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Abstract: We consider Hausdorff discretization from a metric space E to a discrete subspace D, which asso-
ciates to a closed subset F of E any subset S of D minimizing the Hausdorff distance between F and S; this
minimum distance, called the Hausdorff radius of F and written rH(F), is bounded by the resolution of D.
We call a closed set F separated if it can be partitioned into two non-empty closed subsets F1 and F2 whose
mutual distances have a strictly positive lower bound. Assuming some minimal topological properties of E
and D (satisfied inRn andZn), we show that given a non-separated closed subset F of E, for any r > rH(F), ev-
ery Hausdorff discretization of F is connected for the graph with edges linking pairs of points of D at distance
at most 2r. When F is connected, this holds for r = rH(F), and its greatest Hausdorff discretization belongs to
the partial connection generated by the traces on D of the balls of radius rH(F). However, when the closed set
F is separated, the Hausdorff discretizations are disconnected whenever the resolution of D is small enough.
In theparticular casewhere E = Rn andD = Zn withnorm-baseddistances,wegeneralize our previous results
for n = 2. For a norm invariant under changes of signs of coordinates, the greatest Hausdorff discretization of
a connected closed set is axially connected. For the so-called coordinate-homogeneous norms, which include
the Lp norms, we give an adjacency graph for which all Hausdorff discretizations of a connected closed set
are connected.

Keywords:metric space, topological connectivity, adjacency graph, partial connection, closed set, Hausdorff
discretization

MSC: 05C40, 54E35, 68U10

1 Introduction
Hausdorff discretization is a metric approach to the problem of discretizing Euclidean sets. It was introduced
in [12, 13] in the general setting of an arbitrary metric space (E, d) and a subspace D of E which is “discrete”
in the sense that every bounded subset of D is finite (we say then that D is boundedly finite).

AHausdorff discretization of a non-empty compact subset K of E, is a subset S of the discrete space D that
minimizes the Hausdorff distance between K and any subset of D. This minimumHausdorff distance is given
by the Hausdorff radius of K: rH(K) = maxx∈K d(x, D). See Figures 1 and 2.

In our framework, the role played by the grid step h in the common discretization pair E = Rn, D = (hZ)n,
is held by the covering radius rc: the least r > 0 such that E is covered by the union of all balls Br(p) = {q ∈
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Figure 1: Here E = R2, D is a discrete set of irregularly spaced points, and we take the Euclidean distance d2. A compact set K
(in grey), and its greatest Hausdorff discretization (shown with filled dots), which consists of all points of D whose distance to
K is at most rH (K).

����
�
�
�

�
�
�

�
�
�

�
�
�

����
�
�
�

�
�
�

�
�
�

�
�
�

r

CBA

p q s

Figure 2: Here E = R2, D = Z2, and we take the Euclidean distance d2. Left: A compact set K = A∪B∪C overlayed with discrete
points p, q, r, s and their digital cells. Right: We show the balls of Hausdorff radius rH (K) centered about p, q, r, s; since these
balls are all those that intersect K, the greatest Hausdorff discretization of K is {p, q, r, s}; now since the balls centered about
p, q, s cover K, {p, q, s} is also a Hausdorff discretization of K, and there is no other one than {p, q, r, s} and {p, q, s}.
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E | d(p, q) ≤ r} with p ∈ D. Equivalently, rc = supx∈E d(x, D). Then, we have rH(K) ≤ rc, so the Hausdorff
distance between K and its Hausdorff discretizations is always bounded by the resolution of D.

The setMH(K) of Hausdorff discretizations of K is non-empty, finite and closed under non-empty unions.
It has thus a greatest element, called the greatest Hausdorff discretization of K and written ∆H(K). Actually,
∆H(K) consists of all points of D whose distance to K is at most rH(K), see Figures 1 and 2 again.

Both MH(K) and ∆H(K) were characterized in [12], and their relation with other types of discretization
was analysed in [13]. For instance, we showed that when digital cells constitute the Voronoi diagram of D,
every cover discretization is a Hausdorff discretization. On the other hand, inmorphological discretization by
dilation, provided that the dilation of D is E (every point of E belongs to the structuring element associated
to a point of D), the Hausdorff distance between a compact and its discretization is bounded by the radius of
the structuring element.

In [14, 15] we extended our theoretical framework to the discretization of non-empty closed subsets of E
instead of compact ones.

In Section 5 of [22], we analysed the preservation of connectivity by Hausdorff discretization in the case
where E = R2, D = Z2 and the metric d is induced by a norm N such that for (x1, x2) ∈ R2 and ε1, ε2 = ±1,
N(ε1x1, ε2x2) = N(x1, x2) = N(x2, x1), for example the Lp norm (1 ≤ p ≤ ∞), see (1) next page. We showed
then that for a non-empty connected closed subset F of E,

1. for N ≠ L1, every Hausdorff discretization of F is 8-connected;
2. the greatest Hausdorff discretization of F is 4-connected.

There was an error in [22]: we overlooked the condition N ≠ L1 in item 1; it was later pointed out by D.Wagner
(private communication), and indeed for N = L1 we show a counterexample in Section 4 (Figure 8).

Since Section 5 of [22] gives the starting point of the present paper, we can look closely at the proof of
the above result: it depends only on the properties of closed balls. Indeed, items 1 and 2 follow from the
corresponding two facts:

1. when N ≠ L1, for any x, y ∈ D such that Brc (x) ∩ Brc (y) ≠ ∅, x is 8-adjacent to y;
2. for any x ∈ E and r > 0, Br(x) ∩ D is 4-connected.

The goal of this paper is to extend these connectivity preservation properties of Hausdorff discretization
to themost general situation:we consider thediscretizations of any closed subset of a space E into a “discrete”
subspace D of “bounded resolution”, in other words D is boundedly finite and 0 < rc < ∞. The space Ewill be
assumed to be “continuous” in some sense, in other words some results may require additional conditions,
such as E being boundedly compact (that is, every bounded and closed subset of D is compact) and having
the middle point property (for any p, q ∈ E, there is some x ∈ E such that d(p, x) = d(x, q) = 1

2d(p, q)). Note
that all conditions considered here are satisfied by Rn and Zn with a norm-based metric.

This extension of connectivity preservation has been made possible by the development of a very broad
framework for the notion of connectivity, namely the concept of connection [10, 18] and its recent generaliza-
tion to that of partial connection [11].

We will obtain several general results. Let F be a non-empty closed subset of the boundedly compact
space (E, d). For any s ≥ 0, we say that F is s-separated if F can be partitioned into two non-empty closed
subsets F1 and F2 such that d(x1, x2) > s for all x1 ∈ F1 and x2 ∈ F2. Then we say that F is separated if F is
s-separated for some s > 0 or, equivalently, F can be partitioned into two non-empty closed subsets F1 and
F2 such that inf{d(x1, x2) | x1 ∈ F1, x2 ∈ F2} > 0. Finally, F is non-separated if it is not separated, that is,
for every s > 0, F is not s-separated. If F is connected, then it is non-separated but the converse is false, see
for instance Example 2 (in Subsection 3.1) and Figure 5 (in Subsection 3.2). With this definition, we get the
following:

– If F is connected, then (see Theorem 18 in Subsection 3.2):

1. every Hausdorff discretization of F is connected in the graph on D where we join by an edge any
two points whose distance apart is at most 2rH(F) (twice the Hausdorff radius);
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4 | Christian Ronse, Loic Mazo, and Mohamed Tajine

2. the greatest Hausdorff discretization ∆H(F) of F belongs to the partial connection generated by
all BrH (F)(x) ∩ D, x ∈ F.

– If F is disconnected but non-separated, then (see Theorem 19 in Subsection 3.2), for any r > rH(F):

1. every Hausdorff discretization of F is connected in the graph on D where we join by an edge any
two points whose distance apart is at most 2r;

2. the greatest Hausdorff discretization ∆H(F) of F belongs to the partial connection generated by
all Br(x) ∩ ∆H(F), x ∈ F.

– If F is s-separated for some s > 0, then (see Proposition 21 in Subsection 3.3), for any r ≤ s/4, every
Hausdorff discretization of F will be disconnected in the graph on D where we join by an edge any
two points whose distance apart is at most 2r. In particular, if rc < s/4, this will be the case for some
r > rH(F).

We can interpret the above results in the framework of discretizations in multiple resolutions: the Hausdorff
discretizations of a non empty closed subset F of the boundedly compact space E remain connected when
the resolution of D tends to zero iff F is non-separated. See Theorem 23 in Subsection 3.3.

In the second part of our paper, we consider the particular case where E = Rn, D = Zn and d is induced
by a norm invariant under any change of sign or permutation of the basis vectors of Rn, for example the Lp
norm (1 ≤ p ≤ ∞):

‖(x1, . . . , xn)‖p =
(︁ n∑︁
i=1

|xi|p
)︁1/p

(p < ∞) ,

‖(x1, . . . , xn)‖∞ = max(|x1|, . . . , |xn|) .
(1)

Wewill then see that everyHausdorffdiscretizationof Fwill be connectedaccording to anadjacencygraphde-
pending on the norm, while the greatest Hausdorff discretization of F will be connected for the 2n-adjacency
relation, linking any two points of Zn that differ by 1 in exactly one coordinate. For n = 2, this will give the
result of [22] mentioned above.

The paper is organized as follows. Our notation is summarized in Table 1. Section 2 recalls the theoretical
background: first partial connections and connections [11], then some special families of closed sets [14, 15],
and finally Hausdorff discretization [12, 13]. It also discusses related works by other authors. Section 3 gives
our general results about the connectivity of discretizations of connected, non-separated or separated sets.
Then Section 4 considers the particular case of E = Rn and D = Zn with a coordinate-homogeneous norm.
Finally Section 5 concludes.

Throughout our paper, the statement of a well-known or published fact will be designated “Property”,
while the words “Lemma”, “Proposition” and “Theorem” will be reserved for new results.

2 Theoretical Background
We will recall some known concepts and results, first about connections and partial connections [11], then
about some families of closed subsets in a metric space [14, 15], and finally in the theory of Hausdorff dis-
cretization [12, 13]. We also summarize related works.

Let E be any non-empty set. We write P(E) for the family of all subsets of E. Given three sets X, Y , Z, we
say that X is partitioned into Y and Z if {Y , Z} is a partition of X, that is, Y ⊆ X, Z ⊆ X, Y ≠ ∅, Z ≠ ∅, Y ∩ Z = ∅
and X = Y ∪ Z; then we say that X is partitioned by Y and Z if X is partitioned into X ∩ Y and X ∩ Z, that is,
X ∩ Y ≠ ∅, X ∩ Z ≠ ∅, X ∩ Y ∩ Z = ∅ and X ⊆ Y ∪ Z.
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Table 1: Notation and terminology used in this paper: Notation for the mathematical notation, Name for the designation, Refer-
ence for where it is defined (subsection, then property, definition or equation).

Notation Name Reference
‖x‖p Lp norm of x § 1, Eq. (1)

Con(B) / Con*(B) connection /partial connection § 2.1, Prop. 1
generated byB and 2

Br(x) / B∘r (x) closed / open ball of § 2.2, Eq. (3)
radius r centered about x

Fbc(E) family of boundedly compact, § 2.2, after
Fbf(E) of boundedly finite and Def. 3
Fp(E) of proximinal subsets of E

δr / δ∘r / δ+r dilation / open dilation / § 2.2, Eq. (4),
upper extension of radius r (5) and (6)

hd oriented Hausdorff distance § 2.3, Eq. (10)

Hd Hausdorff distance § 2.3, Eq. (9)

rc covering radius § 2.3, Eq. (11)

rH(F) Hausdorff radius of F § 2.3, Eq. (12)

∆r / ∆+r discretization / upper § 2.3, Eq. (13)
discretization of radius r and (14)

MH(F) set of all Hausdorff § 2.3, after
discretizations of F Prop. 8

∆H(F) greatest Hausdorff § 2.3, after
discretization of F Prop. 9

Gr(S) / GZr (S) § 3.2, Def. 7

rc(ρ) covering radius for ρ § 3.3, Eq. (15)

2.1 Connections and Partial Connections

Connections were defined by Serra [18] and further analysed by Ronse [10], who then generalized them to
partial connections [11]:

Definition 1. A partial connection on P(E) is a family C ⊆ P(E) such that

1. ∅ ∈ C, and
2. for anyB ⊆ C such that

⋂︀
B ≠ ∅, we have

⋃︀
B ∈ C.

We call the partial connection C a connection on P(E) if it satisfies the following third condition:

3. for all p ∈ E, {p} ∈ C.

Note that condition 2 remains valid for B = ∅. Indeed,
⋂︀
B = E ≠ ∅ and

⋃︀
B = ∅ ∈ C thanks to condition 1.

Elements of a partial connection C are said to be connected; those of P(E) \ C are said to be disconnected. For
X ∈ P(E), a connected component of X is any element of P(X) ∩ C \ {∅} that is maximal for inclusion. When
C is a connection, the connected components of X constitute a partition of X; when C is a partial connection,
they constitute a partition of the subset

⋃︀(︀
P(X) ∩ C

)︀
, the union of all connected subsets of X.
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6 | Christian Ronse, Loic Mazo, and Mohamed Tajine

The above expressions “connected set” and “connected component” must always be understood in the
context of a given (partial) connection. Let us give threewell-knownexamples of connections. In a topological
space E, a subset X is connected if it cannot be partitioned by two open sets G1 and G2; equivalently, it cannot
be partitioned by two closed sets F1 and F2. Then the set of connected subsets of E constitutes a connection
[18]. It is easily seen that the closure of a connected set is connected, hence the connected components of a
closed set are closed. Another connection is made of path-connected sets, that is, sets X such that for any
x, y ∈ X, there is a path joining x to y, i.e., a continuous map f : [0, 1] → X with f (0) = x and f (1) = y. This
second connection contains the first one, since any path-connected set is connected. A third example is given
by connectivity in a graph; we will describe it precisely after Property 2. Other examples of connections and
partial connections can be found in [10, 11, 20].

Property 1. An intersection of connections on P(E) is a connection on P(E), an intersection of partial connec-
tions onP(E) is a partial connection onP(E), andP(E) is the greatest (partial) connection onP(E). Thus for any
familyB of subsets of E, there is a least partial connection includingB and a least connection includingB.

The least partial connection (resp., connection) includingB is called thepartial connection (resp., connection)
generated byB and it is written Con*(B) (resp., Con(B)).

Definition 2. LetB be a family of non-empty subsets of E.

1. For p, q ∈ E, p and q are said to be chained by B if there are B0, . . . , Bn ∈ B (n ≥ 0) such that p ∈ B0,
q ∈ Bn and Bt−1 ∩ Bt ≠ ∅ for all t = 1, . . . , n. Such a sequence B0, . . . , Bn is called a chain, and its length
is n + 1.

2. For A ∈ P(E), we say that A is chained byB ifB ⊆ P(A) and any two points of A are chained byB.

Obviously ∅ (as set of points of E) is chained by ∅ (as set of non-empty subsets of E). In a non-empty subset
A of E, a chain between two points has always a strictly positive length. A point x is chained to itself if x ∈ B
for some B ∈ B; thus, the binary relation on E linking two points when they are chained by B, is generally
not reflexive. However, it is symmetrical and transitive; hence this relation induces an equivalence relation
on

⋃︀
B (not on E).

Property 2. Given a familyB of non-empty subsets of E, Con*(B) is the set of all X ∈ P(E) chained byP(X)∩B;
thus X ∈ Con*(B) if and only if for any y, z ∈ X, there are B0, . . . , Bn ∈ B (n ≥ 0) such that y ∈ B0, z ∈ Bn,
Bi ⊆ X for 0 ≤ i ≤ n and Bi ∩ Bi+1 ≠ ∅ for 0 ≤ i < n. Now, Con(B) is obtained by adding to Con*(B) all singletons
{x}, x ∈ E.

For example, in a graph with vertex set V, let B be the set of pairs of distinct vertices that are linked by an
edge. Then Con(B) is the set of all parts X of V such that the graph induced on X is connected [10]. On the
other hand, Con*(B) consists of such parts X of size at least 2, or singletons X = {p}with a loop on p; in other
words, isolated vertices are excluded from Con*(B). Indeed, graph connectivity is based on chains of edges,
which can possibly be of length 0 (isolated vertices), while Con*(B) is based on chains of length at least 1.

When X /∈ Con*(B), let Y =
⋃︀(︀

P(X) ∩ B
)︀
; in other words, Y is the set of all points in X that are covered

by some B ∈ B such that B ⊆ X. Then Y ⊆ X, and the binary relation on Y linking x, y ∈ Y iff x and y are
chained byP(X)∩B, is an equivalence relation, whose equivalence classes are the connected components of
X according to the partial connection Con*(B); thus for x ∈ Y, the connected component of X containing x is
the set of all y ∈ Y such that x and y are chained by P(X) ∩B, while for x ∈ X \ Y, x belongs to no connected
component; in particular, when Y = ∅, X has no connected component. Now, the connected components of
X according to Con(B) are those according to Con*(B), plus the singletons of X \ Y.

Let A and B be two non-empty sets. For any map ψ : P(A) → P(B) and x ∈ A, write ψ(x) for ψ({x}).
When B = A, the map ψ is said “on P(A)”. A map δ : P(A) → P(B) such that for any Z ∈ P(A) we have
δ(Z) =

⋃︀
z∈Z δ(z) is called a dilation. We finally recall what is called a connection by dilation [10, 11, 18]:
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Property 3. Let C be a partial connection on P(E) and let δ be a dilation on P(E) such that for any x ∈ E,
δ(x) ≠ ∅. Then Cδ = {X ∈ P(E) | δ(X) ∈ C} is a partial connection on P(E). Furthermore, if for any x ∈ E,
x ∈ δ(x) and δ(x) ∈ C, then Cδ is a connection and C ⊆ Cδ.

2.2 Some families of closed sets in a metric space

The reader is assumed to be familiar with basic topological and metric notions, such as a metric (or distance
function), ametric space, a bounded set, anopen set, a closed set, the relative topology ona subset, a compact
space and a compact set, see [6]. We recall some more advanced definitions and results [14, 15].

Let (E, d) be a metric space, where E ≠ ∅ and d is a metric on E. For X ⊆ E and p ∈ E we define the
distance between p and X as

d(p, X) = inf{d(p, x) | x ∈ X} . (2)

Note that |d(p, X) − d(q, X)| ≤ d(p, q), thus the function E → R : p ↦→ d(p, X) is continuous.
For r ≥ 0 and x ∈ E we define the closed ball Br(x) and the open ball B∘r (x) of radius r centered about x,

by
Br(x) = {y ∈ E | d(x, y) ≤ r} and B∘r (x) = {y ∈ E | d(x, y) < r} . (3)

Note that for r = 0 we have B0(x) = {x} and B∘0(x) = ∅. The open balls of radius > 0 constitute the basis of the
metric topology on E.

Given X ⊆ E, (X, d) is ametric space, and themetric topology of (X, d) coincideswith the relative topology
on X induced by the metric topology of (E, d). We will consider several topological or metric properties on a
metric space (E, d) (compact, boundedly compact, boundedly finite, ...), andwewill speak of such a property
for a subset X of E to mean that the metric space (X, d) has that property.

Givena familyS(E) (defined fromsomeproperty) of subsets of the space E,wewillwriteS′(E) forS(E)\{∅},
the family of non-empty elements ofS(E). For any X ⊆ E, wewillwriteS(X) (resp.,S′(X)) for the corresponding
family in the relative topology or metric of X.

Let uswrite:F(E) for the family of closed subsets of E,K(E) for that of compact subsets of E, and Fin(E) for
that of finite subsets of E; then P′(E), F′(E),K′(E) and Fin′(E) will designate the restrictions of these families
to non-empty subsets of E.

Note that for X ⊆ E,K(X) = K(E)∩P(X) and for X ∈ K(E),K(X) = F(X). For X ∈ F(E),F(X) = F(E)∩P(X).
The following definition and property were given in [14, 15]:

Definition 3. A metric space (E, d) is called

– boundedly compact if every bounded and closed subset of E is compact, equivalently, for every p ∈ E
and r > 0, Br(p) is compact;

– boundedly finite if every bounded subset of E is finite, equivalently, for every p ∈ E and r > 0, Br(p)
is finite.

A subset X of E is called proximinal if either X = ∅, or for every y /∈ X, there is some x ∈ X minimizing the
distance to y, that is, d(y, x) = d(y, X).

For instance, for themetrics induced by Lp norms,Rn is boundedly compact andZn is boundedly finite.Write
Fbc(E), Fbf(E) and Fp(E) respectively, for the family of boundedly compact subsets of E, of boundedly finite
subsets of E, and proximinal subsets of E.

Property 4. In any metric space (E, d):

1. K(E) ∪ Fbf(E) ⊆ Fbc(E) ⊆ Fp(E) ⊆ F(E) andK(E) ∩ Fbf(E) = Fin(E).
2. If E is boundedly compact, then every closed subset of E is boundedly compact, that is Fbc(E) = Fp(E) =

F(E).
3. If E is boundedly finite, then every subset of E is boundedly finite, that is Fbf(E) = Fbc(E) = Fp(E) = F(E) =

P(E).
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8 | Christian Ronse, Loic Mazo, and Mohamed Tajine

We will now see the relation of these properties with dilations by balls. For r ≥ 0 we define three operators
P(E) → P(E), two of which are dilations: first δr, the dilation of radius r, given by

δr(X) =
⋃︁
x∈X

Br(x) , (4)

then δ∘r , the open dilation of radius r, given by

δ∘r (X) =
⋃︁
x∈X

B∘r (x) , (5)

and finally δ+r , the upper extension of radius r (which is generally not a dilation), given by

δ+r (X) =
⋂︁
s>r
δ∘s (X) =

⋂︁
s>r
δs(X) . (6)

We have
δr(X) = {p ∈ E | Br(p) ∩ X ≠ ∅} ,
δ∘r (X) = {p ∈ E | d(p, X) < r} ,
δ+r (X) = {p ∈ E | d(p, X) ≤ r} .

(7)

Note that δ∘r (X), being a union of open balls, is open. On the other hand, δ+r (X), being the inverse image of
the closed interval [0, r] by the continuous function x ↦→ d(x, X), is closed.

For r = 0 we have δ0(X) = X, δ∘0(X) = ∅ and δ+0(X) = X. Now, δr(X), δ∘r (X) and δ+r (X) increase with r, and
they satisfy the inclusions

δ∘r (X) ⊆ δr(X) ⊆ δ+r (X) ⊆ δ∘s (X) for s > r .

In [14] we characterized proximinal sets and boundedly compact spaces in terms of properties of δr:

Property 5. In a metric space (E, d), a set X is proximinal if and only if for every r ≥ 0 we have δr(X) = δ+r (X).
In particular, when X is proximinal, δr(X) is closed.

Property 6. The following properties are equivalent in a metric space (E, d):

1. E is boundedly compact.
2. For every non-empty compact K and r > 0, δr(K) is compact.
3. For every non-empty closed F and r > 0, δr(F) is boundedly compact.

2.3 Hausdorff Discretization

Let us first recall from [12, 14, 15] some basic concepts and facts about the Hausdorff metric. We start with
non-empty compact sets. We remind first that for any K ∈ K′(E), every continuous function K → R has a
compact image, in particular it attains a maximum and a minimum.

Given K ∈ K′(E) and p ∈ E, there exists yp ∈ K such that d(p, yp) = d(p, K), so d(p, K) = min{d(p, x) |
x ∈ K}. For X, Y ∈ K′(E), the set of d(x, Y) for x ∈ X attains a maximum, so we define

hd(X, Y) = max{d(x, Y) | x ∈ X} , (8)

which we call the oriented Hausdorff distance from X to Y; thus there exist x* ∈ X and y* ∈ Y such that
d(x*, y*) = d(x*, Y) = hd(X, Y). We define then the Hausdorff distance between X and Y as

Hd(X, Y) = max
(︀
hd(X, Y), hd(Y , X)

)︀
. (9)

Now, Hd is a metric on the spaceK′(E), it is thus called the Hausdorff metric. For X, Y ∈ K′(E) and r ≥ 0, we
have hd(X, Y) ≤ r iff X ⊆ δr(Y), while Hd(X, Y) ≤ r iff both X ⊆ δr(Y) and Y ⊆ δr(X). Thus hd(X, Y) is the least
r ≥ 0 such that X ⊆ δr(Y), while Hd(X, Y) is the least r ≥ 0 such that both X ⊆ δr(Y) and Y ⊆ δr(X).
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Correspondence between Topological and Discrete Connectivities in Hausdorff Discretization | 9

One can extend the Hausdorff metric fromK′(E) to F′(E). Given two non-empty closed sets X and Y, we
set

hd(X, Y) = sup{d(x, Y) | x ∈ X} ; (10)

now we define the Hausdorff distance Hd(X, Y) as in (9). Then Hd is a generalized metric on F; by this we
mean that Hd satisfies the axioms of a metric, with the only difference that it can take infinite values.

Using (6,7), and the convention that the infimum (in R+) of an empty set is equal to ∞, we get:

Property 7. For every X, Y ∈ F′(E) and for every r ≥ 0, hd(X, Y) ≤ r if and only if X ⊆ δ+r (Y), while Hd(X, Y) ≤ r
if and only if both X ⊆ δ+r (Y) and Y ⊆ δ+r (X). In particular:

– hd(X, Y) = inf{r > 0 | X ⊆ δr(Y)}.
– If hd(X, Y) < ∞, then it is the least r ≥ 0 such that X ⊆ δ+r (Y).
– Hd(X, Y) = inf{r > 0 | X ⊆ δr(Y) and Y ⊆ δr(X)}.
– If Hd(X, Y) < ∞, then it is the least r ≥ 0 such that both X ⊆ δ+r (Y) and Y ⊆ δ+r (X).

As inR+ the supremum and infimum of an empty set are equal to 0 and∞ respectively, we can extend hd and
Hd to the empty set. We get then

hd(∅, ∅) = Hd(∅, ∅) = 0 ;
∀ F ∈ F′, hd(∅, F) = 0 and hd(F, ∅) = Hd(F, ∅) = ∞ .

We can now recall the theory of Hausdorff discretization [12, 14, 15]. We have a metric space (E, d), and
let D ⊂ E, D ≠ ∅. Here E will be the “continuous” space and D will be the “discrete” space. We define the
covering radius (of D for the metric d) as the positive number

rc = sup
x∈E

d(x, D) = hd(E, D) . (11)

The covering radius rc is in some way a measure of the resolution of D. We assume the following:

Axiom 1. [12] ∅ ⊂ D ⊂ E, D is boundedly finite and rc < ∞.

By Property 4, for every x ∈ E, there exists yx ∈ D such that d(x, D) = d(x, yx), thus for r ≥ 0 we have
d(x, D) ≤ r iff x ∈ δr(D), cf. Property 5 and (7). Hence rc > 0 and rc is the least r > 0 such that δr(D) = E.
Note that every subset of D is closed and that a subset of D is compact iff it is finite; thus, by analogy with the
corresponding subsets in E, we will write F′(D) for the family of all non-empty subsets of D, and K′(D) for
the family of all non-empty finite subsets of D.

Example 1. With Axiom 1, E is not necessarily boundedly compact. Take E = R × [−1/2, +1/2]N and D =
Z × {0}N. Thus E consists of all infinite sequences of reals (r, sn)n∈N = (r, s0, . . . , sn , . . .), where r ∈ R and
−1/2 ≤ sn ≤ 1/2 for all n ∈ N, while D consists of all integer sequences in E, namely (m, 0, . . . , 0, . . .) with
m ∈ N. We take the distance induced by the L∞ norm: for all (r, sn)n∈N, (r′, s′n)n∈N ∈ E,

d
(︀
(r, sn)n∈N, (r′, s′n)n∈N

)︀
= sup

{︀
|r − r′|, |sn − s′n|

⃒⃒
n ∈ N

}︀
.

Then D is boundedly finite, rc = 1/2, but E is not boundedly compact, because it has infinite dimension: covering
a ball of radius 1/2 requires an infinity of balls of radius 1/4.

For any F ∈ F′(E), define the Hausdorff radius of F:

rH(F) = sup
x∈F

d(x, D) = hd(F, D) . (12)

Then rH(F) ≤ rc, and rH(F) is the least r ≥ 0 such that F ⊆ δr(D). The particular case F = E gives rH(E) = rc.
For K ∈ K′(E), the above supremum is attained, thus rH(K) = maxx∈K d(x, D).
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10 | Christian Ronse, Loic Mazo, and Mohamed Tajine

For r ≥ 0, the discretization of radius r is the map ∆r : P(E) → P(D) defined by setting ∀ X ⊆ E:

∆r(X) = δr(X) ∩ D = {p ∈ D | Br(p) ∩ X ≠ ∅} . (13)

Then ∆r is a dilation P(E) → P(D), and ∆r(X) is finite for every bounded X. For x ∈ E, we write ∆r(x) for
∆r({x}). Next, the upper discretization of radius r is the map ∆+r : P(E) → P(D) given by setting ∀ X ⊆ E:

∆+r (X) =
⋂︁
s>r
∆s(X) = δ+r (X) ∩ D = {p ∈ D | d(p, X) ≤ r} . (14)

The last two equalities follow from (6) and (7). In general, ∆+r is not a dilation. By Property 5, when F is prox-
iminal, we have ∆+r (F) = ∆r(F).

We will now examine the Hausdorff distance between non-empty closed subsets of E and non-empty
subsets of D, and between non-empty compacts subsets of E and non-empty finite subsets of D. Indeed, for
K ∈ K′(E) and S ∈ F′(D), since K is bounded, if Hd(K, S) is finite, then S will be bounded, hence finite:
S ∈ K′(D).

Property 8. For any F ∈ F′(E) and S ∈ F′(D), Hd(F, S) ≥ rH(F). For any r ≥ rH(F), Hd(F, S) ≤ r if and
only if both S ⊆ ∆+r (F) and F ⊆ δr(S). In particular F ⊆ δr(∆+r (F)), thus ∆+r (F) is the greatest S ∈ F′(D) with
Hd(K, S) ≤ r. When F ∈ F′

p(E), ∆+r (F) = ∆r(F). When F ∈ K′(E), we have S ∈ K′(D).

Given F ∈ F′(E), we call aHausdorff discretization of F any S ∈ F′(D) whichminimizes the Hausdorff distance
to F:

∀ T ∈ F′(D), Hd(F, S) ≤ Hd(F, T) .

In [12, 13], we said a Hausdorff discretizing set of K. The family of Hausdorff discretizations of F is written
MH(F).

Property 9. For F ∈ F′(E), rH(F)minimizes the Hausdorff distance between F and elements of F′(D):

rH(F) = min{Hd(F, T) | T ∈ F′(D)} .

ThusMH(F) is non-empty and Hd(F, S) = rH(F) for every S ∈ MH(F). For any S ∈ F′(D), S ∈ MH(F) if and only
if both S ⊆ ∆+rH (F)(F) and F ⊆ δrH (F)(S). Moreover, F ⊆ δrH (F)

(︀
∆+rH (F)(F)

)︀
, so ∆+rH (F)(F) is the greatest element of

MH(F).

Again, when F ∈ F′
p(E), ∆+rH (F)(F) = ∆rH (F)(F), and when F ∈ K′(E), we have MH(F) ⊆ K′(D): every Haus-

dorff discretization of a compact set is finite. It is easily seen thatMH(F) is closed under non-empty unions,
and in [14] we showed that it is down-continuous: for a decreasing sequence (Sn)n∈N of elements ofMH(K),⋂︀
n∈N Sn ∈ MH(K).
The greatest element ofMH(F) is called the greatest Hausdorff discretization of F, and we write it ∆H(F);

thus ∆H(F) = ∆+rH (F)(F). In [12, 13], we called it themaximal Hausdorff discretization of K.
Following the above remark that Hd(∅, ∅) = 0 and Hd(F, ∅) = ∞ for F ∈ F′(E), we deduce that the only

Hausdorff discretization of the empty set (in E) is the empty set (in D).

2.4 Related Works

Though Hausdorff discretization is a broad discretization scheme [12, 13, 22], several other approaches are
described in the literature, primarily for the space E = Rn and the discrete subspace D = Zn. Many of them
were investigated from the topological point of view, specially about the connectednesspreservationproperty.
Write o for the origin of Rn and Zn, and for any p ∈ Zn, let C(p) = B∞1/2(p), the ball of radius 1/2 for the L∞
norm (see Figure 3 (c) for n = 2); then, C(p) is the digital cell around p.

Let us first clarify the terminology concerning digital adjacency and connectivity. There are essentially
two notations. On the one hand, from a combinatorial point of view, k-adjacency designates the one where
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Correspondence between Topological and Discrete Connectivities in Hausdorff Discretization | 11

each digital point has k neighbours, for instance the 4- and 8-adjacencies in Z2, then the 6-, 18- and 26-
adjacencies in Z3. On the other hand, in a coordinate-based approach, for 0 ≤ k ≤ n − 1, two points of Zn

are said to be k-adjacent if they differ by 1 in at least 1 and at most n − k coordinates, the other coordinates
being equal; to avoid confusion with the combinatorial notation, we will say that they are k/n-adjacent. Two
particular adjacencies stand out, the axial and diametral ones. Two digital points p and q are axially adjacent
if ‖p − q‖1 = 1, that is, p and q are (n − 1)/n-adjacent (or 2n-adjacent in the combinatorial notation). Now
p and q are diametrally adjacent if ‖p − q‖∞ = 1, that is, p and q are 0/n-adjacent (or (2n − 1)-adjacent in
the combinatorial notation). The graph-theoretical connectivity corresponding to the k-adjacency is called
k-connectivity.

In discretization by dilation [12], one chooses a structuring element A ⊂ Rn, then the discretization of a
subset X of Rn is ∆A⊕(X) = {p ∈ Zn | Ap ∩ X ≠ ∅}, where Ap is the translate of A positioned on p. Taking
A = C(o) = B∞1/2(o), one obtains the supercover discretization, made of all digital points whose cell intersects
the Euclidean set. It is well-known that the supercover discretization of a connected subset of Rn is axially
connected.

For n = 2, another example is the Freeman/Bresenham grid-intersect discretization, which uses the unit
cross structuring element of Figure 3 (a). Then the discretization of a connected set will be diametrally con-
nected. Sekiya and Sugimoto [16] considered the discretization by dilation of connected curves in R2, using
the two structuring elements of Figure 3 (b) and (c); the latter gives the supercover,which is axially connected.
On the other hand the former (b) gives a discretization which is intermediate between the grid-intersect and
the supercover; they showed that the discretization of a path-connected curve will be diametrally connected,
and it is easy to check that the result also holds for any connected subset of R2. Note that both structuring
elements (a) and (b) are not covering [12] (i.e., the union of translates of the structuring element by points of
D does not cover E), so a non-empty subset of R2 can have an empty discretization.

(a) (b) (c)

(d) (e) (f)

Figure 3: Here n = 2. Top: 3 structuring elements used in morphological discretization: (a) the unit cross for the grid-intersect
discretization; (b) B11/2(o), the ball of radius 1/2 for the L1 norm [16]; (c) C(o) = B∞1/2(o), the unit cell or ball of radius 1/2 for
the L∞ norm. Bottom: the discretization by dilation of a curve, for each of the 3 structuring elements, will be diametrally con-
nected; for the supercover discretization (f), it will be axially connected.

Given the high computational cost of discretization by dilation, Sekiya and Sugimoto suggest an approx-
imation that leads to a slightly smaller discretization. Assuming that a curve C is given by an analytical equa-
tion f (x) = 0 (x ∈ R2), where f is a continuous functionR2 → R, the approximated discretization will consist
of all digital points p such that Ap has two corners x, y ∈ R2 with f (x) > 0 and f (y) < 0; by continuity,
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12 | Christian Ronse, Loic Mazo, and Mohamed Tajine

there will be some z ∈ Ap with f (z) = 0, so this discretization is included in the one by dilation by A. They
showed that with the structuring elements of Figure 3 (b) and (c), the approximated discretization will still
be diametrally connected for (b) and axially connected for (c).

A particular case of discretization by dilation is the Gauss discretization, where the structuring element
is reduced to the singleton made of the origin: A = {o}; in other words, a set X ⊂ Rn is discretized as X ∩ Zn.
Pavlidis [9] and Serra [17] give local geometric conditions (see Figure 4) on the boundary points of X ⊂ R2 that
ensure a homeomorphic reconstruction of X from its discretization (the set X is reconstructed as the union
of the unit squares centerered in X ∩Z2). In particular, under these conditions, the discretization of a subset
X of R2 yields an axially connected graph iff X is connected. This result was later extended by Gross et al. in
[5, 8] to threshold area discretizations where an integer point p of Z2 belongs to the dicretization set if the
area of the intersection between X and the unit square centered in p is above some fixed threshold.

×2r

××

×

×

×
×

××

1

Figure 4: A geometric local property of the boundary that ensures connectedness preservation at a given scale: at each point p
of the boundary B, there exist two balls on both sides whose intersection with B is exactly {p}.

The minimal cover of a set X ⊂ Rn was studied by Brimkov et al. in [3]. It is the smallest union of unit
cells of Rn, centered on integer points, that includes X. The integer points of the minimal cover of a simply
connected n-dimensional manifold of Rn form an axially connected graph [3]. When X is an h-dimensional
surface (the image ofRh intoRn by a continous function), another kind of minimal cover, the k-discretization
(where 0 ≤ k ≤ n − 1), is described in the same article. It is a subset of the supercover that is minimal in the
sense that the deletion of any of its unit cells will change the topology of the k/n-adjacency graph. Moreover,
it is required that this cover includes some h-dimensional surface, not necessarily X itself. In the paper, there
is another requirement but it not used in the proof of the following theorem: this k-discretization is (h−1)/n-
connected.

Later, Brimkov et al. [4] showed that the discretization by dilation by an Euclidean ball of radius r (there
called r-offset discretization) of a bounded path-connected subset of Rn is axially connected if r ≥

√
n/2 and

is diametrally connected if r ≥
√
n − 1/2. Furthermore, the values

√
n/2 and

√
n − 1/2 are minimal for such

a statement. This result is first extended to connected sets in [2] provided, for the first claim, that r is greater
than or equal to the Hausdorff radius of the set. Then, in [1] it is extended to disconnected sets whose closure
is connected provided the conditions on the radius r are strict inequalities.

Incidentally, Brimkov et al. [2] obtain the following result about Hausdorff discretizations (for the Eu-
clidean distance): for any connected subset of Rn, its greatest Hausdorff discretization is axially connected,
while any other Hausdorff discretization is diametrally connected if the Hausdorff radius is less than 1 and
may be diametrally disconnected otherwise.

In [21], the authors consider the Euclidean space E = R2, the discrete space D(ρ) = ρZ2 of grid step
ρ > 0, and a metric based on a norm N such that N(±x1, ±x2) = N(±x2, ±x1) = N(x1, x2) and the only point
at distance N(1/2, 1/2) from both (0, 0) and (1, 1) is (1/2, 1/2) (this excludes in particular the L1 norm). For
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Correspondence between Topological and Discrete Connectivities in Hausdorff Discretization | 13

X ⊆ D(ρ), let Rρ(X) be its Euclidean reconstruction given by the union of closed digital cells (relatively to
D(ρ)) of points of X: Rρ(X) =

⋃︀
p∈X B

∞
ρ/2(p). For r > 0, we say that F is r-convex if for any point x /∈ F at

distance at most r from F, this distance is attained by a unique point in F, and for any r′ ≤ r, the closed ball
of radius r′ centered about x has a connected intersection with F.

Given anon-empty closed subset F of E and aHausdorff discretizationMρ of F inD(ρ), several topological
relations between F and the reconstruction Rρ(Mρ) are announced (without proof), which hold when ρ is
sufficiently small. First, any r-convex non-empty closed subset F of E is homotopically equivalent to Rρ(Mρ)
for any Hausdorff discretization Mρ of F. Next, when both F and the closure of its complement are r-convex
and form a union of closed balls of radius r, a Hausdorff discretization Mρ of F will not contain a singular
configuration [7] (a 2 × 2 digital square with one diagonal in the figure and the other in the complement), and
Rρ(Mρ) will be a bordered 2D manifold (that is, locally homeomorphic to a closed half-plane); in particular,
if F is a compact bordered 2D manifold, then F and Rρ(Mρ) will be homeomorphic.

3 General Results
Our goal is to show that every Hausdorff discretization of a non-empty “connected” closed subset of E is
“connected”, and that conversely every Hausdorff discretization of a non-empty “disconnected” set will be
“disconnected”when the resolution of the discrete space D is small enough. Here the connectivity in Dwill be
in the graphwith edges linking points distant by atmost twice theHausdorff radius. The “connectedness” of a
closed subset F of E ismore complicated.When F is compact, it is ordinary topological connectivity. However,
a disconnected non-compact closed set can have a connected discretization when its connected components
are asymptotic to each other (cf. Example 2). We will thus introduce the notion of a s-separated closed set,
which is partitioned into two closed setswithmutual distances always > s. Then a non-empty closed set Fwill
have its Hausdorff discretizations connected at all resolutions if and only if F is not s-separated for any s > 0.
Such sets, called non-separated, constitute a connection on F(E), which contains topologically connected
sets.

Our method of proof is similar to the one used in Section 5 of [22] to show the reciprocal link between
discrete and continuous connectivities for compact sets, in the particular case where E = R2, D = Z2 and the
distance is based on a homogeneous norm.

Subsection 3.1 introduces some needed notions: the middle point and interval properties in a metric
space, and s-separated closed sets. Subsection 3.2 shows how, under some general conditions, the Hausdorff
discretization of a non-empty non-separated closed set F gives a discrete set which is connected in the graph
with edges linking points of D that are “close enough” (see Definition 7). Conversely, Subsection 3.3 shows
how this fails for s-separated closed sets; in particular it considers discretization in a sequence of discrete
spaces whose resolution tends to zero, and conditions under which the discretizations are connected at all
resolutions.

3.1 Further Continuity Properties in a Metric Space

Let (E, d) be a metric space. For r, s ≥ 0, the triangular inequality implies that for any X ∈ P(E), δr(δs(X)) ⊆
δr+s(X). The equality holds if for any p, q ∈ E such that d(p, q) = r + s, there exists x ∈ E such that d(p, x) = r
and d(x, q) = s. We will in fact consider two conditions, a first one weaker and a second one stronger; they
will be equivalent in a boundedly compact space.

Definition 4. We say that the metric space (E, d):

1. has themiddle point property if for any p, q ∈ E, there is some x ∈ E such that d(p, x) = d(x, q) = 1
2d(p, q).

2. has the interval property if for any p, q ∈ E, there is a map f : [0, 1] → E such that f (0) = p, f (1) = q and
for 0 ≤ α < β ≤ 1 we have d

(︀
f (α), f (β)

)︀
= (β − α)d(p, q).

Brought to you by | Université de Strasbourg
Authenticated

Download Date | 11/12/19 1:41 PM



14 | Christian Ronse, Loic Mazo, and Mohamed Tajine

Every metric induced by a norm on a vector space satisfies the interval property. When d has the interval
property, we obtain δr(δs(X)) = δr+s(X) for any r, s ≥ 0 and X ∈ P(E).

Lemma 10. 1. If (E, d) has the middle point property and for every p, q ∈ E there is a compact subset Kp,q of
E containing all x ∈ E with d(p, x) + d(x, q) = d(p, q), then d has the interval property.

2. If (E, d) has the interval property, then it has the middle point property and for any p ∈ E and r ≥ 0, Br(p) is
path-connected.

Proof. 1. Assume the middle point property. Let U = { k
2n | k, n ∈ N, 0 ≤ k ≤ 2n}. We construct f : U → E by

induction on the exponent n. For n = 0, f (0) = p and f (1) = q; for n ≥ 0 and 0 ≤ k ≤ 2n − 1, given x = f
(︀ k
2n
)︀

and y = f
(︀ k+1
2n

)︀
, we choose for f

(︀2k+1
2n+1

)︀
any z ∈ E such that d(x, z) = d(z, y) = 1

2d(x, y). By induction, we get
that for 0 ≤ k ≤ 2n − 1, d

(︀
f
(︀ k
2n
)︀
, f
(︀ k+1
2n

)︀)︀
= 1

2n d(p, q). Let α, β ∈ U such that α < β; then there are a, b, n ∈ N
with 0 ≤ a < b ≤ 2n such that α = a

2n and β =
b
2n . We get then:

d
(︀
f (α), f (β)

)︀
= d

(︂
f
(︁ a
2n

)︁
, f
(︁ b
2n

)︁)︂
≤
b−1∑︁
k=a

d
(︂
f
(︁ k
2n

)︁
, f
(︁ k + 1

2n
)︁)︂

= b − a2n d(p, q) = (β − α)d(p, q) .

Similarly, d
(︀
f (0), f (α)

)︀
≤ αd(p, q) and d

(︀
f (β), f (1)

)︀
≤ (1 − β)d(p, q). Hence

d(p, q) = d
(︀
f (0), f (1)

)︀
≤ d

(︀
f (0), f (α)

)︀
+ d

(︀
f (α), f (β)

)︀
+ d

(︀
f (β), f (1)

)︀
≤ αd(p, q) + d

(︀
f (α), f (β)

)︀
+ (1 − β)d(p, q) ,

thus (β − α)d(p, q) ≤ d
(︀
f (α), f (β)

)︀
. From the double inequality, the equality d

(︀
f (α), f (β)

)︀
= (β − α)d(p, q)

follows. In particular, f (α) ∈ Kp,q for all α ∈ U. Since f is a continuous function U → Kp,q and the compact
metric space Kp,q is complete, there is a continuous extension of f to a function [0, 1] → Kp,q. More precisely,
given α ∈ [0, 1], for any n ∈ Nwe set αn = ⌊2nα⌋/2n; then αn ≤ α < αn + 1

2n , so limn→∞ αn = α; then the f (αn),
n ∈ N constitute a Cauchy sequence in Kp,q, which converges in Kp,q to some point that we define as f (α).
For 0 ≤ α < β ≤ 1, by continuity we have

d
(︀
f (α), f (β)

)︀
= lim
n→∞

d
(︀
f (αn), f (βn)

)︀
= lim
n→∞

(βn − αn)d(p, q) = (β − α)d(p, q) .

Therefore (E, d) has the interval property.
2. Assume the interval property. The middle point property follows from taking x = f

(︀1
2
)︀
. Given r ≥ 0,

for any q ∈ Br(p), we have a continuous map f : [0, 1] → E with f (0) = p, f (1) = q and for α ∈ [0, 1],
d
(︀
p, f (α)) = αd(p, q) ≤ r, that is, f (α) ∈ Br(p); then f is a path [0, 1] → Br(p) joining p to q; hence Br(p) is

path-connected.

Corollary 11. Let E be boundedly compact. Then (E, d) has the middle point property if and only if it has the
interval property; then for any p ∈ E and r ≥ 0, Br(p) is path-connected.

Proof. For p, q ∈ E, let r = d(p, q); then for any x ∈ E with d(p, x) + d(x, q) = d(p, q) = r, we have x ∈ Br(p),
which is compact; we can thus apply Lemma 10 with Kp,q = Br(p).

The connectedness of closed balls is useful in relation to Property 3: if all Br(p) are connected, then for a
connected set X, δr(X) will be connected.

Definition 5. Let F ∈ F′(E) and s ≥ 0. We says that F is s-separated if F can be partitioned into F1, F2 ∈ F′(E)
such that for any x1 ∈ F1 and x2 ∈ F2, d(x1, x2) > s. We say that F is separated if for some s > 0, F is
s-separated, and that F is non-separated if for every s > 0, F is not s-separated.

Note that F is separated iff it can be partitioned into two non-empty closed subsets F1 and F2 such that
inf{d(x1, x2) | x1 ∈ F1, x2 ∈ F2} > 0. For s > s′ ≥ 0, if F is s-separated, then it is s′-separated. Moreover, F is
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0-separated iff it is disconnected, that is, partitioned into two non-empty closed sets. Thus a connected set is
not 0-separated, hence it is non-separated.

Lemma 12. A non-empty compact set K is non-separated if and only if it is connected.

Proof. If K is connected, it is not 0-separated, thus it is not s-separated for any s > 0. If K is disconnected,
then it is partitioned by two closed sets F1 and F2, so it is partitioned into two compact sets K1 and K2. By
the compactness of K1, K2 and the continuity of the distance function, the set of all d(x1, x2) for x1 ∈ K1 and
x2 ∈ K2 reaches a minimum a; since K1 and K2 are disjoint, a > 0, so K is s-separated for any s > 0 such that
s < a.

Example 2. A non-compact closed set can be both disconnected (0-separated) and non-separated. For in-
stance (cf. Section 5 of [22]), in R2 with the Euclidean distance, the closed set F =

{︀
(±x, 1/x) | x ∈]0, 1]

}︀
is

partitioned into the two closed sets F1 =
{︀
(−x, 1/x) | x ∈]0, 1]

}︀
and F2 =

{︀
(+x, 1/x) | x ∈]0, 1]

}︀
(which are its

connected components), with d
(︀
(−x, 1/x), (+x, 1/x)

)︀
= 2x, tending to 0 for x → 0. Note that δr(F) is connected

for any r > 0.

Proposition 13. Let (E, d) be boundedly compact and satisfying the middle point property. Then for any F ∈
F′(E) and s > 0, F is s-separated if and only if δs/2(F) is disconnected. In particular, F is non-separated if and
only if for any r > 0, δr(F) is connected.

Proof. Every closed set X is proximinal by Property 4, so δs/2(X) is closed by Property 5.
If F is s-separated, then it is partitioned into two closed sets F1, F2 such that for any x1 ∈ F1 and x2 ∈ F2,

d(x1, x2) > s. If we had p ∈ Bs/2(x1) ∩ Bs/2(x2), then we would get d(x1, x2) ≤ d(x1, p) + d(p, x2) ≤ s, a
contradiction. Thus Bs/2(x1) ∩ Bs/2(x2) = ∅ for all x1 ∈ F1 and x2 ∈ F2, hence δs/2(F1) and δs/2(F2) are
disjoint. As for i = 1, 2, δs/2(Fi) is closed and δs/2(Fi) ⊇ Fi ≠ ∅, and δs/2(F1) ∪ δs/2(F2) = δs/2(F1 ∪ F2) =
δs/2(F), δs/2(F) is disconnected.

If δs/2(F) is disconnected, it is partitioned into A1, A2 ∈ F′(E). As F ⊆ δs/2(F), F is the disjoint union of
the two closed sets F1 = A1∩F and F2 = A1∩F. For i = 1, 2 and xi ∈ Fi, Bs/2(xi) is connected by Corollary 11,
so it cannot be partitioned by A1 and A2; we deduce that Bs/2(xi) ⊆ Ai. If we had F = Fi, we would get
Bs/2(x) ⊆ Ai for all x ∈ F, so δs/2(F) ⊆ Ai, a contradiction; therefore {F1, F2} is a partition of F. If we had
x1 ∈ F1 and x2 ∈ F2 with d(x1, x2) ≤ s, then by the middle point property there would be p ∈ E such that
d(x1, p) = d(x2, p) = d(x1, x2)/2 ≤ s/2, so p ∈ Bs/2(x1) ∩ Bs/2(x2); but Bs/2(xi) ⊆ Ai (i = 1, 2), so we would
have p ∈ A1 ∩ A2, a contradiction. Therefore for all x1 ∈ F1 and x2 ∈ F2 we have d(x1, x2) > s, thus F is
s-separated.

Now F is non-separated iff for all r > 0 it is not 2r-separated, that is, δr(F) is connected for any r > 0.

Serra [19] generalized connections from P(E) to complete lattices. Now F(E) is a complete lattice, where the
infimum and supremum of a family are respectively its intersection and the closure of its union, and it com-
prises all singletons (as closed balls of radius 0); thus Serra’s definition takes here the following form:

Definition 6. A partial connection on F(E) is a family C ⊆ F(E) such that

1. ∅ ∈ C, and
2. for anyB ⊆ C such that

⋂︀
B ≠ ∅, we have

⋃︀
B ∈ C.

The partial connection C is a connection on F(E) if it satisfies the following third condition:

3. for all p ∈ E, {p} ∈ C.

Then Property 1 is also valid with F(E) instead of P(E): an intersection of connections (resp., partial connec-
tions) on F(E) is a connection (resp., partial connection) on F(E).
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16 | Christian Ronse, Loic Mazo, and Mohamed Tajine

Proposition 14. For any s ≥ 0, the family of closed sets that are not s-separated constitutes a connection on
F(E). The family of non-separated closed sets is also a connection on F(E).

Proof. Obviously the empty set and the singletons are closed and cannot be partitioned by two sets, so they
are not s-separated. Let B be a family of closed sets that are not s-separated, such that

⋂︀
B ≠ ∅; let F =

⋃︀
B

and let z ∈
⋂︀
B. Suppose that F is s-separated: F is partitioned into F1, F2 ∈ F′(E) such that for any x1 ∈ F1

and x2 ∈ F2, d(x1, x2) > s. As z ∈ F, for some i = 1, 2 we have z ∈ Fi. For any B ∈ B, as z ∈ B, B∩ Fi ≠ ∅; as B
is not s-separated, it cannot be partitioned by F1 and F2, so we must have B ⊆ Fi. We deduce that

⋃︀
B ⊆ Fi,

and as Fi is closed, F =
⋃︀
B ⊆ Fi, which contradicts the partitioning of F. Therefore F is not s-separated.

The family of non-separated closed sets is the intersection, for all s > 0, of the families of closed sets that
are not s-separated. It is thus an intersection of connections, hence it is a connection on F(E).

3.2 Discretizing Non-Separated Sets

Let (E, d) be a metric space and D ⊂ E, D ≠ ∅, satisfying Axiom 1.

Definition 7. Let r > 0, S ∈ F′(D) and Z ∈ P′(E). Then write Gr(S) and GZr (S) for the two graphs both with
vertex set S, and with an edge joining any two distinct p, q ∈ S such that respectively:

– Br(p) ∩ Br(q) ≠ ∅ for Gr(S);
– Br(p) ∩ Br(q) ∩ Z ≠ ∅ for GZr (S).

Note that the all edges of GZr (S) are edges of Gr(S), and that when r grows, the sets of edges of Gr(S) and GZr (S)
will be growing. Thus connectedness extends from GZr (S) to Gr(S), and for r′ > r, from Gr(S) to Gr′ (S) and
from GZr (S) to GZr′ (S).

For p, q ∈ E, Br(p) ∩ Br(q) ≠ ∅ implies that d(p, q) ≤ 2r. If (E, d) has the middle point property, then
for p, q ∈ E, we have Br(p) ∩ Br(q) ≠ ∅ ⇔ d(p, q) ≤ 2r, which simplifies the definition of Gr(S). This fact
intervenes in the following result, which will be used below.

Lemma 15. Consider the following three conditions:

(A) E is a vector space, D is an additive subgroup of E and the metric d is based on a norm N on E.
(B) (E, d) satisfies the middle point property and the set {d(p, q) | p, q ∈ D} is boundedly finite.
(C) For any R > 0, there exists r > R such that for all S ⊆ D, Gr(S) = GR(S).

Then, (A) implies (B) and (B) implies (C).

Proof. Let X = {d(p, q) | p, q ∈ D}. If (A) holds, then for p, q ∈ D, d(p, q) = N(p − q), so X = {N(x) | x ∈ D}.
Given the origin o in E, for any r > 0, Br(o) = {x ∈ D | N(x) ≤ r} is finite by Axiom 1; thus X ∩ [0, r] is finite.
Hence X is boundedly finite. Now for any p, q ∈ D, x = 1

2 (p + q) satisfies

d(p, x) = d(x, q) = N
(︁p − q

2

)︁
= 1
2N(p − q) =

1
2d(p, q) ,

so (E, d) has the middle point property. Therefore (B) follows.
If (B) holds, then for any R > 0, X∩]2R, 2R+1] is finite; thus there is some r > R such that X∩]2R, 2r] = ∅.

Thus for any p, q ∈ D, d(p, q) ≤ 2R ⇔ d(p, q) ≤ 2r; as (E, d) has the middle point property, we get
BR(p) ∩ BR(q) ≠ ∅ ⇔ Br(p) ∩ Br(q) ≠ ∅. Hence Gr(S) has the same edges as GR(S), so the two graphs are
equal. Therefore (C) holds.

We give below a relation between graph connectivity and chaining by sets, which will be used in our main
results:
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Proposition 16. Let A be a non-empty subset of E and letB be a non-empty family of non-empty subsets of A.
Let G be the undirected graph with vertex set A and with edges joining all pairs {x, y} of distinct elements of A
such that there is B ∈ B with x, y ∈ B. Then G is connected if and only if A is chained byB.

Proof. If |A| = 1, we have A = {p}, G is connected, and wemust haveB = {A}, so A is chained byB. Suppose
now that |A| ≥ 2 and consider two distinct p, q ∈ A.

Now, p and q are chained in B iff there are n ≥ 0 and B0, . . . , Bn ∈ B such p ∈ B0, q ∈ Bn and for
t = 1, . . . , n, Bt−1 ∩ Bt ≠ ∅. Writing p = u0 and q = un+1, and choosing any ut ∈ Bt−1 ∩ Bt (t = 1, . . . , n), the
statement becomes: there are the two sequences p = u0, . . . , un+1 = q in A and B0, . . . , Bn inB such that for
t = 0, . . . , n, we have ut , ut+1 ∈ Bt. In other words, we have the sequence p = u0, . . . , un+1 = q in A such that
for t = 0, . . . , n, ut and ut+1 are joined by an edge. Hence it is equivalent to: p and q are joined by a chain of
edges of G.

We have shown that two distinct vertices p, q ∈ A are joined by a chain of edges in G iff they are chained
in B. Assuming this property, p is chained to q and q is chained back to p (both for edges and for B), so p is
chained to itself.

In the above proof, we had to distinguish the casewhere |A| = 1 and the chaining of a point p to itself. Indeed,
as said in Subsection 2.1, Con*(B), the partial connection generated byB, is obtained through chaining byB,
with chains of length at least 1, and excluding isolated points (that is, not belonging to any element of B);
on the other hand, in a graph we take the connection generated by edges, based on chains of edges of length
at least 0, including thus isolated vertices (that is, not incident to any edge).

We can now analyse the connectedness of Hausdorff discretizations of non-separated closed sets:

Lemma 17. Let r > 0, s, t ≥ 0, X ∈ P′(E), Y ∈ F′(E) and S ∈ F′(D), such that Y is not t-separated, X ⊆ Y ⊆
δs(X), S ⊆ ∆r+s(X) and X ⊆ δr(S). Then GYr+s+t(S), GXr+2s+t(S) and Gr+s+t(S) are connected, and S is chained by
{Br+s+t(y) ∩ S | y ∈ Y} and by {Br+2s+t(x) ∩ S | x ∈ X}.

Proof. As X ⊆ δr(S) and Y ⊆ δs(X), we get Y ⊆ δs(X) ⊆ δs(δr(S)) ⊆ δr+s(S); hence for any y ∈ Y we have
Br+s(y) ∩ S ≠ ∅. As S ⊆ ∆r+s(X), for any p ∈ S we have Br+s(p) ∩ X ≠ ∅ by (13).

Consider a partition S into S1 and S2. Now Y ⊆ δr+s(S) = δr+s(S1 ∪ S2) = δr+s(S1) ∪ δr+s(S2). For i = 1, 2,
every p ∈ Si satisfies Br+s(p)∩X ≠ ∅, hence δr+s(Si)∩X ≠ ∅; as X ⊆ Y, δr+s(Si)∩Y ≠ ∅. Next, Si is proximinal by
Property 4, so δr+s(Si) is closed by Property 5. Thus Y is the union of the twonon-empty closed sets δr+s(Si)∩Y
for i = 1, 2. If d(y1, y2) > t for all yi ∈ δr+s(Si)∩Y (i = 1, 2), then Y is t-separated, a contradiction. Hence there
are yi ∈ δr+s(Si)∩Y (i = 1, 2) such that d(y1, y2) ≤ t; now yi ∈ Br+s(pi) for some pi ∈ Si; then y2 ∈ Br+s+t(p1),
so y2 ∈ Br+s+t(p1) ∩ Br+s+t(p2) ∩ Y; in particular, y2 ∈ Br+s+t(p1) ∩ Br+s+t(p2). As y2 ∈ Y ⊆ δs(X), there is
some x ∈ X with d(x, y2) ≤ s, so x ∈ Br+2s+t(p1) ∩ Br+2s+t(p2) ∩ X. Thus for any partition {S1, S2} of S, there
are p1 ∈ S1 and p2 ∈ S2 joined by an edge in each of the graphs GYr+s+t(S), GXr+2s+t(S) and Gr+s+t(S), therefore
these three graphs are connected.

For two distinct p, q ∈ S, p and q are joined by an edge of GYr+s+t(S) iff Br+s+t(p) ∩ Br+s+t(q) ∩ Y ≠ ∅,
that is, there is some y ∈ Y such that y ∈ Br+s+t(p) ∩ Br+s+t(q), in other words p, q ∈ Br+s+t(y). Hence: two
distinct p, q ∈ S are joined by an edge of GYr+s+t(S) iff there is some y ∈ Y such that p, q ∈ Br+s+t(y) ∩ S. As
Br+s+t(y) ∩ S ≠ ∅ for all y ∈ Y, we can apply Proposition 16: S is chained by {Br+s+t(y) ∩ S | y ∈ Y}. The same
argument with GXr+2s+t(S) gives that S is chained by {Br+2s+t(x) ∩ S | x ∈ X}.

Our first application of this result is for the Hausdorff discretization of non-empty connected proximinal sets:

Theorem 18. Let F ∈ F′
p(E) be connected and let r ≥ rH(F). Then:

1. For any S ⊆ ∆r(F) such that F ⊆ δr(S), the two graphs GFr (S) and Gr(S) are connected and S is chained by
{Br(x) ∩ S | x ∈ F}.

2. ∆r(F) is chained by {∆r(x) | x ∈ F}.
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18 | Christian Ronse, Loic Mazo, and Mohamed Tajine

In particular, for any S ∈ MH(F), GrH (F)(S) and G
F
rH (F)(S) are both connected, and ∆H(F) is chained by {∆rH (F)(x) |

x ∈ F}.

Proof. We apply Lemma 17 with s = t = 0 and X = Y = F, and combine it with Property 8, where ∆+r (F) = ∆r(F)
because F is proximinal. Then GFr (S) and Gr(S) are connected and S is chained by {Br(x) ∩ S | x ∈ F}. Thus
item 1 holds.

Now F ⊆ δr(∆r(F)), so we apply item 1 with S = ∆r(F). For x ∈ F, Br(x) ⊆ δr(F), so (13) gives

Br(x) ∩ ∆r(F) = Br(x) ∩ δr(F) ∩ D = Br(x) ∩ D = ∆r(x) .

We get thus item 2.
By Property 9, for any S ∈ MH(F), S ⊆ ∆+rH (F)(F) and F ⊆ δrH (F)(S); since ∆H(F) = ∆

+
rH (F)(F) = ∆rH (F)(F),

the last sentence of the above statement follows.

In view of Property 2, we can write:

∆H(F) ∈ Con*
(︀
{∆rH (F)(x) | x ∈ F}

)︀
⊆ Con*

(︀
{∆rH (F)(x) | x ∈ E}

)︀
.

For any r > 0, the set of all S ⊆ D such that Gr(S) is connected, that is, such that S spans a connected
subgraph of Gr(D), is a connection. Thus, all Hausdorff discretizations of all connected proximinal subsets
of E (including ∅), belong to the connection of all connected subsets of the graph Grc (D).

Remark 1. For an arbitrary S ∈ MH(F), the above result is optimal: in general we cannot get connectivity for
a graph GFr (S) with r < rH(F). As we will see in Section 4 (see in particular Property 24), for E = Rn, D = Zn

and a distance induced by a coordinate-symmetrical norm, such as the Lp norms (1), for p = (12 , . . . ,
1
2
)︀
, we

have rc = rH({p}) = N(p). Thus for o = (0, . . . , 0) and q = (1, . . . , 1), we have d(o, p) = d(q, p) = rH({p}), so
{o, q} ∈ MH({p}), with d(o, q) = 2rH({p}).

We now consider the discretization of non-separated sets. The result will be slightly weaker than for con-
nected ones:

Theorem 19. Let F ∈ F′(E) such that one of the following holds:

(a) F is proximinal and for any s > 0, δs(F) is connected.
(b) F is non-separated.

Then for all r > rH(F):

1. For any S ∈ MH(F), the two graphs GFr (S) and Gr(S) are connected.
2. ∆H(F) is chained by {∆r(x) ∩ ∆H(F) | x ∈ F}.

Proof. We first prove that in both cases (a) and (b), for any S ∈ MH(F) and r > rH(F), GFr (S) and Gr(S) are
connected and S is chained by {Br(x) ∩ S | x ∈ F}. In particular item 1 holds.

(a) Take any s > 0. By Property 5, δs(F) is closed and ∆+rH (F)(F) = ∆rH (F)(F). Thus Property 9 gives F ⊆
δrH (F)(S) and S ⊆ ∆rH (F)(F) ⊆ ∆rH (F)+s(F). We apply Lemma 17 with r = rH(F), t = 0, X = F and Y = δs(F): then
GFrH (F)+2s(S) and GrH (F)+s(S) are connected, and S is chained by {BrH (F)+2s(x) ∩ S | x ∈ F}; then GrH (F)+2s(S) is
also connected. The result follows by taking r = rH(F) + 2s.

(b) Take any s > 0. By Property 9, F ⊆ δrH (F)(S) and S ⊆ ∆+rH (F)(F) ⊆ ∆rH (F)+s(F) (the last inclusion
follows from (14)). Now F is not s-separated. We apply Lemma 17 with r = rH(F), t = s, and X = Y = F: then
with F = Y, GFrH (F)+2s(S) and GrH (F)+2s(S) are connected, and S is chained by {BrH (F)+2s(x) ∩ S | x ∈ F}. The
result follows by taking r = rH(F) + 2s.

Now take S = ∆H(F). Then ∆H(F) is chained by the {Br(x) ∩ ∆H(F) | x ∈ F}; since ∆H(F) ⊆ D, we have

Br(x) ∩ ∆H(F) = Br(x) ∩ D ∩ ∆H(F) = ∆r(x) ∩ ∆H(F) .

Item 2 follows.
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Thus, for al r > rc, every Hausdorff discretization of any closed subset of E (including ∅) satisfying condition
(a) or (b), belongs to the connection of all connected subsets of the graph Gr(D). In other words, it belongs to
the connection which is the intersection of all connections of Gr(D), r > rc.

The fact that Gr(S) is connected for all r > rH(F) does not necessarily mean that GrH (F)(S) is connected, as
shows the following example:

Example 3. Let E = R2, D =
{︀(︀
z, ±(2n + 1 + 2−|z|)

)︀
| z ∈ Z, n ∈ N

}︀
, and F = {(y, ±2−|y|) | y ∈ R}. We

take the distance induced by the L∞ norm (1). See Figure 5 (a). Each point of F is at distance at most 1 from the
closest point in D; for instance in the top right quadrant, for y ∈ N, (y, 2−y) is at distance 1 from (y, 1 + 2−y) and
(y+1, 1+2−(y+1)), while for y /∈ N, y > 0, (y, 2−y) is at distance atmost1 from (⌈y⌉, 1+2−⌈y⌉). Thus rH(F) = 1 and
∆H(F) =

{︀(︀
z, ±(1+2−|z|)

)︀
| z ∈ Z}. Now GrH (F)(∆H(F)) has two connected components,

{︀(︀
z, (1+2−|z|)

)︀
| z ∈ Z}

and
{︀(︀
z, −(1 + 2−|z|)

)︀
| z ∈ Z}. For any s > 0 and z ∈ N large enough (in absolute value) to have 2−|z| ≤ s, the

distance between
(︀
z, 1+2−|z|

)︀
and

(︀
z, −(1+2−|z|)

)︀
is 2(1+2−|z|)) ≤ 2(rH(F)+s), so GrH (F)+s(∆H(F)) is connected.

(a)

(b)

Figure 5: Let E = R2 with d is induced by the L∞ norm. In both cases (a,b), the elements of ∆H (F) are shown as filled disks, and
those of D \ ∆H (F) as hollow disks. (a) Here D =

{︀(︀
z, ±(2n +1+2−|z|)

)︀
| z ∈ Z, n ∈ N

}︀
, F = {(y, ±2−|y|) | y ∈ R}, and rH (F) = 1.

For all s > 0, GrH (F)+s(∆H (F)) is connected, but GrH (F)(∆H (F)) is not connected. (b) Here D = Z2, F = {(y, 12 ± 2
−|y|) | y ∈ R},

and rH (F) = rc = 1/2. Then GrH (F)(∆H (F)) is connected, but G
F
rH (F)

(∆H (F)) is not connected, and ∆H (F) is not chained by the
∆rH (F)(x) ∩ ∆H (F) for x ∈ F.

However, GrH (F)(S) will be connected in the “usual” cases where E = Rn, D = Zn and themetric d is based
on a norm:

Corollary 20. Assume the hypothesis of Theorem 19. If (E, d) satisfies one of the conditions (A), (B) or (C) of
Lemma 15, then for any S ∈ MH(F), GrH (F)(S) is connected.

Indeed, there is then some r > rH(F) such that Gr(S) = GrH (F)(S). Such an argument does not apply to GFr (S),
nor to ∆r(x) in the chaining by the ∆r(x)∩∆H(F), so GFrH (F)(S) can be disconnected, and ∆H(F) is not necessarily
chained by the ∆rH (F)(x) ∩ ∆H(F) for x ∈ F, even when E = Rn and D = Zn with a metric based on a norm:

Example 4. Let E = R2, D = Z2, and F = {(y, 12 ± 2
−|y|) | y ∈ R}. We take again the distance induced

by the L∞ norm (1). See Figure 5 (b). Each point of F is at distance at most 1/2 from the closest point in D
(to whose digital cell it belongs). Thus rH(F) = rc = 1/2 and ∆H(F) =

(︀
Z × {0, 1}

)︀
∪ {(0, −1), (0, 2)}. Now

for x = (y, 12 + 2−|y|) (y ∈ R), ∆rH (F)(x) ∈
(︀
Z × {1}

)︀
∪ {(0, 2)} = S1, while for x = (y, 12 − 2

−|y|) (y ∈ R),
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∆rH (F)(x) ∈
(︀
Z × {0}

)︀
∪ {(0, −1)} = S2. Thus GFrH (F)(∆H(F)) has two connected components, S1 and S2, and the

same connected components are obtained in the chaining by the ∆rH (F)(x) ∩ ∆H(F) for x ∈ F. For any s > 0 and
y ∈ N large enough (in absolute value) to have 2−|y| ≤ s, the distance between each

(︀
y, 12 ± 2

−|y|)︀ and each of
(y, 0) and (y, 1) is ≤ 1

2 +2
−|y| ≤ rH(F)+s, so (y, 0) and (y, 1)will be joined together by an edge of GFrH (F)+s(∆H(F)),

and be in a block ∆rH (F)+s(x) ∩ ∆H(F) of the chaining. Hence G
F
rH (F)+s(∆H(F)) is connected and ∆H(F) is chained

by the ∆rH (F)+s(x) ∩ ∆H(F) for x ∈ F.

3.3 Discretizing Separated Sets in Multiple Resolutions

Wewill now give in some way the converse of the results of the previous subsection, namely that every Haus-
dorff discretization of a s-separated closed set (s > 0) is disconnected (for the graphs in Definition 7) when
the Hausdforff radius rc is small compared to s. Next, we will consider discretization at varying resolutions,
and we will see that a non-empty closed set has its Hausdorff discretizations connected at all resolutions if
and only if it is non-separated.

Proposition 21. Consider a s-separated F ∈ F′(E), where s > 0, and let S ∈ MH(F).

1. If GFr (S) is connected for some r > rH(F), then s < 2r; if it is for all r > rH(F), then s ≤ 2rc.
2. If Gr(S) is connected for some r > rH(F), then s < 4r; if it is for all r > rH(F), then s ≤ 4rc.

Proof. Take any r > rH(F). By Properties 8 and 9, F ⊆ δrH (F)(S) ⊆ δr(S) and S ⊆ ∆+rH (F)(F) ⊆ ∆r(F). The
s-separated set F is partitioned into F1, F2 ∈ F′(E) such that for all x1 ∈ F1 and x2 ∈ F2, d(x1, x2) > s. For
i = 1, 2, let Si be the set of all p ∈ S such that Br(p)∩Fi ≠ ∅; as S ⊆ ∆r(F), for every p ∈ Swehave Br(p)∩F ≠ ∅,
hence S = S1 ∪ S2. As F ⊆ δr(S), for every x ∈ F, there is some p ∈ S such that x ∈ Br(p); in particular, taking
x ∈ Fi (i = 1, 2), we get Si ≠ ∅.

If one of the graphs GFr (S) or Gr(S) is connected, then S1 ∩ S2 ≠ ∅ or that connected graph has an edge
with extremities p1 ∈ S1 and p2 ∈ S2.

If S1 ∩ S2 ≠ ∅, then for p ∈ S1 ∩ S2 and i = 1, 2 we have some xi ∈ Br(p) ∩ Fi, so d(p, xi) ≤ r. Then

s < d(x1, x2) ≤ d(x1, p) + d(p, x2) ≤ 2r .

If GFr (S) is connected, then it has an edge with extremities pi ∈ Si (i = 1, 2), so Br(p1) ∩ Br(p2) ∩ F ≠ ∅;
now for x ∈ Br(p1) ∩ Br(p2) ∩ F, either x ∈ F1 and then p2 ∈ S1, or x ∈ F2 and then p1 ∈ S2. Thus one of
p1, p2 belongs to both S1 and S2, hence S1 ∩ S2 ≠ ∅, and s < 2r. If this inequality holds for any r > rH(F), we
get then s ≤ 2rH(F) ≤ 2rc. Thus item 1 holds.

If Gr(S) is connected, then it has an edge with extremities pi ∈ Si (i = 1, 2), so Br(p1) ∩ Br(p2) ≠ ∅, thus
d(p1, p2) ≤ 2r. Now for i = 1, 2, Br(pi)∩Fi ≠ ∅, so we have some xi ∈ Br(p)∩ ∈ Fi, thus d(pi , xi) ≤ r. It follows
that

s < d(x1, x2) ≤ d(x1, p1) + d(p1, p2) + d(p2, x2) ≤ 4r .

If this inequality s < 4r holds for any r > rH(F), we get then s ≤ 4rH(F) ≤ 4rc. Thus item 2 holds.

Wewill now consider Hausdorff discretization at multiple resolutions. We suppose a setR of arbitrarily small
“grid steps” ρ > 0, and for each ρ ∈ R, a subset D(ρ) of E, where ∅ ≠ D(ρ) ≠ E, for which we define the
covering radius for ρ:

rc(ρ) = sup
x∈E

d(x, D(ρ)) = hd(E, D(ρ)) . (15)

We extend then Axiom 1 as follows:

Axiom 2. There is a set R ⊂ {r ∈ R | r > 0} such that infR = 0 and:

1. for every ρ ∈ R, there exists D(ρ) such that ∅ ⊂ D(ρ) ⊂ E, D(ρ) is boundedly finite and rc(ρ) < ∞;
2. rc(ρ) is an increasing function of ρ and lim

ρ→0
rc(ρ) = 0.
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Then, given ρ ∈ R, for every F ∈ F′(E), the definitions and notations given for D in Subsection 2.3 extend to
D(ρ): the Hausdorff radius rH(F, ρ), the discretization and upper discretization of radius r ≥ 0, ∆r(F, ρ) and
∆+r (F, ρ), the family MH(F, ρ) of Hausdorff discretizations of F, and the greatest Hausdorff discretization of
F, ∆H(F, ρ).

From now on, we will assume that (E, d) is boundedly compact and it has the middle point property.
Then (E, d) has the interval property, every closed ball Br(p) is connected (Corollary 11), every closed set F is
proximinal (Property 4), then for all r > 0, δr(F) = δ+r (F), which is closed (Property 5), and for any s > 0, F is
s-separated if and only if δs/2(F) is disconnected (Proposition 13).

We first show that these assumptions guarantee the existence of D(ρ), ρ ∈ R, satisfying Axiom 2. We
define the diameter of E as diam(E) = sup{d(x, y) | x, y ∈ E}.

Proposition 22. Let (E, d) be boundedly compact and having the middle point property. For any ρ ∈ R such
that 0 < ρ < diam(E), there exists D(ρ) ⊆ E satisfying Axiom 1 with covering radius rc(ρ) such that ρ/2 ≤ rc(ρ) ≤
ρ. Furthermore, there is some n0 ∈ N such that R = {2−n | n ∈ N, n ≥ n0} and the family of sets D(ρ), ρ ∈ R,
satisfy Axiom 2.

Proof. For 0 < ρ < diam(E) there exist p, q ∈ E such that d(p, q) > ρ. By the interval property, there exists
p0 ∈ E such that d(p, p0) = ρ. Choose σ ∈ R such that 0 < σ < ρ. For every n ∈ N we define the two sets

Cn = {x ∈ E | d(p, x) = ρ + nσ} and
Rn = {x ∈ E | ρ + nσ ≤ d(p, x) ≤ ρ + (n + 1)σ} .

Then p0 ∈ C0 and Cn ⊆ Rn for all n ∈ N; hence R0 ≠ ∅. For any x ∈ E, either d(p, x) ≤ ρ and x ∈ Bρ(p),
or d(p, x) > ρ and there is some n ∈ N such that nσ < d(p, x) − ρ ≤ (n + 1)σ, hence x ∈ Rn. Thus E =
Bρ(p) ∪

⋃︀
n∈N Rn.

Since Rn is the inverse image by the continuous function d(p, ·) of the closed interval [ρ+nσ, ρ+(n+1)σ],
it is closed; now Rn is bounded, and as E is boundedly compact, Rn is compact. For any x ∈ Rn, by the interval
property there exists y ∈ E such that d(p, y) = ρ + nσ and d(y, x) = d(p, x) − d(p, y) ≤ σ < ρ; in other words,
y ∈ Cn and x ∈ B∘ρ(y). Hence the union of open balls B∘ρ(y), y ∈ Cn, covers Rn, and as Rn is compact, there
is a finite subset Gn of Cn such that the union of B∘ρ(y), y ∈ Gn, covers Rn; hence Rn ⊆ δρ(Gn). Since R0 ≠ ∅,
G0 ≠ ∅.

Let D(ρ) = {p} ∪
⋃︀
n∈N Gn; thus, D(ρ) ≠ ∅. Every bounded subset of D(ρ) is included in some Br(p),

r > 0, and we have r ≤ ρ + mσ for some m ∈ N, hence it is included in {p} ∪
⋃︀m
n=0 Gn, which is finite; thus

D(ρ) is boundedly finite. Since E = Bρ(p) ∪
⋃︀
n∈N Rn, with δρ(p) = Bρ(p) and Rn ⊆ δρ(Gn) for all n, we

have δρ(D(ρ)) = E, hence rc(ρ) ≤ ρ. As d(p, p0) = ρ, by the interval property, there exists p1 ∈ E such that
d(p, p1) = ρ/2; then p1 /∈ D(ρ), so D(ρ) ≠ E. For x ∈ Gn, d(p1, x) ≥ d(p, x) − d(p, p1) = ρ/2 + nσ ≥ ρ/2; now,
d(p1, p) = ρ/2; as D(ρ) = {p} ∪

⋃︀
n∈N Gn, we deduce that d(p1, D(ρ)) = ρ/2, hence rc(ρ) ≥ ρ/2. Therefore

Axiom 1 is satisfied and ρ/2 ≤ rc(ρ) ≤ ρ.
For some n0 ∈ N we have 2−n0 < diam(E). Let R = {2−n | n ∈ N, n ≥ n0}. For each n ≥ n0, we have

2−n < diam(E), and we construct D(ρ) for ρ = 2−n, giving 2−n−1 ≤ rc(2−n) ≤ 2−n. It follows that for n < m,
rc(2−m) ≤ 2−m ≤ 2−n−1 ≤ rc(2−n), thus rc(ρ) is an increasing function of ρ. Obviously lim

ρ→0
rc(ρ) = 0. Therefore

Axiom 2 is satisfied.

We can now summarize Theorems 18 and 19 and Proposition 21 in themulti-resolution framework of Axiom 2:

Theorem 23. Let (E, d) be boundedly compact and having the middle point property. Let R and the family of
sets D(ρ), ρ ∈ R, satisfy Axiom 2. Let F ∈ F′(E).

1. If F is connected, then for all ρ ∈ R, ∆H(F, ρ) is chained by {∆rH (F,ρ)(x) | x ∈ F} and for every S ∈ MH(F, ρ),
the two graphs GrH (F,ρ)(S) and G

F
rH (F,ρ)(S) are connected.

2. If F is disconnected but non-separated, then for all ρ ∈ R, for any r > rH(F, ρ), ∆H(F, ρ) is chained by
{∆r(x) ∩ ∆H(F, ρ) | x ∈ F} and for every S ∈ MH(F, ρ), the two graphs GFr (S) and Gr(S) are connected.
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3. If F is s-separated for some s > 0, then there is some ρ0 ∈ R such that for every ρ ∈ R with ρ ≤ ρ0, there is
some r > rH(F, ρ) such that for every S ∈ MH(F, ρ) and every r′ ≤ r, the two graphs GFr′ (S) and Gr′ (S) are
disconnected.

Let us now briefly consider the convergence to the original closed set of the discretization in resolution ρ
when ρ tends to 0. If for every ρ ∈ R we choose some Sρ ∈ MH(F, ρ), as Hd(F, Sρ) = rH(F, ρ) ≤ rc(ρ), then
we will have lim

ρ→0
Hd(F, Sρ) = 0, in other words lim

ρ→0
Sρ = F for the generalized Hausdorff metric Hd. Thus the

Hausdorff discretizations tend to the original closed set when the resolution tends to 0.
Moreover, the argument of Proposition 21 can be extended to show that if we take a constant c > 1 and

for every ρ ∈ R we choose some Sρ ⊆ D(ρ) (not necessarily a discretization of F) such that Gc·rc(ρ)(Sρ) is
connected, if we have lim

ρ→0
Hd(F, Sρ) = 0, then F must be non-separated.

4 Coordinate-Homogeneous Norms in Rn and Zn

From now on, we assume that E = Rn, D = Zn and the metric d is induced by a norm N: for x, y ∈ E,
d(x, y) = N(x − y). Write o for the origin (0, . . . , 0) ofRn. Then B1(o) is a symmetrical convex compact subset
of E with non-empty interior, and for x ∈ E and r > 0, we have Br(x) = {x + ry | y ∈ B1(o)}. In particular, the
metric d is topologically equivalent to the Euclideanmetric d2, in other words, there exist β > α > 0 such that
for any x, y ∈ E, αd2(x, y) ≤ d(x, y) ≤ βd2(x, y).

Clearly, (E, d) is boundedly compact and satisfies the interval property, see Definition 4: in item 2we take
f (α) = (1 − α)p + αq, then we get f (β) − f (α) = (β − α)(q − p). Moreover, D is boundedly finite. Note also that
condition (A) of Lemma 15 is satisfied.

Everything that we will say here can easily be extended to the case where D = ρZn for a resolution ρ > 0;
in fact, for S ∈ F′(ρZn) and F ∈ F′(E), we have ρ−1S ∈ F′(Zn), ρ−1F ∈ F′(E) and Hd(F, S) = ρHd(ρ−1F, ρ−1S).

For p = (p1, . . . , pn) ∈ D, let C(p) be the square/cubic/hypercubic unit cell centered about p, that is, is
the set of all x = (x1, . . . , xn) ∈ E such that ‖x−p‖∞ ≤ 1/2, that is, |xi −pi| ≤ 1/2 for each i = 1, . . . , n. For any
x ∈ E, there is some p ∈ D such that x ∈ C(p); we have then d(x, D) ≤ d(x, p) = N(x − p), with x − p ∈ C(o),
from which we deduce that rc ≤ supx∈C(o) N(x). Therefore Axiom 1 is satisfied.

We say that the norm N is coordinate-symmetrical [13] if for any i = 1, . . . , n and (x1, . . . , xn) ∈ Ewe have

N(x1, . . . , xi , . . . , xn) = N(x1, . . . , −xi , . . . , xn) .

Equivalently, for any (x1, . . . , xn) ∈ E we have

N(x1, . . . , xn) = N(|x1|, . . . , |xn|) .

For 1 ≤ p ≤ ∞, the Lp norm ‖ ‖p, see (1), is coordinate-symmetrical. In the case of the Lp norm, we will write
Bpr (x) for the closed ball of radius r centered about x, cf. (3), and rc[p] for the covering radius, cf. (11); we have
then rc[p] = 1

2n
1/p for p < ∞, and rc[∞] = 1

2 . We will require the following result:

Property 24. [13] If N is coordinate-symmetrical, then N(x1, . . . , xn) is increasing in each of |x1|, . . . , |xn|:
∀ (x1, . . . , xn), (y1, . . . , yn) ∈ E,⎧⎩∀ i = 1, . . . , n, |yi| ≥ |xi|

⎫⎭ =⇒
⎧⎩N(y1, . . . , yn) ≥ N(x1, . . . , xn)⎫⎭ .

Furthermore, for each p ∈ D and x ∈ C(p), d(x, D) = N(x − p), and rc = N
(︀1
2 , . . . ,

1
2
)︀
.

It follows then that a coordinate-symmetrical norm N satisfies

∀ x ∈ E, N(x) ≤ N(1, . . . , 1) · ‖x‖∞ . (16)

We refer the reader to the beginning of Subsection 2.4 for the terminology on digital adjacency and con-
nectivity, in particular the axial adjacency and connectivity.
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Proposition 25. If N is coordinate-symmetrical, then for any x ∈ E and r > 0, Br(x) ∩ D is axially connected.

Proof. Write x = (x1, . . . , xn). Let p = (p1, . . . , pn) and q = (q1, . . . , qn) two points of Br(x) ∩ D. We show
that they are joined in Br(x) ∩ D by a path for the axial adjacency. We use induction on the number k of
coordinates on which p and q differ, that is, the number of i ∈ {1, . . . , n} such that pi ≠ qi. For k = 0,
p = q and the result is obvious. Suppose now that the result is true for k, and let p and q differ on k + 1
coordinates. Take i such that pi ≠ qi; without loss of generality, we can assume that |pi − xi| ≤ |qi − xi|,
otherwise we exchange p and q in the following argument. Consider the sequence of integers m between pi
and qi:m = pi , pi+1, . . . , qi−1, qi if pi < qi, whilem = qi , qi+1, . . . , pi−1, pi if qi < pi; then |m−xi| ≤ |qi−xi|.
For each such m, let z(m) = (q1, . . . , qi−1,m, qi+1, . . . , qn) be the point in D whose i-th coordinate is m, and
whose j-th coordinate is qj for j ≠ i; by Property 24, N(z(m) − x) ≤ N(q − x), thus z(m) ∈ Br(x) ∩ D. Hence the
z(m) constitute a path for the axial adjacency joining z(pi) to z(qi) = q inside Br(x) ∩ D; on the other hand,
z(pi) and p differ in k coordinates, so by induction hypothesis they are joined inside Br(x) ∩ D by a path for
the axial adjacency. It follows thus that p and q are joined by such a path, and the result is thus satisfied for
k + 1.

Combining this result with Theorem 18 (item 2), we deduce the following:

Corollary 26. Let N be coordinate-symmetrical, let F ∈ F′(E) be connected and let r ≥ rH(F). Then ∆r(F) is
axially connected. In particular, ∆H(F) is axially connected.

Indeed, F will be chained by the axially connected sets ∆r(x) = Br(x) ∩ D for x ∈ F. For n = 2 (E = R2 and
D = Z2) we obtain the result of [22]: for a connected F ∈ F′(E), the greatest Hausdorff discretization ∆H(F) is
4-connected.

We say that the norm N is coordinate-homogeneous [13] if it is coordinate-symmetrical and there is a
transitive group G of permutations of {1, . . . , n} such that for any (x1, . . . , xn) ∈ E and π ∈ G we have

N(x1, . . . , xn) = N(xπ(1), . . . , xπ(n)) .

In other words there is a group of permutations of the coordinates, that acts transitively on them, under
which the norm N is invariant. For example a coordinate-symmetrical norm N satisfying N(x1, . . . , xn) =
N(x2, . . . , xn , x1) is coordinate-homogeneous, because the permutation i ↦→ i + 1 (i < n), n ↦→ 1 generates
the cyclic permutation group on {1, . . . , n}.

In [22] we said that the norm N is homogeneous if it is coordinate-symmetrical and invariant under any
permutation of coordinates; this corresponds to the case where the group G is the symmetrical group con-
sisting of all permutations of {1, . . . , n}. For instance, the Lp norm (1 ≤ p ≤ ∞) is homogeneous, so it is
coordinate-homogeneous.

In [13] we showed that a coordinate-homogeneous norm N satisfies the following counterpart of (16):

∀ x ∈ E, N(x) ≥ N(1, . . . , 1) · ‖x‖1n . (17)

Since ‖(1, . . . , 1)‖1 = n and ‖(1, . . . , 1)‖∞ = 1, while the covering radius is given by the norm of
(12 , . . . ,

1
2
)︀
, we get:

Property 27. [13] If N is coordinate-homogeneous, then for any x ∈ E,

‖x‖1
‖(1, . . . , 1)‖1

= ‖x‖1
n ≤ N(x)

N(1, . . . , 1) ≤ ‖x‖∞ = ‖x‖∞
‖(1, . . . , 1)‖∞

. (18)

Then for any x ∈ E and r > 0,
B∞r/2rc (x) ⊆ Br(x) ⊆ B1nr/2rc (x) ; (19)

in particular for r = rc,
B∞rc [∞](x) = B

∞
1/2(x) ⊆ Brc (x) ⊆ B1n/2(x) = B

1
rc [1](x) . (20)
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In other words, the closed ball of radius rc for d is intermediate between the one of radius rc[∞] = 1
2 for the

L∞ norm and the one of radius rc[1] = n
2 for the L1 norm. We illustrate this in Figure 6 (a) for n = 2 and the

Euclidean distance (based on the L2 norm).

(a)

p p qx

(b)

Figure 6: Let n = 2 (a) Property 27 for the Euclidean distance: B∞rc [∞](p) ⊆ B2rc [2](p) ⊆ B1rc [1](p). (b) Let x be the midpoint
between two axially adjacent p, q ∈ Z2; for any coordinate-homogeneous norm, as B∞rc [∞](x) ⊆ Brc (x) ⊆ B1rc [1](x) and
B∞rc [∞](x) ∩ Z2 = B1rc [1](x) ∩ Z2 = {p, q}, we deduce that ∆rc (x) = Brc (x) ∩ Z2 = {p, q}.

We see then in Figure 6 (b) that for n = 2, the midpoint x between two axially adjacent pixels p, q ∈ D
must satisfy ∆rc (x) = {p, q}. This means that the discrete traces ∆rH (F)(x) of balls BrH (F)(x) will not necessarily
be thick, so in view of Corollary 26, for a connected F ∈ F′(E), ∆H(F) will not necessarily be thick.

In the case of the L1 norm, since rH(F) ≤ rc[1] = n
2 , Corollary 20 gives the following:

Corollary 28. Let N be the L1 norm. Let F ∈ F′(E) be non-separated and let r ≥ rH(F). Then any Hausdorff
discretization of F is connected for the graphwith vertex set D andwith an edge linking any two distinct p, q ∈ D
such that ‖q−p‖1 ≤ 2r. In particular, it is connected for the graphwith r = rc[1] = n

2 , that is, with an edge linking
two distinct p, q ∈ D when ‖q − p‖1 ≤ n.

In order to deal with the case when the norm N is not proportional to the L1 norm, we need the following:

Lemma 29. Let N be a coordinate-homogeneous norm. For each i = 1, . . . , n, let ei be the i-th canonical basis
vector (with i-th coordinate equal to 1, and every other coordinate equal to 0). If for some j ∈ {1, . . . , n} we
have N(ej) ≤ N(1,...,1)

n , then N is proportional to the L1 norm: ∀ x ∈ E, N(x) = N(1,...,1)
n ‖x‖1.

Proof. For every i = 1, . . . , n, ei can be obtained from ej by a permutation of coordinates, and as N is
coordinate-homogeneous, we get N(ei) = N(ej) ≤ N(1,...,1)

n . Let x = (x1, . . . , xn) ∈ E. Then x =
∑︀n

i=1 xie
i

and the norm N gives:

N(x) = N
(︁ n∑︁
i=1

xiei
)︁
≤

n∑︁
i=1

|xi|N(ei) ≤
(︁ n∑︁
i=1

|xi|
)︁N(1, . . . , 1)

n ,

that is, N(x) ≤ N(1,...,1)
n ‖x‖1. But (17) gives the opposite inequality, therefore the equality N(x) = N(1,...,1)

n ‖x‖1
holds for any x ∈ E.

We can now state the counterpart of Corollary 28 in the case of a coordinate-homogeneous norm that is not
proportional to the L1 norm:

Proposition 30. Let N be a coordinate-homogeneous norm that is not proportional to the L1 norm. Let F ∈
F′(E) be non-separated and let r ≥ rH(F). Then any Hausdorff discretization of F is connected for the graph with
vertex set D and with an edge linking any two distinct p, q ∈ D such that either p and q differ in at least two
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coordinates and ‖q − p‖1 ≤ nr
rc , or p and q differ in exactly one coordinate and ‖q − p‖1 < nr

rc . In particular, it is
connected for the graph with r = rc, that is, with an edge linking two distinct p, q ∈ D when either p and q differ
in at least two coordinates and ‖q − p‖1 ≤ n, or p and q differ in exactly one coordinate and ‖q − p‖1 < n.

Proof. Recall that N(1, . . . , 1) = 2rc. Take two distinct p, q ∈ D such that Br(p)∩Br(q) ≠ ∅; then N(q−p) ≤ 2r.
Suppose first that p and q differ in at least two coordinates; by (18) we have

‖q − p‖1 ≤
nN(q − p)
N(1, . . . , 1) =

nN(q − p)
2rc

≤ nrrc
,

so p and q are joined by an edge in the graph. Suppose next that p and q differ in exactly one coordinate; thus
there is some j ∈ {1, . . . , n} and some x ∈ R such that q − p = xej. By Lemma 29, we have N(ej) > N(1,...,1)

n =
2rc
n , hence

‖q − p‖1 = |x| < |x|N(ej) n2rc
= N(xej) n2rc

= N(q − p) n2rc
≤ nrrc

;

thus ‖q − p‖1 < nr
rc , so p and q are joined by an edge in the graph. Hence any two distinct p, q ∈ D such that

Br(p) ∩ Br(q) ≠ ∅ are joined by an edge in the graph; thus by Corollary 20 S is connected in that graph. Since
rH(F) ≤ rc, we have the result with r = rc.

Note that for p, q ∈ D we have ‖q − p‖∞ < ‖q − p‖1 when p and q differ in at least two coordinates, but
‖q − p‖∞ = ‖q − p‖1 when p and q differ in exactly one coordinate. Thus the condition “either p and q differ
in at least two coordinates and ‖q − p‖1 ≤ nr

rc , or p and q differ in exactly one coordinate and ‖q − p‖1 < nr
rc ”

can be written as the conjunction:

‖q − p‖1 ≤
nr
rc

and ‖q − p‖∞ < nrrc
. (21)

(a) (b)

p p

Figure 7: Here E = R2 and D = Z2. We show two neighbourhoods of a pixel p ∈ D identified by a cross. (a) The neighbourhood
consists of all q ∈ D such that ‖q − p‖1 ≤ 2. (b) Restricting this neighbourhood (a) to ‖q − p‖∞ < 2, we remove the 4 endpoints,
so we get the 8-neighbourhood made of all q ∈ D such that ‖q − p‖∞ ≤ 1.

Let us apply the results of this section to the case where n = 2. We assume a coordinate-homogeneous
norm N on R2, which means that for any (x1, x2) ∈ R2, N(±x1, ±x2) = N(±x2, ±x1) = N(x1, x2). Let F be a
non-empty connected closed subset of R2. By Corollary 26, the greatest Hausdorff discretization ∆H(F) will
be 4-connected, as shown in [22]. Consider now an arbitrary Hausdorff discretization S of F. We have two
cases:

1. N is not proportional to the L1 norm. By Proposition 30, S will be connected for the graph linking any
two distinct p, q ∈ D such that ‖q − p‖1 ≤ 2 and ‖q − p‖∞ < 2; this is simply the 8-adjacency graph,
see Figure 7 (b), thus S will be 8-connected. We obtain thus the result of [22], namely that all Hausdorff
discretizations of F are 8-connected.

2. N is the L1 norm. By Corollary 28, S will be connected for the graph with vertex set D and with an edge
linking any two distinct p, q ∈ D such that ‖q − p‖1 ≤ 2, see Figure 7 (a). As shown in Figure 8, S will not
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always be 8-connected, since we require the adjacency to include the case of two pixels that differ by 2 in
exactly one coordinate. This case was overlooked in [22].

x
KK

p q
K

Figure 8: Here E = R2, D = Z2 and d is the metric induced by the L1 norm. Left: the connected compact K ⊆ E and the 5
pixels in D whose square cells intersect K. Middle: the endpoint x of K satisfies d(x, D) = 1 = rc, hence rH (K) = 1; now
Hd(K, {p, q}) = 1, so {p, q} is a 8-disconnected Hausdorff discretization of K. Right: the greatest Hausdorff discretization
∆H (K) = δ1(K) ∩ D is 4-connected.

5 Conclusion
This paper is part of a series on Hausdorff discretization, the approach to discretization which associates to a
closed set F in a “continuous” metric space E any subset S of a “discrete” subspace D which minimizes the
Hausdorff distance between S and F [12–15, 22]. Here we investigated the relation between the topological
connectivity of that closed set F and the “discrete” connectivity of its discretization S.

As in our previous papers, we have presented our theory in the most general framework possible: E is
an arbitrary metric space and D is a boundedly finite subset of E with finite covering radius rc, see (11) and
Axiom 1. Then the Hausdorff distance between a closed set F and any of its Hausforff discretizations is equal
to its Hausdorff radius rH(F), see (12). We have rH(F) ≤ rc.

For some results we required that E is boundedly compact and that it satisfies themiddle point property,
so that it satisfies the interval property, see Definition 4 and Corollary 11. Of course, all these properties are
indeed satisfied for E = Rn, D = Zn and a distance based on a norm.

For connectivity, we have not restricted ourselves to the topological one (in E) and the graph-theoretical
one (in D). We rather based ourselves on the theory of connections and partial connections [10, 11, 18].

We first consider a connected proximinal set F (when E is boundedly compact, every closed set is proxim-
inal). The greatest Hausdorff discretization of F belongs to the partial connection generated by the traces of
all balls with radius equal to rH(F). On the other hand, any Hausdorff discretization S of F will be connected
in the graph GrH (F)(F) where two distinct points of D are joined by an edge if their closed balls of radius rH(F)
intersect. In particular, it will be connected in the graph where two distinct points of D at distance ≤ 2rc are
joined by an edge.

We next generalize topological connectivity by considering non-separated closed sets, see Definition 5.
They include all connected sets, but also non-compact disconnected sets where the connected components
are “asymptotic” to each other, see Example 2. The family of non-separated closed sets constitutes a con-
nection on the lattice of closed sets. Given a non-separated closed set F, for all r > rH(F), any Hausdorff
discretization S of F will be connected in the graph Gr(S) where two distinct points of D are joined by an edge
if their closed balls of radius r intersect.

When the closed set F is separated, connectivity is not preservedwhen rc is small enough.More precisely,
if F is s-separated for some s > 0, and rc < s/4, then there exists r > rc such that the graph Gr(S) will be
disconnected.
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Weconsider thendiscretization inmultiple subspacesD(ρ)with resolution ρ tending to zero, seeAxiom2;
then Hausdorff discretizations of F will be connected at all resolutions if and only F is non-separated.

In a second part of the paper, we consider the case where E = Rn, D = Zn and the metric is induced
by a coordinate-symmetrical norm (for instance, the Lp norm, 1 ≤ p ≤ ∞). Then the greatest Hausdorff dis-
cretization of a connected closed subset of E will be axially connected. Note that this result, see Corollary 26,
relies on the theory of partial connections and chainings, and it could not be obtained by more conventional
methods based on adjacency graphs or Voronoi tesselations.

When the norm is coordinate-homogeneous (again, this property holds for the Lp norm) the Hausdorff
discretization of a non-separated closed set will be connected for a particular adjacency graph on D. When
the norm is proportional to the L1 norm, two distinct p, q ∈ D will be adjacent when ‖q − p‖1 ≤ n. When it is
not proportional to the L1 norm, p and qwill be adjacentwhen either p and q differ in at least two coordinates
and ‖q − p‖1 ≤ n, or p and q differ in exactly one coordinate and ‖q − p‖1 < n; an equivalent condition is that
‖q − p‖1 ≤ n and ‖q − p‖∞ < n.

For n = 2, this gives the result of [22]: the greatest Hausdorff discretization of a connected closed subset
F ofR2 is 4-connected, and when the norm is coordinate-homogeneous but not proportional to the L1 norm,
every Hausdorff discretization of F will be 8-connected.

For n > 2, this graph based on the L1 norm relies on neighbourhoods that are generally too large, so it
is better to use the general theory, giving connectivity for the digital graph with an edge between two digital
points p, q such that d(p, q) ≤ 2rc.

Our study shows the interest of the recent notion of a partial connection [11]. In particular, for E = Rn, D =
Zn and a coordinate-symmetricalnorm, it would be interesting to investigate the partial connection generated
by digital traces of balls of a given Hausdorff radius. Indeed, for n > 2 it might well be more restricted than
the set of all axially connected digital sets, in other words, such sets may have some “thickness” (this is not
the case for n = 2, see Figure 6 (b)).

It would be interesting to extend our results to related forms of discretization, such as the discretization
by dilation considered in [12, 13, 15].

Another possible approach would be to associate to every digital set S ⊆ Zn its Euclidean representation
as the union of cells of its points, C(S) =

⋃︀
p∈S C(p), and to associate to a closed set F ⊆ Rn a discretization

S ⊆ Zn such that F can be homotopically deformed into C(S).
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