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Abstract

Purpose Surgical processes are generally only studied

by identifying differences in populations such as partic-

ipants or level of expertise. But the similarity between

this population is also important in understanding the

process. We therefore proposed to study these two as-

pects.

Methods In this article, we show how similarities in

process workflow within a population can be identified

as sequential surgical signatures. To this purpose, we

have proposed a pattern mining approach to identify

these signatures.

Validation We validated our method with a data set

composed of seventeen micro-surgical suturing tasks per-

formed by four participants with two levels of expertise.

Results We identified sequential surgical signatures

specific to each participant, shared between participants
with and without the same level of expertise. These sig-

natures are also able to perfectly define the level of ex-

pertise of the participant who performed a new micro-

surgical suturing task. However, it is more complicated

to determine who the participant is, and the method

correctly determines this information in only 64% of

cases.
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Conclusion We show for the first time the concept of

sequential surgical signature. This new concept has the

potential to further help to understand surgical pro-

cedures and provide useful knowledge to define future

CAS systems.
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1 Introduction

We all have our own habits that depend on our past. For

example, some people take a shower when they wake

up, while others prefer to take a shower before going to

sleep. Although all surgical procedures are unique be-

cause of the patient’s anatomical characteristics, they

do not escape to this rule because of the habits and

experience of the surgical team. The surgical process

modeling methodology, which was introduced around

15 years ago [10, 12], could be used to study these

“habits”. A surgical process model describes a surgi-

cal procedure at different levels of granularity [12]. For

example, a surgical intervention can be divided into suc-

cessive phases corresponding to the main periods of the

intervention. A phase is composed of one or more steps.

A step is a sequence of activities used to achieve a sur-

gical objective. An activity is a physical action per-

formed by the surgeon. Each activity is broken down

into different components, including the verb of action,

the target involved in the action (usually an anatomical

structure) and the surgical instrument used to perform

the action. Lower granularity levels are closer to kine-

matic data, such as surgemes and dexemes [4, 19]. A

surgeme was defined as a surgical motion with explicit

semantic meaning, composed by dexemes. A dexeme is

https://doi.org/10.1007/s11548-018-1775-x
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a numerical representation of the performed physical

motion. Surgical Process Models (SPMs) have been de-

veloped for three main purposes: (1) Formalize surgical

knowledge, (2) Evaluate surgical skills and systems, (3)

Assist the surgeon in surgical intervention.

A SPM can be acquired manually from observations

[15] or automatically thanks to recent advances in au-

tomatic recognition of phases [17, 18], steps [2, 9] and

activities [11, 13]. These SPMs have recently been used

to identify different surgical behaviors, such as those

depending on surgical sites [5, 8], surgical skills [20],

types of procedures used [16] and surgical expertise lev-

els [3, 5, 8].

In these studies, the analysis is generally done by

underlining differences between two or more popula-

tions, using one or several information, such as the sur-

gical duration [3, 20], the number of activities [3, 20] or

sequence based metrics [5]. Recently, [6, 8] showed that

sequences were highly discriminatory.

In this paper, we introduce the concept of sequen-

tial surgical signatures: sequences of phases, stages or

activities being common within a more or less homo-

geneous population. To demonstrate this concept, we

propose an approach that is an extension of a method

presented in [8].

2 Material and methods

The aim of this paper is to identify sequential surgi-

cal signatures in the context of micro-surgical suturing

training task (see subsection 2.1). For this, we used a

pattern mining method presented in subsection 2.2.

2.1 Data

The data set was collected at the Tokyo University

Hospital. It consists of seventeen micro-surgical suture

tasks of a 0.7mm artificial blood vessel performed us-

ing a master-slave robotic platform [14]. Figure 1 shows

snapshots of this task. The data set included 4 par-

ticipants with different levels of surgical expertise and

robotics skills. Two of them, called experts, are sur-

geons but novice roboticians, the other two, called en-

gineering students, have no surgical skills, but are ex-

pert roboticians. Each participant conducted between

3 and 6 trials, according to their availability. This ex-

plains why there were in total 7 trials made by surgeons,

and 10 by engineering students. The average suture

duration is about 3 minutes. For each test, the video

was recorded at 30Hz. Thanks to these videos, both

hands were annotated manually, at the level of gran-

ularity of the activities, using the software “Surgery

Fig. 1: Snapshots of micro-surgical suture tasks of a

0.7mm artificial blood vessel performed using a master-

slave robotic platform.

Workflow Toolbox [annotate]” [7]. The suture task is

relatively simple to describe if the chosen granularity

is superficial. Indeed, the stain consists in taking the

needle, passing through the two artificial blood vessels

and making 3 knots. But, such a description cannot

capture variations between participants. Thus, we have

broken down each gesture as much as possible in order

to better describe the progress of the task. Thus, we are

able to take into account the gestures that are repeated

several times before being completed, as well as the

intra-participant variabilities. Table 1 summarizes the

number of trials, average duration and average number

of activities per hand for each participant.

The output of the surgical process annotation is a

sequential list of phases, steps and/or activities per-

formed by the participant’s left and right hands. In or-

der to analyze both hand sequences, we preprocessed

the data by a step called synchronization. It consists

of dividing, step a in figure 2, the activity from one

hand into two parts when on the other hand an activity

changes of status (begin or end). Then, the activities of

both hands are grouped together in the same sequence,

and when no activity is present on one of the hands, the

emptiness is supplemented by an activity, called “Idle”,

representing this absence of activity, step b in figure 2.

As a reminder, an activity is composed of three com-

ponents: the verb of action, the target and the sur-

gical instrument. To improve readability, we do not

use information from the surgical instrument as only

one surgical instrument was used in all trials. Thus,

we will note the activities of both hands as follows:

“< verbleft, targetleft >;< verbright, targetright >”.
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Table 1: Description of the 17 trials according to participants

Participant Id 1 2 3 4
Expertise level Student Student Expert Expert
Number trial 4 6 3 4

Mean duration 4’08 5’46 2’45 1’48
Mean number
of activities

Left Hand 37 52 31 32
Right Hand 45 52 39 27

Fig. 2: The process of synchronizing the sequences

of the left and right hand to create a sequence with

both hands. Each letter corresponds to an activity, Idle

means that no activity is executed by a hand.

2.2 Methods

In this paper, we propose to extend a method pub-

lished in [8] and use it as a means to identify sequential

surgical signatures. In summary, the method consists

of finding the longest frequent patterns in sequences,

i.e. identifying the longest sequence of activities (2 or

more) which are present at least min fr times in all

sequences, where min fr is a predetermined threshold.

The original method is composed of three steps:

– Step 1: establish a vocabulary of frequent activities;

– Step 2: generate possible frequent patterns of length

k, thanks to the frequent patterns of length k − 1

and frequent activities;

– Step 3: determine if possible frequent patterns are

really frequent and compute the longest frequent

patterns of size k − 1.

Steps 2 and 3 are repeated to extend the patterns

until no new frequent patterns of size k are found. At

each loop, the longest frequent patterns of size k−1 are

added to the longest frequent patterns of smaller sizes.

The extension consists in removing all patterns that

are composed of less than min length activities. This

step assumes that the shorter patterns do not have

enough discriminating power to be interesting. Finally,

for the other patterns, we determine if they are se-

quential surgical signatures or not by checking if they

are shared within a more or less homogeneous popula-

tion. The figure 3 summarizes the complete process for

a simple example with the following parameters: fre-

quency threshold min fr = 2 and the length threshold

min length = 3.

To classify sequences, we use the Shared Longest

Frequent Sequential Pattern metric (SLFSP metric) de-

veloped in [8] to make a hierarchical clustering with the

average-link approach using UPGMA algorithm (Un-

weighted Pair Group Method with Arithmetic Mean)

[21]. SLFSP metric as defined as:

SLFSP (A,B) =
|sharedA,B |

|patternsA|+ |patternsB | − |sharedA,B |
,

(1)

where A and B are 2 sequences, |sharedA,B | is the num-

ber of shared longest frequent sequential patterns be-

tween A and B, and |patternsA| and |patternsB | are

respectively the number of longest frequent patterns of

A and B.

3 Validation studies

We propose three validation studies, first of all, to ver-

ify the usefulness of the additional step (subsection 3.1).

The aim of the second study (subsection 3.2) is to iden-

tify sequential surgical signatures according to the par-

ticipants and their level of expertise, but also shared be-

tween different populations. Finally, we use sequential

surgical signatures to predict from which populations a

new sequence belongs to (subsection 3.3).

3.1 Classification according to sequential signatures

The objective of this first study is to ensure that the

evolution of the method produces better results than

the original, or in the worst case, that it does not dete-

riorate them. To do this, we try to classify the sequences
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Fig. 3: Sequential pattern discovery method procedure for a simple example. S is a set of activity sequences, min fr

is a frequency threshold and min length is the pattern length threshold.

by level of expertise and participants using both meth-

ods.

For the first study we tested different parameter val-

ues, varying them in the following way:

– Frequency threshold: min fr ∈ [2, 7] for both meth-

ods. We have not tested for frequency thresholds su-

perior to 7, because in these cases it would not have

been possible to have patterns present only among

experts (only 7 trials are made by experts);

– Length threshold: min length ∈ [3, 10] for proposed

method.

3.2 Analysis of sequential surgical signatures

In this study, we use the method on all the data to

identify sequential surgical signatures. Based on opti-

mal results of the first study, we selected, for this study

and the next one, the following parameters:

– Frequency threshold: min fr = 3;

– Length threshold: min length = 3.

3.3 Prediction of belonging to a population

In this study, we determine who is the participant who

performs a new sequence and his or her level of ex-

pertise, thanks to the signatures present in his or her

sequence. To do this, we conduct a leave one out cross-

validation study. We trained our model on all sequences

except one. For all the longest frequent patterns, we

determined whether this pattern was an indicator of

sequential surgical signature and the percentage of se-

quences where this pattern is present. For the remain-

ing sequence, we checked the presence of all signatures.

With this signature list, we were able to determine the

metadata of the remaining sequence. If some signatures

are specific to contradictory populations, we have deter-

mined the belonging for the remaining sequence based

on the highest probability of belonging defined as fol-

lows:

1

n

n∑
i=1

%presenti∗

nb Pattern specific

nb Pattern With Contradictory Meta Data

(2)

4 Results

In this section, we present the results of the studies

respectively in subsection 4.1, 4.2 and 4.3.
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(a) Accuracy of expertise classi-
fication

(b) Accuracy of participant clas-
sification

Fig. 4: Accuracy of expertise (a) and participant (b)

classification for original method (blue square) and ex-

tended one with a min lenght = 3 (red triangle) ac-

cording to different value of frequency threshold.

4.1 Classification according to sequential signatures

Tables 2 and 3 summarize the accuracy of both meth-

ods to distinguish between the levels of expertise, and

respectively between the participants, for different pa-

rameter configurations. To determine this accuracy we

use a distance of 0.6 to define clusters.

The proposed method gives better results than the

original for the same frequency threshold when the length

threshold is 3. The only exception is for a frequency

threshold of 7, where the accuracy of expertise classifi-

cation is the same (94.12%) and lower for the classifi-

cation of participants (76.47% for the original method

versus 64.71% for the proposed one). When the length

threshold increases the classification accuracy decreases

or stays stable. Figure 4 summarizes the results of the

original method and the best of the extended method

(min length = 3).

For both, the parameters which give the optimal re-

sults for classifications are for a frequency threshold of

3. The original method gives 88% of accuracy for exper-

tise and participant classification, whereas the extended

one gives 100% of accuracy for expertise classification

and 94.12% for participant classification. The results

are better for the extended method, even if we have less

information than the original one. Indeed, with the op-

timal parameters, we found 97 patterns for the original

method, and only 76 of them for the extended method,

i.e. a 22% decrease in information.

The classification results are shown in figure 5 for

the original method, and in figure 6 for the extended

one. In these figures, the ordinate corresponds to the

distance between sequences, and each leaf corresponds

to the sequence ID. This ID is composed of the partic-

ipant ID for the hundreds and the trial number. Thus,

Fig. 5: Dendrogram of the classification using the orig-

inal method and the SLFSP metric.

Fig. 6: Dendrogram of the classification using the ex-

tended method (min lenght = 3) and the SLFSP met-

ric.

leaf 402 corresponds to the second attempt of the par-

ticipant 4.

When we cut dendrogram of figure 5 at a distance

of 0.6, we can define 4 different clusters:

– C1: a cluster which gathers all trial of participant 1

together;

– C2: a cluster which gathers all trial of participant 2

together except the first trial (201);
– C3: a cluster which gathers all trial of participant 3

together;

– C4: a cluster which gathers all trial of participant 4

together except the fourth trial (404).

With the same distance to define cluster (0.6), in

dendrogram of figure 6 we can define 3 different clusters:

– C1: a cluster which gathers all trial of participant 1

together;

– C2: a cluster which gathers all trial of participant 2

together;

– CE : a cluster which gathers all trial of expert par-

ticipant together.

This last cluster could be divided into two sub-

clusters C3 and C4. C3 bringing together the majority

of the trials of participant 3 and participant4 respec-

tively for C4. Only participant 4’s trial 404 is grouped

with participant 3’s trials.
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min fr 2 3 4 5 6 7

original 58.82% 88.24% 94.12% 94.12% 94.12% 94.12%

m
in

le
n
g
th

3 76.47% 100% 100% 100% 100% 94.12%
4 58.82% 100% 100% 94.12% 88.24% 88.24%
5 58.82% 94.12% 88.24% 82.35% 47.06% 64.71%
6 82.35% 94.12% 76.47% 70.59% 52.94% 64.71%
7 76.47% 88.24% 52.94% 52.94% 52.94% 52.94%
8 76.47% 64.71% 47.06% 52.94% 52.94% 52.94%
9 82.35% 58.82% 47.06% 47.06% 47.06% 35.29%
10 70.59% 47.06% 47.06% 47.06% 47.06% Na

Table 2: Accuracy of the classification of expertise using both methods and the SLFSP metric for a cutting

threshold of 0.6. Na: not applicable

min fr 2 3 4 5 6 7

original 52.94% 88.24% 82.35% 82.35% 82.35% 76.47%

m
in

le
n
g
th

3 76.47% 94.12% 88.24% 88.24% 88.24% 64.71%
4 58.82% 94.12% 88.24% 88.24% 58.82% 58.82%
5 58.82% 88.24% 52.94% 70.59% 41.18% 41.18%
6 76.47% 88.24% 70.59% 58.82% 17.65% 41.18%
7 64.71% 82.35% 41.18% 35.29% 35.29% 35.29%
8 64.71% 52.94% 41.18% 35.29% 35.29% 35.29%
9 82.35% 47.06% 17.65% 29.41% 29.41% 23.53%
10 70.59% 35.29% 17.65% 29.41% 29.41% Na

Table 3: Accuracy of the classification of participant using both methods and the SLFSP metric for a cutting

threshold of 0.6. Na: not applicable

4.2 Analysis of sequential signatures

We looked more closely at the longest frequent patterns.

With our parameters (min fr = 3 and min length =

3)), 76 longest patterns composed of 3 or more activ-

ities were found. On these 76 patterns, 56 are specific

to one of the following metadata: participant 1, partic-

ipant 2, participant 3, participant 4, student or expert.
Table 4 summarizes the number of patterns specific to

each type of metadata, the number of patterns that are

more frequent than the threshold (Present 4+) or whose

length is greater than or equal to 5 activities (length

≥5). A pattern specific to a participant is only found

in the sequences executed by this participant. Whereas

a pattern specific to a level of expertise is found in the

sequences performed by the two participants with this

level of expertise. In parentheses, we have the result in

proportion to the number of trials for the column “Nb

Patterns” and in proportion to the number of pattern

for the other columns. The length of the longest pat-

terns in each category ranges from 10 to 14 activities.

4.3 Prediction of belonging to a population

Results of the leave one out cross validation for predict-

ing population affiliation are summarized in the table 4.

Our model is able to perfectly predict the expertise in

all cases (accuracy of prediction and correct prediction

of 100%). But it is more difficult to predict the par-

ticipant, the model gives the participant’s information

for only 83% of the sequences and makes many errors

(correct predictions in 64% of the cases).

5 Discussion

5.1 Method

In this article, we introduced for the first time the con-

cept of sequential surgical signatures. And we have demon-

strated this concept using a pattern exploration method.

We have decided to ignore patterns that are shorter

than a predetermined threshold (min length) by delet-

ing them at the end of the method. Another approach

would have been to directly find the most frequent pat-

terns with the length of min length, but in this case,

we would have had a large number of results after step

2, which would have caused many unnecessary tests in

step 3. As a reminder, to find the longest frequent pat-

terns of length k, it is necessary to find frequent pat-

terns of k + 1. In this way, with the example shown in

figure 3, if we try to find the longest frequent patterns

with the length of 3, we have to find frequent patterns of

size 4. Thus, with 3 frequent activities, the second step

would give 84 candidate models of size 4 (34). Whereas
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Table 4: The number of patterns specific to each metadata and the number of those patterns that are present at

least 4 times or composed of 5 or more activities. For each metadata we also provided the length of the longest

patterns

.

Nb patterns Present 4+ length ≥ 5 Longest patterns
Participant 1 12 (3) 1 (0.09) 5 (0.42) 10
Participant 2 22 (3.66) 5 (0.23) 8 (0.36) 14
Participant 3 0 (0) 0 (0) 0 (0) 0
Participant 4 3 (0.75) 0 (0) 1 (0.25) 12

Student 13 (1.3) 1 (0.08) 8 (0.61) 14
Expert 6 (0.86) 4 (0.66) 5 (0.83) 11

Total 56 (3.3) 11 (0.19) 27 (0.48) 14

In brackets, it is the number of patterns by the number of trials for column “Nb Patterns” and the proportion by numbers of
patterns for other columns.

Table 5: Percentage of metadata predicted thanks to se-

quential signatures and the accuracy of this prediction.

Expertise Participant
Prediction 100 % 82.35 %

Accuracy of prediction 100 % 64.29 %

with our method, we do 3 times step 2 but for a total

of 12 candidate patterns (9 for k=2, 3 for k=2 and 0

for k=4).

5.2 Classification according to sequential signatures

In this first study, we validated the utility of the ex-

tended method for different parameters values. In most

cases, not taking the shortest signatures into account

increases the classification rate. Although, for the opti-

mal parameters, the accuracy of classification improved

(94 versus 88% for participants and 100 versus 88% for

expertise), this improvement is not significant. How-

ever, this classification was carried out with only 78%

of the data available using the other method. Thus, it

has been shown that our method gives similar results

with fewer data. Thus, the hypothesis that the shorter

patterns do not have enough discriminating power to

be interesting is verified.

5.3 Analysis of sequential signatures

Our method is able to distinguish sequences according

to the level of expertise and the participant. This differ-

entiation cannot be made by the length of the longest

patterns since they all have lengths between 10 and 14

activities regardless the category. We can also find many

signatures specific to the level of expertise and each par-

ticipant, except for participant 3 (Table 4). Even if we

did not find any signature that only appears in this

participant does not mean that there is no signature

in trials of this participant. The 6 signatures noted as

being specific to the experts are present in the trials

of the both expert participants. In order to detect a

signature specific to participant 3, it should be present

in each of the participant’s trials because only three

have been performed, which corresponds exactly to our

min fr threshold. It is highly improbable that all trials

have been proceed in the same way, especially since we

did not take into account the signatures composed of 2

activities. To identify the sequential surgical signatures

of participant 3, we need to collect more data.

The number of sequential surgical signatures found

by each category depends on the number of trials, for

example, even though we found fewer sequential sur-

gical signatures for participant 1 than participant 2,

12 versus 22, when we count the average number of
signatures per trial, the difference is less significant: 3

versus 3.66. As shown in Table 4, participants 1 and

2 have more sequential surgical signatures specific to

participants 1 and 2 than sequential surgical signatures

specific to their level of expertise (3 and 3.66 compared

to 1.3). On the other hand, for participants 3 and 4,

it is the opposite, there are more sequential surgical

signatures specific to their level of expertise than for

themselves (0.86 versus 0 and 0.75). This could be in-

terpreted by the fact that the experts’ participants are

more consistent when they perform a task and their sig-

natures are composed of more activities than the stu-

dents’ participants. This hypothesis is confirmed by the

proportion of signatures present more often than the

threshold for expert participants (66%) than for stu-

dent participants (8%), but also by the proportion of

signatures composed of many activities (83% for ex-

perts versus 61% for students).

In the 6 expert sequential surgical signatures (ta-

ble 4), one of them attracted our attention because of its
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number of activities (11) and the number of sequences

where this signature is present (5 out of 7 expert se-

quences). This signature, notated signature1, is pre-

sented at table 6.

However, a signature may be the marker for some-

thing other than a population of individuals. This is

the case, for example, of the following signature, noted

signature2 (Table 7), which are composed of 3 activ-

ities and shared between 5 sequences, 2 performed by

students and 3 by experts:

These two examples are interesting for multiple rea-

sons:

– Signature1 illustrates the full knot tying process

without unnecessary activities;

– Signature2 reflects a mistake independent of the

level of expertise. In each case, the participant tried

to tie the knot by pulling the two strands of the

wire (activity a), but dropped the short wire strand

(activity b) so had to catch again the short wire

strand (activity c);

– Both signatures provide hints to improve or facili-

tate the execution of the task by informing us how

an expert performs the task and which mistakes

should not be made;

– These both types of signature, coupled with real

time activity detection methods, can be used for au-

tomatically analysis of surgical workflow and thus

providing relevant information for situation aware

systems.

A video representation of each of these two signa-

tures is available as supplementary material. In these

videos, the animated process was realized thanks to
Disco software [1], and each video was synchronized to

start each activity at the same time.

5.4 Prediction of belonging to a population

Our method also showed that sequential surgical sig-

natures could be used to determine which population

a new sequence belongs to. These initial results need

to be complemented by more data that would not only

increase the number of participants in each population,

but also the number of different populations.

6 Conclusion

In this article, we introduced the concept of sequential

surgical signatures and demonstrated their usefulness

in classifying surgical sequences and their ability to de-

termine by which individual a sequence was performed.

This could be interesting in order to provide an auto-

matic and objective skill assessment system.

The identification of sequential surgical signature

could provide leads for understanding surgical skills and

consequently useful pedagogical guidance for trainees.
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Table 6: Signature present in 5 expert sequences.

Activity id Left hand Right hand
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