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ABSTRACT  
Cities all around the world are in constant evolution due to 

numerous factors, such as fast urbanization and new ways of 

communication and transportation. Since understanding the 

composition of cities is the key to intelligent urbanization, there is a 

growing need to develop urban computing and analysis tools to 

guide the orderly development of cities, as well as to enhance their 

smooth and beneficiary evolution. This paper presents a spatial 

clustering approach to discover interesting regions and regions 

which serve different functions in cities. Spatial clustering groups 

the objects in a spatial dataset and identifies contiguous regions in 

the space of the spatial attributes. We formally define the task of 

finding uniform regions in spatial data as a maximization problem 

of a plug-in measure of uniformity and introduce a prototype-based 

clustering algorithm named CLEVER to find such regions. 

Moreover, polygon models which capture the scope of a spatial 

cluster and histogram-style distribution signatures are used to 

annotate the content of a spatial cluster in the proposed 

methodology; they play a key role in summarizing the composition 

of a spatial dataset. Furthermore, algorithms for identifying 

popular distribution signatures and approaches for identifying 

regions which express a particular distribution signature will be 

presented. The proposed methodology is demonstrated and 

evaluated in a challenging real-world case study centering on 

analyzing the composition of the city of Strasbourg in France.  

Categories and Subject Descriptors 
H.2.8 [Database Management]: data mining, spatial databases 

and GIS 

General Terms  
Algorithm, Design, Experimentation, Performance 

Keywords  
Urban computing, spatial data mining, spatial clustering, finding 

uniform regions in spatial datasets, algorithms to discover the 

spatial structure of a city, region discovery 

1. INTRODUCTION  
Urbanization is the physical growth of urban areas as a result of 

global change where increasing proportion of the total population 

becomes concentrated in towns. The United Nations reported that 

since 2008 more than half of the world's population is living in 

urban areas [20]. There is a growing need to develop urban 

computing and analysis tools to guide the orderly development of 

cities. Recently, data describing cities is widely available, offering 

a great opportunity to develop urban computing techniques for 

urban planners to make smarter decisions because they can 

provide deep insights into city development dynamics. Moreover, 

it offers an opportunity to improve people’s knowledge about the 

impacts from urbanization on the territory. 

The step of urbanization leads to different functional regions in a 

city, called urban patches throughout the remainder of this paper, 

such as residential areas, business districts, industrial and 

recreational areas. Different types of urban patches support 

different needs of people’s lives and “serve as a valuable 

organization technique for framing detailed knowledge of a 

metropolitan area” [18]. 

Improvement in scanning devices, gps, and image processing 

leads to an abundance of geo-referenced data. For example, 

tracking devices are now available to capture movement of human 

and animals in form of trajectories [19]. Furthermore, more and 

more Point of Interest (POI) databases are created which annotate 

spatial objects with categories, e.g. buildings are identified as 

restaurants, and systems, such as Google Earth, already fully 

support the visualization of POI objects on maps. As more and 

more data become available for a spatial area, it is desirable to 

identify different functions and roles which different parts of this 

spatial area play; in particular, it is desirable to identify 

homogeneous regions in spatial data and to describe their 

characteristics, creating high-level summaries for spatial datasets 

which are valuable for planners, scientists, and policy makers. For 

example, ecologists might be interested in partitioning a wetland 

area into uniform regions based on what animals and plants 

occupy this area and on other environmental characteristics [15]. 

Similarly, city planners might be interested in identifying uniform 

regions of a city with respect to the functions they serve for the 

people who live in or visit this part of a city [18].  

More specifically in this work, we are interested in developing 

spatial clustering frameworks which are capable of creating 

summaries for an area of interest by identifying the spatial 

structure in spatial data and capturing its spatial heterogeneity. It 

should be stressed that traditional clustering algorithms are not 

suitable for this task—as they minimize distance-based objective 

functions or employ distance-based density estimation 
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Figure 1: Example of a Spatial Clustering of Buildings Belonging to Different Building Types. 

techniques—whereas assessing uniformity relies on non-distance 

based uniformity measures which operate on non-spatial 

attributes, such as purity, entropy or variance with respect to 

continuous non-spatial attributes. The focus of this paper is the 

introduction of a methodology which identifies uniform regions in 

spatial data and provides analysis functions to create summaries 

for the identified uniform regions. Its main technical contributions 

include:  

1. It formally defines the problem of finding uniform regions in 

spatial data as a maximization problem.  

2. A novel spatial clustering approach is proposed for 

identifying regions based on uniformity measures, which 

have to be expressed as reward-based fitness functions which 

are then maximized by the spatial clustering algorithm. The 

approach models the scope of spatial clusters as polygons 

and describes their characteristics using histogram-style 

distribution signature. Moreover, two novel interestingness 

measures which capture different notions of uniformity are 

introduced. 

3. Popular signatures are proposed which are frequently 

occurring distribution signatures in the subspaces of a spatial 

area of interest. A novel approach which summarizes the 

composition of a spatial dataset by annotating regions with 

popular signatures is presented and algorithms to identify 

regions which match particular signatures are introduced. 

4. The proposed framework is evaluated in a case study 

involving the building structure of the city of Strasbourg, 

France; in particular, the city is partitioned into uniform 

regions which are annotated with signatures and the benefit 

for domain experts of having such summaries is discussed. 

Section 2 formally defines the problem of finding uniform regions 

in spatial dataset and introduces the spatial clustering approach for 

this task. Section 3 gives an experimental evaluation of the 

methodology. Section 4 discusses related work and Section 5 

concludes the paper. 

2. USING SPATIAL CLUSTERING TO 

DISCOVER UNIFORM REGIONS  

2.1 Finding Uniform Regions in Spatial Data 
Figure 1 gives an example spatial clustering result in which 

buildings of different types (e.g., schools and industrial buildings) 

of a city are clustered. The proposed methodology characterizes 

spatial clusters using their scope and signature.  

The scope of a spatial cluster captures the model of a cluster. In 

our approach, we use concave polygons as models for spatial 

clusters as depicted in Figure 1; that is, if a spatial object is inside 

the polygon which describes the scope of a spatial cluster, it 

belongs to that spatial cluster. Secondly, the proposed 

methodology uses signatures to annotate spatial clusters. 

Signatures summarize the distribution of the objects that belong to 

a cluster. As the clusters in the example contain buildings 

belonging to different types, building type histograms are used as 

signatures to annotate spatial clusters. In our case study, there are 

six building types: single house, garages, industrial buildings, 

light buildings, collective buildings and schools. In this case, the 

signature of a cluster c is a vector s(c)=(s1,...,sp) with s1+...+sp = 1 

giving the proportions of categories of objects belonging cluster c. 

For example, the leftmost cluster is identified as cluster 0 and 

contains 71 buildings, and its building type signature is (3%, 1%, 

92%, 1%, 3%, 0%), indicating that 3% of the buildings in cluster 

0 are single houses, 1% are garages, 92% are industrial buildings, 

1% are light buildings, 3% are collective houses and there are no 

schools in this spatial cluster.  

So far we did not clearly discuss what distinguishes a uniform 

region from a non-uniform region in a spatial dataset. More 

formally, we are interested in obtaining spatial clusters which are 

uniform with respect to their signatures, using the following 

maximization procedure:  

Input: a dataset O containing spatial objects belonging to p 

classes 

Task: Find a spatial1 clustering X = {c1,...,ck} of O such that  

(1) ci ⊆ O  for i =1, ..., k  

(2) cp  cq=  for pq 

which maximizes the following objective function ϕ(X) 

      
             

 
        

                         

where b is the number of pairs of neighboring clusters in X, s(c) 

denotes the signature of cluster c and d is a distance function 

which assesses the similarity of two signatures. 

                                                           
1
 A spatial Cluster is assumed to be contiguous in the space of the 

spatial attributes. 



 

In summary, we are interested in obtaining a spatial clustering in 

which the average Euclidian distance between the signatures of 

neighboring clusters is as large as possible. It should be 

emphasized that only distances between neighboring clusters are 

considered in the definition of ϕ. In order to find uniform 

partitions, we can devise a search procedure which maximizes the 

disagreement of neighboring clusters with respect to their 

signatures.  

However, developing a spatial clustering algorithm which directly 

maximizes ϕ(X) is quite challenging, as this would require to 

identify and to keep track of which spatial clusters are 

neighboring in order to compute ϕ(X), which leads to quite 

significant clustering overhead, and to theoretical problems 2 . 

Consequently, we are using different heuristics to find uniform 

spatial clusters without having to deal with the question which 

clusters are neighboring, and rely on approaches which use 

simplified versions of ϕ(X) instead; in particular:  

1. We use prototype-based spatial clustering algorithms that are 

guaranteed to obtain contiguous spatial clusters without the 

necessity of knowing which clusters are neighboring. These 

algorithms maximize reward functions which encourage the 

merging of similar neighboring clusters and the splitting of 

non-homogeneous clusters if it leads to a significant increase 

in the total reward.  

2. We reformulate the above optimization task in two ways: 

i. We make the problem supervised, by using interestingness 

functions which assess the quality of spatial clusters based 

on uniformity measures which capture a domain expert’s 

notion of uniformity. Moreover, as we will see later, those 

uniformity measures assume that certain signatures are 

more desirable than other signatures. One such 

interestingness function is introduced in Section 3.1.  

ii. Instead of comparing the signatures of all neighboring 

clusters—as ϕ does—we employ an approach which 

identifies a set of popular3
 

signatures and then uses those 

signatures to annotate clusters. In particular, this approach 

seeks for a spatial clustering which maximizes the match of 

a cluster’s signature with the closest signature in the 

popular signature set, as will be explained in Section 3.2.  

2.2 CLEVER—a Spatial Clustering Algorithm 

Supporting Plug-in Interestingness Measures  
In order to employ these two approaches outlined in section 2.1, 

we need a spatial clustering algorithm capable of finding 

contiguous spatial clusters by maximizing a plug-in reward 

function which captures a particular notion of uniformity. A 

spatial clustering algorithm named CLEVER [3, 8] will be 

                                                           
2
 If prototype-based clustering algorithms, such as K-medoids or 

K-means are used, a Voronoi tessellation can be used to derive 

cluster models from the set of cluster prototype which are convex 

polygons; unfortunately, it is not computationally feasible to 

compute Voronoi cells in higher dimensional spaces, as the 

complexity of the algorithm is exponential with respect to the 

dimensionality of the dataset. Consequently, it is only feasible to 

compute the Voronoi tessellation in 1D, 2D, and for small 

datasets in 3D. For density-based clustering algorithm the 

situation is even worse; for example, we are not aware of any 

methods which are capable of producing cluster models from a 

DBSCAN clustering. 
3 Popular signatures are distribution characteristics which occur 

frequently in contiguous subspaces of a spatial dataset. 

adapted for this task. In general, CLEVER is a prototype-based, 

k-medoid-style [10] spatial clustering algorithm which employs 

randomized hill climbing to maximize a plug-in reward function. 

Reward functions are assumed to have the following form when 

assessing the quality of a clustering X = {c1,...,ck}:  

                         

      

                     

where |c| denotes the number of objects in a cluster c, i(c) is an 

interestingness function which assesses how interesting the 

cluster c is, and β ≥ 1 is a parameter which determines how much 

reward is put on cluster size; β indirectly controls the numbers of 

clusters in X. As cluster size is rewarded using a non-linear 

function, usually fewer clusters are obtained when larger values 

for β are used. Moreover, the rewarding scheme encourages the 

merging of neighboring clusters with the same or similar 

signatures. The reward function assesses the quality of a 

clustering as the sum of the rewards of the individual clusters; 

two such interestingness functions will be introduced in Section 3. 

The pseudo-code of CLEVER is given in Algorithm 1. 

Algorithm 1: CLEVER.  

Input: Dataset O, distance-function d or distance matrix M, k’, 

i(c), β, sampling rate p  

Output: Clustering X, quality q(X), rewards for clusters in X  

1: Randomly create a set of k’ representatives  

2: Sample p solutions in the neighborhood of the current 

representative set  

3: If the best solution of the p solutions improves the clustering 

quality of the current solution; its representative set becomes the 

current set of representatives and search continues with Step 2; 
otherwise, terminate returning the current clustering.  

CLEVER maintains a current set of representatives which are 

objects in the dataset and forms clusters by assigning the 

remaining objects to the closest representative in the 

representative set. It samples p representative sets in the 

neighborhood of the current representative set by adding, deleting, 

and replacing representatives. This process continues as long as a 

better clustering with respect to q(X) is found. The algorithm 

begins its search from a randomly created set of k’ 

representatives, where k’ is an input parameter of the algorithm.  

To give an example, let us assume we cluster a dataset O= 

{o1,...,o200} with k’ set to 3; in this case, the algorithm starts with a 

random representative set, let us say {o3,o9,o88}, and forms clusters 

by assigning the remaining 197 objects to the closest 

representative which takes O(k (n − k)) where n is the number of 

objects in the dataset and k is current number of representatives. 

Next, the algorithm samples p new clusterings in the 

neighborhood of the current solution by inserting, deleting or 

replacing representatives; for example, assuming p is 3, the 

algorithm might create clusterings for the representative sets 

{o3,o9,o88,o92},{o3,o88}, and {o3,o17,o88} all of which have been 

obtained by a single insertion/deletion/replacement applied to the 

current representative set {o3,o9,o88}. Next, the algorithm computes 

q(X) for these three clusterings, and if the best of the three 

clusterings improves the clustering quality, its representative set 

becomes the new current solution; otherwise, the algorithm 

terminates. In general, assuming that CLEVER runs for t 

iterations its complexity is of the order of O(tpkn) with t and k 

usually being much smaller than n.  



 

2.3 Spatial Homogeneity Between Neighboring 

Clusters and Within Clusters  
In Section 2.1, we stated that ideally signatures of two 

neighboring clusters should be significantly different from each 

other. In order to discuss this issue further, let us assume we have 

two neighboring clusters c1 and c2 containing a1 and a2 objects, 

respectively, which have exactly the same signature s, whose 

interestingness is i(s). As we explained earlier, our reward 

framework employs a parameter β>1 that puts a reward on cluster 

size. We claim that in the discussed scenario our reward structure 

assigns a higher reward to a clustering which merges clusters c1 

and c2 into a single cluster c as this clustering receives a higher 

reward, because of the following:  

            
          

 
   

 
                   

For example, if we have two neighboring clusters with purity 90% 

that are dominated by instances belonging to the same class, 

merging the two clusters leads to better clustering with respect to 

q(X), introduced earlier. Moreover, merging clusters frequently 

leads to a drop in interestingness/purity in the merged cluster; 

however, if the cluster size reward measured by (clustersize)
 

makes up for this loss of interestingness with respect to the cluster 

signature s(c) the two clusters should still be merged. Therefore, 

the distribution of the objects belonging to a spatial cluster should 

be spatially homogeneous with respect to their associated 

signature.  

2.4 Determining the Scope of a Spatial Cluster  
In general, determining the scope of a spatial cluster is a 

challenging task. The goal is to create a spatial representation of a 

set of spatial objects in order to easily visualize it on the plane. 

One of easiest approaches is to compute the convex hull of the 

spatial objects in the cluster. However, the obtained convex hull 

polygon is usually not very tight and frequently enclosing empty 

spaces. This is especially the case when the spatial objects are 

spread and exhibit a low spatial density. Alpha shapes [7] and the 

concave hull [11] algorithm generalize the convex hull algorithm, 

allowing for the generation of much tighter polygons which might 

contain holes. In our proposed methodology, we use the PostGIS 

Concave Hull algorithm [21] for computing the scope of spatial 

clusters; we believe this approach is more effective than the 

convex hull algorithm, as it wraps a much tighter line around a set 

of spatial objects, resulting in less overlap with respect to the 

scope of neighboring clusters and less empty spaces in clusters, as 

as can be seen in Figure 1. 

3. IDENTIFYING UNIFORM REGIONS IN 

A CITY  
Since understanding the evolution of cities is the key to intelligent 

urbanization, there is a growing need to develop urban planning 

and analysis tools to guide the orderly development of cities, as 

well as to enhance their smooth and beneficiary evolution. 

However, it is a big challenge for urban planners to come up with 

methodologies to analyze how cities are changing. Partitioning a 

city into uniform regions facilitates this task, as change can be 

analyzed based on higher level of granularity instead on the raw 

data. In this section, we present a set of experiments which use the 

methodology, which was introduced in Section 2, to extract urban 

patches from a building dataset. In this context, metrics for 

evaluating the homogeneity of a group of buildings are very 

important as they impact how a city is partitioned into urban 

patches characterized by signatures. In particular, two such 

metrics, one based on purity and one based on popular signatures 

will be introduced in this section.  In particular, we report the 

results of a series of experiments in which the CLEVER spatial 

clustering algorithm is used in conjunction with those two 

uniformity metrics to obtain interesting, uniform regions for the 

city of Strasbourg, France. As part of the GeOpenSim project, a 

temporal topographic database of the city of Strasbourg has been 

acquired [12]. As buildings are represented as polygons, we use 

Hausdorff distance [5] to compute the distance between buildings 

in the experiments.  

3.1 Building Type Purity Experiments  
This section introduces a purity interestingness function which 

measures uniformity by the degree of dominance of instances 

belonging to a single category and discusses spatial clustering 

results obtained with this interestingness function.   

The purity interestingness function is used for analyzing 

interestingness with respect to a categorical non-spatial attribute. 

Purity interestingness iPUR(c) of a cluster c is computed using the 

following formula: 

Let                      

          
    0               

                     
                                      

where cl(O) is the set of classes in the dataset O and pt is a 

function that computes the proportions of the objects of class t 

belonging cluster c; η> 0 is the scaling factor and th > 0 is the 

threshold. For example, assuming that th = 0.4, η = 1, and 

s(c)=(0.6, 0, 0, 0, 0.4, 0) indicating that 60% of the objects belong 

to the first category, and 40% of the objects belong to the fourth 

category, we obtain: iPUR(c) = 0.6 − 0.4 = 0.2 for cluster c. In 

general when using the purity interestingness function, we are 

interested in obtaining clusters which are dominated by instances 

of a single category.  

There are six different building types in the dataset: single house, 

garage, commercial building, light building, collective house, and 

school. In year 2008 78% of the buildings are single houses; 

commercial buildings take 7%; collective houses take 8%; 4% of 

the buildings are garages and 3% of the buildings are light 

buildings; finally, 1% of the buildings are schools. Building type 

signatures describe the characteristics of each urban patch which 

can help domain experts to better understand the composition of a 

city. 

Figure 1 visualizes and lists the building type signatures of 12 

clusters for the year 2008; they were generated by CLEVER using 

the purity interestingness function with th = 0.5, η = 2 and β =1.2. 

Cluster 0 contains 92% commercial buildings; therefore, cluster 0 

is labeled as a business urban patch. Cluster 10 is a residential 

area because 97% of the buildings in cluster 10 are single houses. 

There are 76% of collective houses in cluster 5, which indicates a 

living area with a lot of apartment complexes. Both garages and 

schools have very small percentage in the whole dataset, but 

garages and schools are more frequent in the collective housing 

areas in clusters 4 and 5, but surprisingly are not present in cluster 

2. Figure 1 verifies that our approach is able to identify 

contiguous urban patches dominated by buildings of a single type.  

3.2 Using Popular Signatures to Find Uniform 

Regions in a City 
Many uniform regions are characterized by particular proportions 

of class densities without having a dominating class; for example, 

collective houses usually have a lot of garages next to them. This 

is the motivation for the following alternative approach which 



 

seeks to find popular signatures which occur frequently in 

contiguous subspaces of the area of interest and then uses these 

signatures to annotate urban patches, as depicted in Figure 2.  

Figure 2: Example of a Spatial Clustering of Buildings 

Annotated by Popular Signatures. 

As we can see in Figure 2, the popular signature S4 is used to 

annotate regions in the northwest and southwest corner of the 

display. The challenge of generating such maps is that if we 

annotate a region by a popular signature, this makes only sense if 

the region’s signature is close to the popular signature associated 

with it. To accomplish that, we need a spatial clustering algorithm 

to partition the spatial dataset into regions whose signatures are a 

good match with respect to a given set of popular signatures.  

In the remainder of this section we will propose a framework for 

annotating regions with matching popular signatures. It first 

collects signatures using a sampling approach; second, it identifies 

a set of popular signatures from the collected signatures using a 

clustering approach; third, it uses a spatial clustering algorithm to 

identify regions with a good match with the set of popular 

signatures. As step 1 and 2 are kind of straightforward, we will 

not discuss those further. 

As far as the third step is concerned, we run CLEVER using the 

following popular signature interestingness function iPOP (c): 

Let cld = d(s(c), closest(s(c),P)) 

          
                        

                  
                                        

where s(c) is the signature of cluster c, closest(s,P) computes the 

closest signature in P to s, d denotes Euclidian distance, D is a 

match threshold, and η is a form parameter having value in (0, ∞). 

In summary, the interestingness iPOP (c) of a cluster c is inversely 

proportional to the Euclidean distance of the cluster signature s(c) 

to the closest popular signature in P. The interestingness function 

iPOP(c) uses a match threshold D that serves the following 

purpose: if the distance of cluster c’s signature and the closest 

popular signature is above D, we say c’s signature does not match 

any signature in P, and c will not receive any reward and we will 

not annotate c with any signature. 

Popular building type signatures describe compositions of urban 

patches which frequently occur in different parts of a city. To 

obtain a set of popular signatures, we first randomly created 1000 

small spatial clusters and extracted their building type signature. 

Next, we apply a distance-based outlier detection technique to 

remove 10% of the building type signatures as 

outliers—signatures were sorted by their 3-nearest neighbor 

distance to the other signatures in the set. Signatures with the 

largest 3-nearest neighbor distance were removed from the 

signature set. Next, we clustered the remaining signature set using 

K-means with different k values ranging between 6 and 10 several 

times, and identified the clustering with the lowest squared 

average distance of the objects in the dataset to the cluster 

centroid they belong to. Finally, we extracted the centroids from 

the best clustering as popular signatures. Table 1 lists nine popular 

building type signatures that were obtained as the result of this 

process.  

Table 1: Popular Building Type Signatures in 2008 

Table 2 summarizes a popular signature clustering result which 

was created using CLEVER and the popular signature 

interestingness function with parameters k'= 20, β =1.005, D =0.1 

and θ =2. We use 0.1 as the threshold for the Euclidian distance of 

the cluster signature to its closest popular signature to indicate a 

good match. 14 out of the 16 urban patches have good matches 

with their popular signatures. Cluster 3 is quite unusual as it is 

dominated by light buildings and is not close to any popular 

signature in Table 1 at all, which is indicated by its very high 

Euclidian distance of 0.49 to its closest popular signature. 

Our approach uses a spatial clustering algorithm—and not 

predetermined regions as suggested by [17, 18]—to identify the 

scope of a popular signature. We claim that the urban patches 

identified by our approach, exhibit a much better match with the 

popular signature set. 

3.3 Querying a Spatial Dataset with Signatures 
Although the presented popular signature mining algorithm has 

been originally developed to determine the scope of a set of 

popular signatures, it can be used in conjunction with any 

signature set P. This enables us to use the same algorithm for 

querying spatial datasets for the presence of particular “query 

signatures”. For example, in the experiment summarized in Table 

2, we came across cluster 3, which was dominated by light 

buildings and it might be interesting to see if its signature 

Q1=(29%,2%,9%,45%,15%,0%) occurs in other areas of the city; 

along the same line we might want to see, if there are regions with 

a high density of schools in a residential area captured by 

signature Q2=(70%,0%,0%,0%,0%,30%). Finally, we like to see 

if the popular signature Q3=(2%, 6%, 0%, 0%, 92%, 0%) (named 

S3 in Table 1) occurs anywhere in the dataset, as it did not match 

any cluster signature.  

Figure 3 and Table 3 gives the result of running CLEVER with 

the popular signature interestingness function for signature set P 

= {Q1, Q2, Q3} with parameters D = 0.1, η = 3, and β = 1.2. The 

spatial clusters in Figure 3 are annotated with corresponding 

signature if the distance of the cluster signature to its closest query 

signature in P is 0.1 or less. Table 3 lists the signatures for three 

clusters that are close to query signatures as well as the closest 

query signature and the distance to the closest query signature. 

Signature 

ID 

Single 

House 
Garage 

Commercial 

Building 

Light 

Building 

Collective 

House 
School 

S1  77% 3% 2% 2% 17% 0% 

S2  87% 4% 1% 3% 4% 1% 

S3  2% 6% 0% 0% 92% 0% 

S4  99% 0% 0% 0% 0% 0% 

S5  48% 1% 46% 3% 2% 0% 

S6  4% 0% 96% 0% 0% 0% 

S7  37% 22% 4% 1% 32% 4% 

S8  62% 6% 13% 12% 4% 1% 

S9  85% 1% 14% 0% 0% 0% 

Dataset  78% 4% 7% 3% 8% 1% 



 

 

Table 2: Popular Building Type Signature Clustering Results for 2008 

Table 3: Clusters Matching Query Signatures 

 
 

 
 

Figure 3: Visualization of Clusters Matching Query 

Signatures  

 

As can be seen, the algorithm rediscovered the same region with a 

majority of light buildings identified by the popular signature 

clustering algorithm but no other regions which match this 

signature. Moreover, a single region which almost perfectly 

matches the popular signature Q3 was found. Finally, we were 

able to find a single region with a mixture of schools and single 

houses, but the match of the regions’ signature with Q2 is of 

medium quality, as the Euclidian distance between the two 

signatures is about 0.047. 

3.4 Sensitivity Analysis 
CLEVER has been designed to find a “good” solution for an in 

general NP-hard problem relying on randomized hill climbing. As 

all optimization procedures which start with randomly created 

initial solutions, CLEVER—as K-means—is sensitive to 

initialization, as different initializations may lead to different 

alternative solutions. In this section, we discuss the result of an 

experiment which analyzes CLEVER’s sensitivity to 

initialization. 

To analyze CLEVER’s sensitivity to initialization, we ran the 

building type purity clustering procedure 20 times with 

parameters k’ = 20, β = 1.05, η = 3 and th = 0.5 and collected the 

following run characteristics: q(X), number of the clusters in the 

final clustering, number of iterations, and the number of 

clusterings generated during the run. The sampling procedure 

used in this experiment first samples 15 clusterings in the 

neighborhood of the current clustering, then—if there is no 

improvement — 30 solutions, and finally 180 solutions; if none of 

the 225 sampled clusterings improves the current clustering, the 

search ends. According to the results reported in Table 4, 

CLEVER terminated after at an average 32 iterations and 

searched at an average 1400 clusterings. Although CLEVER starts 

from different initial clusterings, the quality of the clustering 

results are relatively stable around 729 with a standard deviation 

of 24. However, the number of final clusters obtained differs quite 

significantly between the twenty runs, ranging between 3 and 23. 

This fact indicates that the obtained 20 final clusterings— 

although having a similar quality with respect to q(X)—differ 

from each other significantly. 

Cluster 

ID 

Single 

House 
Garage 

Commercial 

Building 

Light 

Building 

Collective 

House 
School 

No. of 

Building 

Closest 

Signature 
Distance 

0 89% 4% 2% 0% 5% 0% 56 S2 0.04 

1 75% 7% 4% 0% 13% 0% 69 S1 0.07 

2 73% 8% 6% 2% 12% 0% 52 S1 0.09 

3 29% 2% 9% 45% 15% 0% 55 S8 0.49 

4 72% 6% 11% 1% 10% 0% 157 S1 0.13 

5 88% 4% 2% 3% 5% 0% 199 S2 0.02 

6 100% 0% 0% 0% 0% 0% 112 S4 0.01 

7 44% 1% 46% 5% 4% 0% 100 S5 0.05 

8 87% 4% 1% 3% 3% 1% 335 S2 0.01 

9 85% 1% 13% 1% 1% 0% 320 S9 0.01 

10 77% 5% 8% 0% 10% 0% 39 S1 0.09 

11 77% 3% 1% 1% 17% 2% 198 S1 0.03 

12 36% 20% 3% 4% 34% 4% 142 S7 0.05 

13 99% 1% 0% 0% 0% 0% 121 S4 0.01 

14 98% 2% 0% 0% 0% 0% 57 S4 0.02 

15 89% 0% 0% 0% 11% 0% 27 S2 0.09 

Cluster 

ID 

Matched 

Signature 

Single 

House 
Garage 

Commercial 

Building 

Light 

Building 

Collective 

House 
School Distance 

5 Q1 29.63% 1.85% 9.26% 44.44% 14.81% 0% 0.009 

11 Q3 2.78% 5.56% 0% 0% 91.67% 0% 0.010 

13 Q2 66.67% 0% 0% 0% 0% 33.33% 0.047 

 

 

 

 

 



 

Table 4: Building Type Purity Sensitivity Results 
 

Run 
ID 

q(X ) 
No. of 

Clusters 
No. of 

Iterations 
Generated 
Clusterings 

1 776.81 7 38 1635 

2 764.68 8 43 1920 

3 756.20 10 25 645 

4 747.56 11 39 1830 

5 746.39 12 29 1245 

6 744.51 9 30 1470 

7 741.23 11 24 1170 

8 738.21 3 31 1470 

9 737.03 13 29 1245 

10 736.27 16 45 1950 

11 727.90 11 39 2010 

12 726.31 8 48 2175 

13 719.12 10 23 960 

14 716.62 23 36 1395 

15 715.18 14 20 525 

16 710.86 16 26 1380 

17 707.44 9 31 1140 

18 693.47 18 37 1605 

19 688.78 16 31 1665 

20 685.85 16 24 1005 

Mean 729.02 12.05 32.40 1422 

STD 24.63 4.55 7.88 444.40 

Max 776.81 23.00 48.00 2175.00 

Min 685.85 3.00 20.00 525.00 

3.5 Performance Analysis for CLEVER 
Table 5 gives some performance characteristics for the clustering 

results that were reported in Sections 3.1 to Section 3.4 in terms of 

iterations needed, number of clusterings generated, and wall clock 

time. CLEVER was run on a dataset containing 2039 objects on a 

computer with the processor running at 3 GHz and 8 GB main 

memory. 

Table 5: Performance Characteristics of the Reported 

Clustering Results 

 
No.of 

Iterations 

No.of Clusterings 

Generated 

Time  

Elapsed 

Section 3.1 30 1485 32.92s 

Section 3.2 35 1590 33.65s 

Section 3.3 44 2670 38.26s 

Section 3.4 34 1422 31.15s 

4. RELATED WORK  
Work in [6, 9] proposed a region discovery framework based on a 

fitness function to maximize. The framework adapts four 

representative clustering algorithms, exemplifying grid-based, 

prototype-based, density-based, and agglomerative clustering 

algorithms to optimize the fitness function. The fitness function is 

defined according to the application, and the goal is to model the 

interestingness of a region. Other work seeks to find uniform 

regions for spatial regression [2, 14]; using quite different 

methods, both approaches partition the space into regions, 

associating different regression functions with different regions; 

uniformity in this work is associated with point sets sharing the 

same or a similar relationship between a dependent variable and a 

set of independent variables. Sheng et al. [13] introduces a search 

algorithm which finds the top-k regions with a similar distribution 

of POIs on a spatial map.  

One key idea of this paper is to use signatures to annotate spatial 

clusters and to propose a framework to mine cluster signatures in 

spatial datasets. We are not aware of any work that uses 

signatures in conjunction with clustering; however, signatures 

have been used for other purposes. Applegate et al. [1] state that 

“signatures are compact representations…that capture important 

characteristics of massive datasets” and then investigate a special 

family of signatures for multidimensional distributions that 

represent the distribution of probability mass over a manifold and 

introduce a novel distance function for such signatures. Cortes et 

al. [4] discuss the use of signatures for mining massive 

telecommunications data to find communities of interest, and for 

fraud detection. Wong et al. [16] demonstrate the benefits of using 

data signatures to guide the visualization of complex scientific 

datasets.  

Joshi et al. [22] proposes a dissimilarity function for clustering 

geo-spatial polygons. The proposed dissimilarity function takes 

into account different characteristics of the polygon separated in 

different groups: non-spatial attributes, intrinsic spatial attributes 

and extrinsic spatial attributes. The dissimilarity function 

computes the dissimilarity between polygons as a weighted 

function that compute the distance between two polygons in the 

different attribute spaces. This approach is different from our 

approach which supports plug-in interestingness functions that 

allow assessing cluster quality using non-distance based 

interestingness measures; moreover, our approach generates 

clusters which are contiguous in the subspace of the spatial 

attributes. 

The use of topic discovery approaches [17, 18] to annotate spatial 

regions has gained some popularity recently. There are two major 

differences between our approach and the topic discovery 

approach: First, our approach is supervised based on a domain 

expert’s notion of uniformity, which has to be expressed by a 

plug-in interestingness function, whereas in the other approach 

popular signatures are identified by an unsupervised topic 

discovery approach. Second, the topic discovery approach 

requires an a priori given partitioning of the city as an input, 

whereas our approach uses spatial clustering algorithms to 

determine such a partitioning which is optimal with respect to a 

given notion of uniformity. 

5. SIGNIFICANCE AND IMPACT  
This paper introduces a spatial clustering methodology which 

identifies contiguous regions in the space of the spatial attributes 

which are uniform with respect to their signatures, which 

represent statistical summaries for the objects belonging to a 

particular cluster. The second idea advocated in the paper is to 

mine spatial data for the presence of particular signatures. We 

claim that these two types of signature-based spatial clustering 

have broad applications in urban computing. 

The proposed methodology defines the task of finding uniform 

regions formally as a maximization problem. Various objective 

functions and corresponding algorithms are introduced. In 

particular, we introduce a prototype-based clustering algorithm 

named CLEVER, which identifies uniform regions in a spatial 

dataset by maximizing a plug-in measure of uniformity, relying 

on a randomized hill climbing approach. Moreover, polygon 

models which capture the scope of a spatial cluster and 

histogram-style distribution signatures are used to annotate the 

content of a spatial cluster; both play a key role in summarizing 

the composition of a spatial dataset. We claim that the presented 

approach is novel and unique as existing clustering algorithms are 



 

not suitable for this task as they minimize distance-based 

objective functions, whereas assessing uniformity relies on 

non-distance based uniformity measures. The efficacy of the 

proposed methodology is demonstrated by a challenging 

real-world case study centering on analyzing the composition of 

the city of Strasbourg in France based on building characteristics.  

Applying the methodology, presented in this paper, faces several 

challenges, such as sensitivity to initialization, finding more 

suitable algorithms to compute the scope of a set of spatial 

clusters, providing a better theoretical foundation for signature 

mining, the capability to identify spatial clusters of arbitrary 

shape, and the need to run spatial clustering algorithms multiple 

times. Finally, as the computational complexity of signature 

mining is usually very high, there is a need for parallel signature 

mining algorithms. Our current and future work centers on 

dealing with these challenges. 
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