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Abstract—Automated image analysis of multiplexed brightfield
immunohistochemistry assays is a challenging objective. One
central task of the analysis is the robust identification of the dif-
ferent stains in the image, called stain unmixing. Stain unmixing
strongly depends on the method of image acquisition. Currently
available multispectral cameras enable color unmixing of single
fields of view (FoV), selected by matter experts (e.g. pathologists).
Beyond the individual FoV approach, there is an increasing
need to process larger regions or whole histopathological sections
(whole slide imaging; WSI). Rapid color deconvolution in WSI
is a challenge that is only partially solved. We propose a method
based on a multilayer perceptron to compute dye-specific stain
layers for chromogenic red and brown labeling in WSI.

Index Terms—biomedical imaging, immunohistochemistry,
color deconvolution, multilayer perceptron
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I. INTRODUCTION

Immunohistochemisty (IHC) is a widely used diagnostic
tool to detect proteins in tissue sections by the use of specific
antibodies. The proteins are visualized using a reporter enzyme
that binds to the antibody and a chromogenic, fluorogenic
or chemiluminescent substrate which can be visualized. In
comparison to other techniques that detect proteins in tissue
homogenates (e.g. Western blot, Elisa) and hence lose the
spatial dimension, IHC retains the tissue architecture and
can be used to determine the distribution and localization of
proteins.

Multiplexed immunohistochemistry refers to the detection
of several proteins in a single tissue section. Analyzing several
proteins at once is for instance required for the simultaneous
assessment of several hallmarks of cancer, for the detection
of subpopulations of immune cells, subcategorizing vessels,
or analyzing multiple pathways at once [1], [2], [3], [4],
[5]. In case of chromogenic detection of the proteins, a
variety of substrates is available generating different colors
for each protein. In Figure 1, the color properties of two
commonly used chromogenic substrates, 3,3-diaminobenzidine
tetrahydrochloride (DAB) and Permanent Red (PRD), and the
nuclear counterstain hematoxylin (HLN) are illustrated. In
addition, the co-occurence of PRD and DAB is demonstrated
using an artificial double staining to detect a single antigen
with two substrates.

Routinely, the stained glass slides are read by a pathologist.
In addition, digital pathology has gained increased importance
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Fig. 1. Illustration of two chromogenic substrates DAB (brown) and PRD
(pink), the counterstaining HLN (blue) and the co-localization of DAB and
PRD (brown-red).

in recent years [6], [7]. Digital pathology refers to the auto-
mated or semi-automated image analysis of digitalized glass
slides or FoVs of glass slides. The automated image analy-
sis is especially important for supplying image data that is
difficult to capture by the pathologist. Analyzing multiplexed
immunohistochemistry slides requires the differentiation of the
used stains, called stain unmixing.

The stain unmixing process differs whether the image acqui-
sition is performed using: (I) a CCD color camera mounted on
a microscope or a scanner and allowing the acquisition of an
RGB image of selected FoVs or the whole slide, respectively;
or (II) a multispectral imaging (MSI) system providing a wide
spectral range for each pixel1 for selected FoVs of the slide.

MSI provides richer information than RGB acquisition, and
the software allows an automated unmixing of the stains.
However, MSI is time consuming and limited to single FoVs,
introducing a bias by the observer who selects representa-
tive fields of interest [8]. Being able to unmix the different
stainings robustly from an RGB scan would circumvent this
problem and allow the analysis in WSI.

In this paper, we propose a method which estimates the
contribution of the different dyes for each pixel of an RGB
image, thereby enabling the analysis of an entire slide. The
challenge is to find a way to determine the function needed to
compute the staining contribution of the pixels from the RGB
image.

II. RELATED WORK

The colorimetric 3D RGB space of the pixels from the
single- and double-stained images of Figure 1 is presented in

1from 420-720nm in 10 or 20nm steps for the PerkinElmer Nuance
FX™ for example
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Figure 2. Whereas the single-stained pixels (HLN, PRD and
DAB) seem to be separable in this space, the double-stained
pixels (DAB+PRD in our example) that are located between
the two clusters of single-stained pixels are difficult to identify.
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Fig. 2. Projection of the different stains shown in Figure 1 plotted in RGB
space.

Different work has been done to provide efficient classifi-
cation methods of the stains in the RGB color space. These
methods are mainly based on linear or planar projection to sep-
arate the individual stains [9], [10]. Unfortunately, classifying
each pixel according to the 3D domains of the different stains
is time-consuming and complex because it requires the manual
sampling of pure single-stained and double-stained pixels.

Another approach to enhance the separability of the dif-
ferent stainings consists of making a colorspace conversion
or transformation. For example, Laak et al. [11] proposed
a new model derived from the traditional Hue-Saturation-
Intensity (HSI). The idea is to apply the RGB to HSI transform
to optical densities (OD) for the individual RGB channels
instead of intensities. As the chromatic component of the HSD
model is independent of the amount of stain, the obtained
colorimetric space better discriminates between the absorption
characteristics of the different stains.

Ruifrok et al. [12] developed a color deconvolution method
for up to three stains that works in the OD converted RGB
colorspace. The user has to determine the OD values of the
pure stains. The assumption is that each pixel in the image
can be represented by a linear combination of the different
stains. Hence, solving a system of linear equations computes
the amount of each stain present in each pixel.

More recently, Rabinovitch et al. [13] proposed a fully au-
tomated color decomposition process to determine the amount
of each dye in the sample. Unfortunately, this method can
only be applied on a multispectral stack of images, and not
on traditional brightfield RGB images.

The approach presented in this paper differs from the
ones described above. We propose to build a transformation
function that directly projects the pixels from the RGB into
the desired 3D space composed of the different stains here:

HLN, DAB and PRD. As this transformation function is
nonlinear, we decided to use a multilayer perceptron to learn
and represent this transformation. The unmixed staining layers
generated by the multispectral acquisition and analysis system
is taken as a ground truth to learn the transformation.

III. DECONVOLUTION METHOD

Our approach is based on three steps: (I) Colorimetric ho-
mogenization of the pseudo-RGB image generated with MSI
and the RGB image acquired with a CCD camera (scanner or
microscope); (II) Training of the multilayer perceptron; (III)
Application of the learned transformation on all RGB images.

After these steps, segmentation algorithms can be used to
detect objects (e.g. cells, subcellular compartments) in the
image.

A. Colorimetric homogeneization

Due to the differences in hardware (MSI with liquid tunable
filters to sample at wavelengths in the visible range versus
a three filter RGB CCD chip in case of a microscope or
scanner), the RGB images of the two acquisition methods
differ significantly (see leftmost column of Figure 4). A
histogram specification algorithm is applied in order to make
these RGB images comparable.

Histogram specification, or histogram matching, is a basic
histogram modeling technique that transforms one histogram
into another by remapping the pixel values to control the rela-
tive frequency of their occurrence. It uses a simple monotonic,
nonlinear mapping to re-assign the intensity values of pixels
in the input image such that the target and output image
histograms look alike [14]. The histogram specification is
applied in both colorimetric spaces RGB and Hue-Saturation-
Value (HSV).

B. Multi-layer perceptron training

The main challenge poses the definition of a direct trans-
formation function (Eq. (1)) from the RGB space to another
3D space, based on the stains of the image.{

t : R3 → R3

t(r, g, b) = (h, d, p) (1)

As this function is nonlinear, we decided to use a multilayer
perceptron to approximate it.

A perceptron or an artificial neuron, as introduced by Mc-
Culloch and Pitts [15], is the mathematical model of a neuronal
cell and the basic building block of an artificial neural network.
The perceptron architecture consists of a set of n inputs (xi),
each one associated to a weight (wi) and an activation function
( fi). Perceptrons can be organized to form a layer in which
all perceptrons are linked to the same inputs but have distinct
outputs. This kind of network is called a perceptron network.
It is well-known that perceptron networks perform well if the
pattern to be recognized is linearly separable; however, they
should not be used to solve complex classification problems
involving non-linearly separable patterns. In case of non-
linearly separable patterns, a multilayer perceptron network
(MLP) can be used instead [16].



An MLP consists of multiple layers of artificial neurons
(an input layer, one or more intermediate or hidden layers,
and an output layer) in a directed graph, with each layer
fully connected to the next one. Since this artificial neuronal
network topology can solve classification problems involving
non-linearly separable patterns, it can be used as a universal
function generator. MLPs have two distinct phases: training
and execution. For the training, the most widely used algorithm
is the backpropagation [17].

In our case, the structure of the MLP is composed of (as
shown on Figure 3): one input layer of three input neurons
(one for each color red, green and blue); two hidden layers
of six neurons each; one output layer of three output neurons
(one for each calculated channel: HLN, DAB and PRD).
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Fig. 3. Structure of the MLP used to learn the colorimetric space-
transformation.

The activation function used for each neuron is a standard
sigmoid function, expressed in equation (2), with λ = 2.

fi(x) =
1

1 + e−λx
(2)

The samples to train the MLP were chosen in the multispec-
tral image to represent areas with single- and double-stained
pixels.

IV. EXPERIMENTS AND RESULTS

A. Dataset presentation

To validate our approach, we used 33 formalin-fixed
paraffin-embedded breast cancer samples obtained from In-
divumed®, Hamburg, Germany. Manual immunohistochem-
istry staining was performed for CD8 (Figure 1, Ventana)
or CD3/Perforin (Figure 4, see [3]) and antibody binding
was visualized using 3,3-diaminobenzidine tetrahydrochloride
(DAB, Dako, Hamburg, Germany) and Permanent Red (PRD,
Zytomed, Berlin, Germany). Cell nuclei were counterstained
with hematoxylin before mounting. Single staining without
hematoxylin counterstain was performed for selected cases to
generate pure DAB and PRD spectra for multispectral analysis.

Image acquisition - Conventional brightfield images of
duplex IHC staining were taken using a Leica DM6000B
equipped with a Leica DFC480 digital camera, using the
LASv3.7 software. Whole slide scans were acquired using
the Aperio ScanScope XT. Multispectral imaging of selected
cases (ground truth) was performed with the Nuance FX

MLP Ruifrok Laak
HLN 0.098 ± 0.065 0.219 ± 0.099 0.315 ± 0.235
DAB 0.060 ± 0.064 0.171 ± 0.105 0.048 ± 0.289
PRD 0.013 ± 0.087 0.013 ± 0.206 0.019 ± 0.304
Σ 0.171 0.403 0.381

TABLE I
MEANS AND STANDARD DEVIATIONS OF THE DIFFERENCE BETWEEN

EACH CHANNEL (HLN, DAB, PRD) AND THE CORRESPONDING CHANNEL
ACQUIRED WITH THE NUANCE CAMERA.

system (CRi/Caliper, Hopkinton, MA, USA) following the
manufacturers instructions.

B. Comparison with existing methods

To evaluate the performance of our method, we present in
Figure 4 a visual comparison of the three channels calculated
by the deconvolution methods presented by van der Laak [11]
(custom implementation in Matlab), Ruifrok [12] (Cellprofiler
implementation [18]) and our MLP method.

The first line corresponds to the MSI unmixing results,
considered here as the ground truth. Obviously, the approach
of van der Laak [11] is least suited to the specific problem of
color deconvolution addressed in our work. Specifically, the
signal provided in the HLN channel is too strong and largely
unspecific. Thus, it cannot be used to extract cell nuclei. In
addition, the PRD channel is weak and some pixels are missed.
The deconvolution method of Ruifrok [12] provides very good
results for both the HLN and PRD channel. Unfortunately,
problems appear in the DAB channel, that not only shows
DAB-positive but also PRD-positive pixels (marked by the
yellow arrows in Fig. 4).

Visually, the results provided by the MLP learning method
resulted in the best match with our ground truth of MSI. Of
note, the HLN channel shows weaker signals, but this did not
impact the overall performance of the algorithm with regard to
the downstream image processing for our specific biological
question.

These observations are reinforced by values obtained by
calculating the difference between each generated channel and
our ground truth (see Table I).

V. CONCLUSION

In this paper, we presented an improved way to au-
tomatically deconvolve the RGB image of a IHC stained
histopathological slide into different dye absorption channels.
The method is based on the training of an MLP that learns the
transformation function from samples selected in a multispec-
tral ground truth image. As the training is done once for a set
of similar images, and only on a few samples, the method can
easily be applied to WSI.
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