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Short communication

When injected into the fimbria-fornix/cingular bundle, not in the
raphe, 5,7-dihydroxytryptamine prevents amphetamine-induced

hyperlocomotion
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Abstract

The locomotor effects of acute amphetamine treatment (1 mg/kg, i.p.) were assessed in Long–Evans rats after 5,7-dihydroxy-
tryptamine (5,7-DHT) injections into the fimbria-fornix/cingular bundle (FiFx/CB; 4 mg/side), or the dorsal and median raphe
(Raphe; 10 mg). In control rats, amphetamine induced a significant increase of home-cage activity for about 2 h. This effect was
similar in Raphe rats, but was absent in FiFx/CB rats. The raphe lesions reduced serotonin concentrations by 50% in the dorsal
hippocampus, 75% in the ventral hippocampus and 58% in the fronto-parietal cortex. After FiFx/CB lesions, the reduction
amounted 50, 61 and only 25%, in each of these regions, respectively. In the fronto-partietal cortex, dopamine concentration was
significantly decreased in Raphe (−27%) and FiFx/CB rats (−65%). The results suggest that a serotonergic denervation of the
hippocampus by injections of 5,7-DHT into the FiFx/CB pathways hampers the stimulating effects of amphetamine on locomotor
activity. This effect might be related to the reduced dopaminergic tone in the fronto-parietal cortex. © 2000 Elsevier Science B.V.
All rights reserved.
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Electrolytic or excitotoxic lesions of the raphe nuclei
induce locomotor hyperactivity in rodents [3,12,13].
Beside other cells and fibers, these nuclei contain the
cell bodies of neurons belonging to the ascending sero-
tonergic projection system [11]. Whether damage to the
serotonergic neurons in the raphe accounts for the
hyperactivity was, and probably still is, in debate.
When the serotonergic neurotoxin 5,7-dyhydroxy-
tryptamine (5,7-DHT) is injected into the cerebral ven-
tricles, a technique inducing a general serotonergic de-
pletion in the brain, there are reports showing the

activity level to be increased [15,19], decreased [17,20],
or unchanged [22]. When 5,7-DHT is injected directly
into the median raphe, the serotonergic lesion seems to
have no effect on activity [3,18]. When the toxin is
injected directly into the fimbria-fornix, a major path-
way of hippocampal afferents and efferents, there seems
to be an increase of nocturnal activity [27]. Williams
and Azmitia [27] even reported that the level of noctur-
nal activity and that of hippocampal serotonin deple-
tion were negatively correlated, an observation also
made by Jacobs et al. [12] after electrolytic lesions of
the raphe. Such data suggest that the serotonergic
innervation of the hippocampus could play some role in
the modulation of locomotor activity. That hippocam-
pal function can be linked in some respects to locomo-
tor activity is in line with various findings. Indeed, more

* Corresponding author. Tel.: +33-388-358435; fax: +33-388-
358442.

E-mail address: jean-christophe.cassel@psycho-ulp.u-strasbg.fr (J.-
C. Cassel).

0166-4328/00/$ - see front matter © 2000 Elsevier Science B.V. All rights reserved.
PII: S 0 1 6 6 -4328 (00 )00246 -1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by univOAK

https://core.ac.uk/display/249994145?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


O. Lehmann et al. / Beha6ioural Brain Research 114 (2000) 213–217214

or less extensive lesions of the hippocampus itself, or of
the fimbria-fornix fibers induce hyperlocomotion [4,25].
Wilkinson et al. [26] propose this hyperactivity to result
from the disruption of a mechanism involving
hippocampal outputs that exert an inhibitory influence
on dopaminergic neurons in the nucleus accumbens.
Although very simplistic, this view is compatible with
experiments showing hippocampal or fimbria-fornix le-
sions to potentiate amphetamine-induced locomotion
[8,29]. Whether the serotonergic innervation of the
hippocampus plays a role in this regulation seems also
controversial. Balse et al. [4] recently reported that
grafts rich in serotonergic neurons placed into the
hippocampus denervated by an aspiration of the
fimbria-fornix/cingular bundle (FiFx/CB) pathways re-
duced the lesion-induced potentiation of the effects of
amphetamine on activity. Lipska et al. [17] found the
locomotor reactivity towards amphetamine to be de-
creased after intracerebroventricular injections of 5,7-
DHT. Earlier, Asin and Fibiger [3] found that 5,7-DHT
injected into the median raphe produced a weak but
significant potentiation of amphetamine-induced hyper-
locomotion. In the present study, we injected 5,7-DHT
into the FiFx/CB or the raphe in order to make a direct
comparison between the effects of these two lesions on
spontaneous and amphetamine-induced locomotor ac-
tivity. After completion of behavioural testing, the le-
sion-induced effects were verified neurochemically.

All procedures involving animals were conducted
according to international laws and policies.

The study used 18 Long–Evans male rats (CERJ,
France) aged of about 90 days at the time of surgery.
They were housed individually, with food and water ad
libitum, in transparent cages (42×26×15 cm) under a
12.00:12.00 h dark–light cycle (lights on at 07:00 h) and
controlled temperature (21°C). Under sodium pento-
barbital (65 mg/kg, i.p., Sanofi, France) anaesthesia,
rats were subjected to a bilateral injection of 8 mg of
5,7-DHT (in 0.64 ml of saline, 4 mg/side; Sigma, St
Louis, USA) in the fimbria-fornix/cingular bundle
(Group FiFx/CB, n=6), or to an injection of 10 mg of
5,7-DHT (in 1ml) in the median and dorsal raphe
(Group Raphe, n=6). Saline contained 20 mg/ml
ascorbic acid. Rats with injection of vehicle were used
as controls (Group Sham, n=6; three with vehicle in
the fimbria-fornix/cingular bundle and three with vehi-
cle in the median and dorsal raphe). Injections were
performed stereotaxically through a 1 ml-Hamilton sy-
ringe at the following coordinates (in mm from
Lambda [21]) : A= +5.7, L=90.9, V= −4.0 for the
fimbria-fornix (0.2 ml/site), A= +5.7, L=90.4, V=
−2.2 for the cingular bundle (0.12 ml/site), A= −7.8,
L=0.0, V= −8.2 for the median raphe, and A= +
7.8, L=0.0, V= −6.0 for the dorsal raphe (0.5 ml/
site). The incisor bar was at 3.0 mm below the
interaural line. After each injection, the needle was left

in situ for 6 min. All rats were pretreated with de-
sipramine (25 mg/kg, i.p., in saline; Sigma), 20 min
before anaesthesia [5]. On uneven days, locomotor ac-
tivity of the rats was determined in their home cages as
previously reported [15]. On days 3 and 5, all rats were
given an i.p. injection of saline (1 ml/kg) 15 min before
recording was started (11:00–14:00 h). On days 7 and
9, activity scores were recorded for 3 h after an injec-
tion of D-amphetamine sulfate (1 mg/1 ml saline per kg,
i.p.; Sigma) 9–11 minutes before recording was started.
Four days after activity testing, all rats were again
injected with 1 mg/kg amphetamine in order to allow
two naive experimenters to check for stereotypies (each
rat was observed for 20 minutes post-injection). The
next day, all rats were sacrificed by microwave irradia-
tion (2.0 s; 6.3 kW; Sairem, Villeurbanne, France) and
their brain processed as described elsewhere [15]. Con-
centration of dopamine (DA), noradrenaline (NA),
serotonin (5-HT) and 5-hydroxyindolacetic acid (5-
HIAA) were measured using high performance liquid
chromatography (HPLC) with electrochemical detec-
tion as previously described [15]. All data were analysed
by an analysis of variance (ANOVA) followed, where
appropriate, by 2×2 comparisons based on the New-
man Keuls multiple range test.

Only the main neurochemical and behavioural results
will be presented. The concentration of 5-HT and 5-
HIAA was reduced significantly in both lesion groups
in the dorsal (by about 50 and 60%, respectively) and
ventral hippocampus (by about 70 and 60%, respec-
tively, on the average: F=17.58, at least; 2/15 df;
PB0.001), and was not altered in the striatum. In the
fronto-parietal and the entorhinal cortex, the serotoner-
gic markers were significantly reduced (by about 60%)
only in Raphe rats (F=5.63, at least; d f 2/15; PB
0.05). There was a weak reduction of NA concentration
in the dorsal hippocampus of FiFx/CB rats (−17%:
F=3.88; d f 2/15; PB0.05). The concentration of do-
pamine was reduced significantly (F=24.43; 2/15 d f ;
PB0.001) in the fronto-parietal cortex of Raphe (−
27%; PB0.01) and FiFx/CB rats (−65%, PB0.001).

The diurnal and nocturnal spontaneous activity levels
were modified by neither lesion (data not illustrated).
The activity scores recorded after control or am-
phetamine injections (Fig. 1) were analysed separately
for each hour. During the first hour, there were signifi-
cant lesion (F=3.79; 2/15 d f ; PB0.05), drug (F=
13.77; 3/45 d f ; PB0.001), and lesion×drug
interaction (F=2.64; 6/45 d f ; PB0.05) effects. The
lesion effect reflected overall activity scores which were
significantly lower in FiFx/CB rats than in Raphe rats
(PB0.05). The comparison between FiFx/CB and
Sham rats only yielded a tendency (PB0.07). The drug
effect reflected activity scores significantly higher after
the amphetamine injections as compared to saline injec-
tions (PB0.01 at least). The interaction can be inter-
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preted as follows: whereas Raphe rats reacted to am-
phetamine as the Sham rats, FiFx/CB rats failed to
show a significant reaction to amphetamine.

During the second hour after the injections, there
was only a significant drug (F=16.36; 3/45 d f ; PB
0.001) effect. This drug effect was due to overall activity
scores which were significantly higher after am-
phetamine injections as compared to the scores
recorded after saline injections (PB0.01 at least). Fi-
nally, when all mean values were compared, we again
found the activity of the Sham rats to be significantly
increased by each amphetamine injection as compared
to either saline injection (PB0.01, at least). Again,
FiFx/CB rats failed to significantly respond to the drug.

During the third hour, neither of the aforementioned
effects was significant. When the rats were observed for
stereotypies, we could not observe any clear-cut mani-
festation of stereotypies (e.g. snout contact, head jerk,
gnawing...; data not illustrated) (Fig. 1).

The injection of 5,7-DHT into the septohippocampal
pathways induced a depletion of serotonergic markers
in the hippocampus, but not in the other structures
analysed. When injected into the raphe region, 5,7-

DHT depleted serotonergic markers in the hippocam-
pus, fronto-parietal and entorhinal cortices, but not in
the striatum. It also reduced the concentration of DA
in the fronto-parietal cortex. This effect was more
pronounced in FiFx/CB rats (-65%) than in Raphe rats
(−27%). Whereas Raphe rats responded to am-
phetamine by hyperactivity, FiFx/CB rats did not.

A striking finding in this experiment is the depleted
DA concentration in the fronto-parietal cortex of FiFx/
CB rats and, although less pronounced, of Raphe rats.
Unfortunately, with the exception of the study by
Murtha and Pappas [20], in all previous studies which
used injections of 5,7-DHT into the fimbria-fornix,
cingular bundle or raphe, the determination of markers
of cortical DAergic functions has not been performed
[3,27]. In the study by Murtha and Pappas [20], the
concentration of DA was not affected by the lesion in
the anterior cortex, but was reduced in the posterior
cortex. However, due to high variability in the control
rats, this reduction was not significant. It is also note-
worthy that intracerebroventricular injections of 5,7-
DHT produced a DA receptor subsensitivity in the
prefrontal cortex of rats [2].

Two non-exclusive possibilities might account for the
decrease of the dopaminergic marker in the fronto-pari-
etal cortex. In the absence of a DA re-uptake inhibitor
treatment (e.g. nomifensine), 5,7-DHT can damage do-
paminergic neurons. The present experiment did not
use such a protection. Thus, one plausible explanation
could be that 5,7-DHT has diffused to the fronto-pari-
etal cortex (in FiFx/CB rats) or to dopaminergic nuclei
within the mesencephalon such as A9, A10 (in raphe
rats), and has damaged dopaminergic neurons or fibers.
If so, the serotonergic markers should have been dam-
aged to an extent comparable to that of the dopaminer-
gic marker, or at least sufficient to induce a significant
depletion of 5-HT concentration in the fronto-parietal
cortex. This was the case in Raphe rats. However, in
FiFX/CB rats, there was an about 25% reduction of
5-HT and 5-HIAA concentrations in the fronto-parietal
cortex, and neither of these changes was significant. If
5,7-DHT had damaged dopaminergic neurons in the
mesencephalon of Raphe rats, a region providing the
cortex with dopaminergic afferents, a reduction of do-
paminergic markers should also be observed in struc-
tures such as the hippocampus, the striatum or the
entorhinal cortex which all are targets of mesencephalic
neurons [16]. Our neurochemical data show that this is
not the case. Therefore, it might be considered that the
reduced DA concentration observed in the fronto-pari-
etal cortex could be part of a physiological consequence
of the serotonergic hippocampal denervation. Although
the mechanism involved in such changes remains to be
elucidated, our results in FiFx/CB rats would be com-
patible with a serotonergic control of a hippocampal
influence on the dopaminergic tone in the fronto-pari-

Fig. 1. Locomotor activity shown as the average (+SEM) number of
cage crossings during the first (top), second (middle) and third
(bottom) hours after an injection of saline (1 ml/kg, i.p.) on days 3
(NaCl 1) and 5 (NaCl 2) of the experiment, or an injection of
amphetamine (1mg in 1 ml/kg, i.p.) on days 7 (Amphet 1) and 9
(Amphet 2) of the experiment (see methods). Statistical analysis: *
significantly different from NaCl 1 and NaCl 2, PB0.05, respec-
tively; c significantly different from Sham and Raphe within the
same drug session, PB0.05.
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etal cortex. This possibility does not contradict the
demonstration of hippocampo-cortical and subiculo-
cortical projections [1,6], but requires further studies.
There is also evidence that subicular 5-HT1B heterore-
ceptors mediate 5-HT interactions with the mesolimbic
dopaminergic system by a modulation of the gluta-
matergic hippocampo-accumbens pathways [6]. At the
level of the fronto-parietal cortex, such a mechanism
might involve a direct or indirect action on the do-
paminergic terminals, as dopaminergic neurons are, to
our knowledge, not found in the cortex. Concerning the
presynaptic control of the cortical dopaminergic tone,
most work has been carried out in prefrontal cortex
preparations. It is therefore difficult to further progress
on that question. In the prefrontal cortex, it is estab-
lished that the dopaminergic tone can be increased by a
direct presynaptic action of glutamate on AMPA recep-
tors [24], but decreased by an indirect action of gluta-
mate on NMDA [24] or AMPA/KA [9] receptors
presumably located on GABAergic interneurons.
Whether a similar mechanism is also possible in other
cortical structures and how it could be linked to the
serotonergic innervation of the hippocampus is a ques-
tion that remains open.

Non-selective lesions of the fimbria-fornix or the
hippocampus induce locomotor hyperactivity and po-
tentiate the locomotor response to amphetamine
[22,26]. In a recent experiment using rats with extensive
lesions of the septohippocampal pathways, in-
trahippocampal grafts rich in serotonergic neurons were
found to abolish the lesion-induced potentiation of the
locomotor response to amphetamine [4]. The conclu-
sion was that the serotonergic innervation of the
hippocampus could modulate the locomotor respon-
siveness to amphetamine. From these results, we ex-
pected that a 5,7-DHT-induced lesion of the
serotonergic innervation of the hippocampus would
enhance the locomotor response to amphetamine. Al-
though such an expectation is in line with the weak
effects of amphetamine reported by Asin and Fibiger
[3] in rats with 5,7-DHT injected into the median raphe,
it contradicts the study by Lipska et al. [17] who used
intracerebroventricular injections of 5,7-DHT, and our
present findings: rats given 5,7-DHT into the raphe
responded normally to amphetamine, whilst those with
5,7-DHT injected into the septohippocampal pathways
did not. To account for the discrepancy of the latter
observation with the proposal made by Balse et al. [4],
one may highlight a major difference in the type of
lesions used in the respective studies. In the Balse et al.
study, the septohippocampal pathways were aspirated,
whereby cholinergic, noradrenergic and serotonergic
hippocampal afferents were damaged [10], but also
cortical territories and hippocampal efferents. The lat-
ter include those which are supposed to exert an indi-
rect inhibitory control over the dopaminergic tone in

the nucleus accumbens [26,28]. In the present study,
only part of the serotonergic hippocampal afferents of
FiFx/CB rats were affected and cortical structures were
virtually intact.

The attenuated responsiveness to amphetamine
found in FiFx/CB rats cannot be ascribed without
further qualification to the reduced serotonergic inner-
vation of the hippocampus. Indeed, such a reduction
was also observed in Raphe rats. If one assumes that
the reduction of the cortical dopaminergic tone is not a
direct effect of 5,7-DHT and may account for the
abolished locomotor responsiveness to amphetamine, it
seems that there may be a threshold-level under which
the concentration of DA in the fronto-parietal cortex
must fall before the locomotor response towards am-
phetamine begins to be attenuated. This account would
be in line with the observation that the DA concentra-
tion was reduced by only 27% in the Raphe rats against
65% in the FiFx/CB rats. We are not aware about
studies which, investigated the effects of DA depletion
in the fronto-parietal cortex on locomotor reactivity to
amphetamine injections. When DA is depleted in the
prefrontal cortex with local injections of 6-hydroxydo-
pamine, there is no change in spontaneous activity and
amphetamine-induced hyperactivity is increased [23] or
unchanged [14]. Conversely, when DA is depleted in the
nucleus accumbens, the response to amphetamine is
attenuated [7,14]. Interestingly, in rats given 6-hydroxy-
dopamine in the nucleus accumbens, there is also evi-
dence for reduced dopaminergic activity in the medial
prefrontal cortex [7]. Unfortunately, our dissection of
the striatal region did not distinguish the caudate/puta-
men region from the nucleus accumbens, and thus did
not allow to check for possible changes in the nucleus
accumbens.

In conclusion, we have shown that a serotonergic
denervation of the hippocampus by injections of 5,7-
DHT into the fimbria-fornix/cingular bundle abolishes
or attenuates the stimulating effects of amphetamine on
locomotor activity. Such an effect, which might be
related to the reduced dopaminergic tone in the fronto-
parietal cortex by a mechanism that remains to be
elucidated, does not appear after injections of 5,7-DHT
into the mesencephalic raphe.
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