purchased from Abcam (Cambridge, UK).  

BrdU incorporation. Mice were intra-peritoneally injected with 1mg BrdU (Sigma-Aldrich, St-

Louis, MO) in saline per 20-g body weight on the first experimental day. Drinking water was 

supplemented with 0.8 mg/mL BrdU for 3 or 4 days depending on the experimental settings. 

Mice were then sacrificed and back skins were collected.  

Skin depilation. Adult mice (>90 days old) were anesthetized by intra-peritoneal injection of 

100µg/g body weight of Ketamine mixed with 10µg/g body weight of xylazine. The hair of the 

back skin was trimmed by an electric razor before removal with cold wax (Klorane).  

CSF-1R blocking in vivo. Mice were anesthetized by isoflurane inhalation and received on the 

first experimentation day 0.5mg of anti-CSF-1R blocking antibody AFS98 (Fend et al., 2013;Sudo 

et al., 1995;Greter et al., 2012), kindly provided by Dr. Hélène Haegel (Transgene SAS, 

Strasbourg) or rat IgG2a isotype control (2A3, BioXcell, West Lebanon, NH) by sub-cutaneous 
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injections. Each following day mice were similarly injected with 0.25mg of blocking or isotype 

control antibodies until sacrifice.  

Reversion of hairless tail phenotype in EDA-deficient (Tabby) mice. Briefly, hair follicle 

deficiency in the tail of Tabby mice
 
was reverted by intravenous injection of 100µg anti-EDAR 

agonist antibody (clone EDAR3) into pregnant mice at E14 of gestation (Kowalczyk et al., 2011). 

Skin cell suspensions. Back or tail skins were taken at precise timings corresponding to HF 

morphogenesis (d5 and d14), catagen/telogen (d20 and d45), anagen (d27 and d35) or 

unsynchronized (d90) phases, as previously described (Lin et al., 2009). For epidermal cell 

isolation, the hypodermis was mechanically removed from tail and back skins with a razor. Then 

skins were incubated, dermal side down, in RPMI medium (Lonza) supplemented with 2% FCS 

and 1mg/mL dispase II (Roche) overnight at 4°C. Epidermis was removed from the dermis and 

incubated at 37°C in trypsin solution (TrypLE Select, Life Technologies) for 45 minutes. Cells 

were liberated by gentle shaking, filtered through 100µm and 40µm cell strainers (BD) to 

remove epidermal fragments and hair, and washed in saline supplemented in 2% FCS and 

0.2mM EDTA (SE buffer).  

Flow cytometry. To label viable cells and block Fc receptors, cell suspensions were pre-

incubated for 20 minutes at 4°C with Fixable Viability Dye eFluor780 (eBioscience) and 2µg/mL 

of anti-CD16/CD32 antibody (clone 2.4G2, BD). Surface staining was done with 1µg/mL of 

appropriate antibodies diluted in SE buffer for 15 minutes at 4°C and washed twice. For 

intracellular staining, cells were fixed and permeabilized for 20 minutes at 4°C 

(Cytofix/Cytoperm buffer, BD), washed and labeled with 1µg/mL appropriate antibodies for 20 

minutes at 4°C. BrdU and Ki-67 detection with Flow BrdU or Ki-67 detection kit (BD Pharmingen) 

were performed according to the manufacturer’s protocol. Flow cytometry acquisitions were 

performed with a FACS Gallios
TM

 system (Beckman Coulter) and data was analyzed with Flowjo 

software (TreeStar, Ashland, OR). 

Epidermal sheet preparation and labeling. Tail skin epidermis from C57Bl/6, Tabby or control 

mice were isolated from dermis by dispase II treatment as described above. Epidermal sheets 

were fixed with cold acetone on ice for 20min. Sheets were then washed in TRIS-buffered saline 

(TBS) and non-specifics sites were blocked in TBS supplemented with 5% donkey serum for 1 
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hour at room temperature. Tissues were then incubated with 1µg/mL anti-Langerin-AF488 or 

1µg/mL uncoupled anti-Ia antibody (2G9, BD) for 3 hours at room temperature. After washing, 

sheets were incubated with 0.5µg/mL A555-coupled donkey anti-rat antibody for 1 hour at 

room temperature. DAPI staining was then realized for 15 minutes at room temperature. 

Stained tissues were mounted in medium from Dako (Glostrup, Denmark). Images were 

acquired on a widefield fluorescence microscopy (Axiovert 200M, Zeiss, Iena, Germany) with a 

10x or 20x objective (EC Plan-Neofluar, NA: 1.3).  

Histochemistry and image acquisition. Collected samples comprised pieces of juvenile back skin 

(d27), depilated skin (d+7) and dermis (d27) isolated from epidermis by dispase II treatment, as 

described above. Samples were fixed in 4% paraformaldehyde for 48 hours at 4°C. Tissues were 

then included in paraffin. Briefly, the inclusion protocol consisted of a 3 hour incubation in 70% 

ethanol, 4 hours in 95% ethanol, 16 hours in 100% ethanol, 24 hours in butanol before 48 hours 

inclusion in paraffin. Tissue was sectioned (8µm) with a microtome (RM2235, Leica, Wetzlar, 

Germany) and heated overnight at 58°C. Deparaffinization steps comprised incubations in 100% 

Toluene, 100% ethanol, 95% ethanol, and distilled water. 

Sections obtained from depilated skins and skin from mice treated with anti-CSF-1R blocking 

antibody or control isotype were colored with hematoxylin and eosin. Sections of mouse skin 

(d27) treated or not with dispase II were colored in Masson’s trichrome. 

For immunolabeling, juvenile back skin slices were first deparafinized, followed by a demasking 

step in boiling 10mM EDTA for 30 minutes. Non-specific sites were blocked in TBS 

supplemented with 5% donkey serum for 1 hour at room temperature. Tissues were then 

incubated with 1µg/mL anti-Langerin (M200, Santa Cruz, Dallas, TX) and 20µg/mL anti-Ki67 

(TEC-3, Dako) antibodies diluted in TBS with 2% donkey serum for 3 hours at room temperature. 

After 2 washes in saline, sections were incubated with 0.5µg/mL donkey anti-mouse AF488-

coupled secondary antibody (Life Technologies) and 0.5µg/mL donkey anti-rat Cy3-coupled 

secondary antibody (Jackson ImmunoResearch, West Grove, PA) for 1 hour at room 

temperature. Tissues were then washed three times and labeled with DAPI for 15 minutes at 

room temperature before mounting in Dako medium. Z-stack acquisitions were performed with 

the Axio observer Z1 microscope (Zeiss) equipped with a LSM700 confocal head (Oil-objective 
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40x, EC Plan-Neofluar, NA: 1.30). Compilations and analysis were realized with Image J software 

(Macbiophotonics, NIH). For statistics, at least 50 hair follicles were analyzed.  

LacZ stainings. Sections (12µm) of Il34
tm1a

 and Il34
wt

 epidermis embedded in OCT were cut using 

Cryostat Leica CM3050S. Slices were fixed with PFA 1% 5min, rinced with PBS 1x and incubated 

in Xgal (5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside) solution overnight at 37°C. 

Sections were rinced with PBS 1x, left to dry and mounted with EUKITT® medium. 

Cyclosporin A treatment. C57BL/6 mice were shaved (d-4), then injected subcutaneously with 

50µL saline or cyclosporin A (Sandimmun; Novartis) diluted at 50mg/kg into each flank. 

Injections were repeated at d-2 and d0. At d5, d11 and d17, mice were treated with BrdU as 

described above. Three days later, epidermal suspensions were generated from back skin and 

LCs were tested for BrdU incorporation by flow cytometry. 

FACS sorting, RNA extraction and quantitative RT-PCR. Isolated epidermal cells from telogen 

(d20) or anagen (d27) skin were sorted on a FACSAria II (BD) on the basis of their Sca-1, CD34 

and CD49f profile expression. Sorted cells (>95% purity upon post-sort verification) were lysed 

in RLT buffer (Qiagen, Venlo, The Netherlands). RNA was extracted with RNeasy Micro kits 

(Qiagen), and cDNA was synthesized with oligo(dT)15 primers and the Thermo Scientific Maxima 

First Strand cDNA Synthesis Kit. Quantitative PCR was performed using Thermo Scientific 

Luminaris Color HiGreen qPCR Master Mix and ran on a Stratagene MX4000 thermal cycler. 

Gene-specific primers are listed in Table S1. CT values of target genes were normalized to 

GAPDH, HPRT and β-actin. The expression factor was calculated by using the Relative Expression 

Software Toll (REST, http://mmm.gene-quantification.de/rest.html). 
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FIGURE LEGENDS 

Figure 1: Langerhans cell network formation is independent of hair follicle morphogenesis. (A) 

Epidermal sheets comprising complete HFs from C57BL/6 tail skin were stained for Langerin (red) 

and DAPI (blue). The image shows LCs in an epidermal network that comprises the upper HF 

(infundibulum, outlined by a bracket). The arrow points to a sebaceous gland. Scale bar: 100µm. 

(B) Epidermal sheets obtained from tail skin of hairless (Tabby) or wild-type littermate control 

mice were stained for MHC class II (red) and DAPI (blue). Scale bar: 100µm. 

Figure 2: Langerhans cell renewal increases during anagen.  (A) Schematic representation of 

the timing of HF morphogenesis and the natural synchronized hair cycle in the back skin of 

C57BL/6 mice. (B) Epidermal cell suspensions from back skin at different hair cycle phases were 

analyzed by flow cytometry. Langerin
+ 

LCs were gated and their intracellular expression of Ki-67 

protein was analyzed. Iso: Ki-67 isotype control antibody labeling performed on d27 mouse skin. 

(C) Percentages of Ki-67
+
 cells among LCs at different time points. Each data point corresponds 

to one mouse. Data is pooled from 2 independent experiments (d5: n=6, d14: n=12, d20: n=6, 

d27: n=12, d35: n=5, d45: n=5, d90: n=5). (D) Mice were fed or not (control) with BrdU for 4 

days. BrdU incorporation into LCs was determined by flow cytometry at the indicated days. (E) 

Percentages of BrdU
+
 cells among LCs at different time points. Each data point corresponds to 

one mouse. Data is pooled from 2 independent experiments (d20: n=6, d27: n=7, d35: n=6, d45: 

n=6). Bars correspond to mean values. In (D) and (E), the arrows indicate the age taken as a 

reference for statistical analysis (Student’s t-test, *p<0.05, ** p<0.01, *** p<0.001) 

Figure 3: HF cycle manipulation affects the proliferative burst of Langerhans cells. (A) 

Representative image depicting HFs in anagen (arrows) 7 days after depilation. (B) Percentages 

of Ki-67
+
 cells among LCs in resting phase (d-1), induced anagen (d+2, d+7, d+13) and 

catagen/telogen (d+18). Data were obtained by flow cytometry on isolated epidermal cells from 

2 independent experiments (d-1: n=6, d+2: n=7, d+7: n=9, d+13: n=3, d+18: n=3). In panel B, the 

arrow indicates the time point taken as a reference for statistical analysis. (C) Representative 

dot plots showing BrdU
+
 and Ki-67

+
 cells among Langerin

+
 LCs in Rankl

+/-
 (normal hair cycle) and 

in Rankl
-/-

 skin (no transition into anagen) at the expected time point for anagen (d27). (D) 

Percentages of Ki-67
+
 cells among LCs in Rankl

+/-
 and Rankl

-/-
 mice during morphogenesis (day 14) 
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(n=7 and n=5, respectively) and at the expected time point for anagen (d27; n=5 and n=5, 

respectively). Each data point corresponds to one mouse. (E) Langerin
+
 LCs from tail skin were 

analyzed for Ki-67 expression in Tabby mice rescued by anti-EDAR agonist antibody injection 

and untreated, hairless Tabby mice. (F) Percentage of Ki-67
+
 cells among LCs. Each data point 

corresponds to one mouse. Data is pooled from 2 independent experiments (n=8 in each group). 

Bars correspond to mean values. In panels B, D and F, statistical analysis was performed using 

Student’s t-test (** p<0.01, *** p<0.001).  

Figure 4: Proliferating Langerhans cells are localized close to the hair follicle. (A) Transversal 

sections of back skin with HFs in anagen were labeled with anti-Langerin (green) and anti-Ki-67 

(red) antibodies, counterstained with DAPI (blue) and visualized by confocal microscopy. Two 

distinct areas were discriminated for analysis: interfollicular epidermis (dashed blue line) and HF 

(dashed yellow lines). Red arrows indicate Ki-67
+
 epidermal keratinocytes, green arrow indicates 

LCs and red/green arrows indicate Ki-67
+
 LCs. Pictures are optical slices from Z-stack acquisitions. 

Scale bar: 50µm. (B) Percentages of Ki-67
+
 proliferating LCs within the HF and the interfollicular 

epidermis. The data is compiled from a total of 50 HFs analyzed from 3 different mice. Statistical 

analysis was performed using Student’s t-test (*** p<0.001).  

Figure 5: Signaling of IL-34 receptor CSF-1R is required for the anagen-driven Langerhans cell 

proliferation. (A) Schematic representation of the experimental procedure. At the onset of 

anagen (d24), the mice received a subcutaneous (s.c.) injection of anti-CSF-1R blocking antibody 

together with BrdU (intraperitoneal [I.P.] and in drinking water). Anti-CSF-1R injections were 

repeated every other day until sacrifice. (B) The percentage of proliferating Langerin
+
 LCs was 

assessed by Ki-67
 
expression and BrdU incorporation in mice having received isotype control or 

anti-CSF-1R blocking antibody. (C) Bar graphs show the compiled percentages of Ki-67
+
 or BrdU

+
 

cells among LCs for each individual mouse from two independent experiments (BrdU: Iso n=4, 

CSF-1R n=5; Ki-67: Iso n=6, CSF-1R n=7). Statistical analysis was performed using the Student’s t-

test (** p<0.01, *** p<0.001).  

Figure 6: Il34 expression increases in hair follicle stem cells in anagen. (A) Back skin sections 

(thickness: 16µm) mice were obtained from wild-type (i, iii) or Il34
tm1a

 (ii, iv) mice during telogen 

(d21) and anagen (d28) phase. Blue X-gal staining (arrows) depicts areas with LacZ activity. 
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Sections where observed with 200x magnification. IFE: interfollicular epidermis, IFD: 

Infundibulum, SG: Sebaceous Gland, (B) Schematic representation of HF epithelial cell subsets 

expressing specific marker combinations. The infundibulum and the interfollicular epidermal 

cells (pink) express Sca-1. Stem cells (SCs) in the bulge are characterized by CD34 expression. As 

opposed to suprabasal SCs (green), basal SCs (purple) carry CD49f/P6 integrin. Epithelial cells of 

the distal HF (blue) lack both Sca-1 and CD34. (C) Flow cytometry profile of the CD45
neg

 

epithelial cells with color-coded gates corresponding to the subsets defined in panel A. 

Representative percentages of bulge SCs in telogen and anagen are shown. (D) Il34 mRNA 

expression by sorted epithelial cell subsets both in telogen or anagen was measured by 

quantitative RT-PCR and normalized to three housekeeping genes. Bar graphs show the mean -

/+ SEM of 3 different mice, expressed as a percentage of telogen epidermal cells. Statistical 

analysis was performed using the Mann-Whitney test (* p<0.05).  
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ONLINE SUPPLEMENTAL MATERIAL 

Figure S1: Dispase II efficiently isolates the epidermis together with hair follicles. Anagen back 

skin was treated (right panel) or not (left panel) with dispase II by floating skin onto culture 

medium containing the enzyme overnight at 4°C. Separation of epidermis from dermis was 

performed on treated skin, which was then fixed and included in paraffin. Transversal sections 

were colored in Masson’s trichrome. Filled red arrow indicates the epidermis in untreated skin 

while empty red arrow shows its absence after dispase II treatment. Scale bar: 100µm. 

Figure S2: Proliferation of dendritic epidermal T cells does not depend on the natural hair 

cycle. (A) Mice were fed or not (control) with BrdU for 4 days and its incorporation into DETCs 

(TCRPδ
+
) was measured by flow cytometry at the indicated days. (B) Percentages of BrdU

+
 cells 

among DETCs. Data is pooled from 2 distinct experiments (d21: n=7, d28: n=7, d35: n=12, d45: 

n=6). Bars represent mean values. The arrow indicates the age taken as a reference for 

statistical analysis (Student’s t-test, *** p<0.001).  

Figure S3: Cyclosporin A promotes hair growth and LC proliferation. Mice were shaved at d-4 

and treated with cyclosporin A (CsA) at d-4, d-2, d-0. (A) Representative pictures of the back skin 

at d11 and d17 for untreated and CsA-treated mice. (B) BrdU incorporation in epidermal LCs 5, 

11 or 17 days after CsA treatment. 

Figure S4: Transient blocking of CSF-1R does not affect the hair cycle nor the proliferation of 

keratinocytes or dendritic epidermal T cells. Mice received subcutaneous injections of anti-CSF-

1R or isotype control (control) from day 24 to day 27. (A) Blood was collected at day 27 to 

assess the efficiency of CSF-1R blocking by the loss of monocytes (CD11b
+
 GR-1

+
 Ly6G-) in 

injected mice as compared to control. (B) Entry into anagen in treated or control mice skin at 

day 27 was determined by hematoxilin eosin colorization of back skin slices. (C) Percentage of 

LCs (Langerin+) was determined in epidermal suspension of treated (n=4) or control mice (n=6) 

skin. Data were obtained from 2 distinct experiments for each group. (D) Proliferation of DETC 

(TCRPδ+ cells) and keratinocytes (Langerin- TCRPδ-) was analyzed by the expression of Ki-67 in 

skin epidermal suspension of anti-CSF-1R or isotype treated mice. Iso-Ki-67: Isotype control of 
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Ki-67 antibody. (E) and (F) Graphs show the compilation of flow cytometry results obtained from 

panel D (n=4 for each group). Data were obtained from 2 distinct experiments for each group. 

Statistical analysis was performed using the Student’s t-test (ns: non significant).  
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