
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by univOAK
Big Metamodels are Evil

Package Unmerge - A technique for downsizing metamodels

Frédéric Fondement, Pierre-Alain Muller,
Laurent Thiry, Brice Wittmann,and Germain Forestier

MIPS, Université de Haute Alsace,
12, rue des frères Lumière - 68093 Mulhouse cedex - France
{frederic.fondement,pierre-alain.muller,

laurent.thiry,brice.wittmann,germain.forestier}@uha.fr

Abstract. While reuse is typically considered a good practice, it may also lead to
keeping irrelevant concerns in derived elements. For instance, new metamodels
are usually built upon existing metamodels using additive techniques such as pro-
filing and package merge. With such additive techniques, new metamodels tend
to become bigger and bigger, which leads to harmful overheads of complexity for
both tool builders and users. In this paper, we introduce «package unmerge» - a
proposal for a subtractive relation between packages - which complements exist-
ing metamodel-extension techniques.

1 Introduction and motivation

In the domain of software engineering, reuse is typically achieved by sharing reusable
software parts in so-called libraries. From reusable procedures or structures, those parts
evolved into fully fledged components [1]. Components are pieces of software that can
be combined together to build up new software systems. Research related to this topic
showed that it is of paramount importance to define precisely contracts for components,
upon which both component makers and component users can rely [2]. Interface spec-
ification, which indicates what messages can be treated or sent by a component, is only
the very first step towards the definition of a contract [3]. Of course, any component
claiming to implement a contract must fulfill it completely.

 Programming languages are another mean for helping software reuse. Indeed, lan-
guages abstract away details of platforms while still making it possible to describe ex-
pected behavior of a software system. Examples of platforms’ details abstracted by
many languages are the instruction set of a processor, and available interruptions of an
operating system. A compiler can automatically infer details abstracted away from code
so that an executable program can be delivered, as long as the code conforms to the ex-
pected programming language. This way, the same source code could be used by dif-
ferent compilers made for the same programming language, but targeting different plat-
forms, e.g. different processors or operating systems. Model driven engineering (MDE)
pushes the same idea a step further: abstracting away details of platforms while offering
simple constructs in a modeling language, with compilers being replaced by model
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transformations. In addition to model transformations, a given model can be manipulat-
ed by a constellation of tools, thus following a data-centric architectural style.

Examples of such tools for modeling are textual or graphical model editors, model
verifiers, model checkers, model serializers, model interpreters, and model transforma-
tion engines. All of them need to be able to manipulate one (or more) model(s). Follow-
ing the example of compilers handling programs written in a well-defined language,
tools for modeling handle models with a well defined structure. The model structure is
most of the time specified by a metamodel. In this realm, metamodels are to modeling
tools, what contracts were to components.

One typical problem with this data-centric architectural style, is that tools might not
all have the same capabilities. If some tools may handle all of the possible modeling
constructs of a language (as defined in a metamodel), some other tools may only work
on a given subset of those constructs [4]. An example is UML code generators, which
are usually able to generate code for class diagrams, or state chart diagrams, yet discard-
ing any information provided by use case diagrams or timing diagrams. It does not nec-
essarily mean that such tools, which cover only part of a modeling language, should be
blamed: usually, discarded information is just useless within the perspective of the in-
tent of the tools [5]. However, it might make tools’ users feel that the contract of the
tool is not fulfilled as parts of the metamodel are ignored.

A similar situation happens when it comes to defining a new language by reusing
an existing metamodel. To reuse an existing metamodel, one usually extends it by de-
fining additional concepts and relations. To extend a metamodel, one possible solution
is to use an annotation mechanism such as profiles [6 - section 18]. However, this ap-
proach is an additive-only technique, making the resulting metamodel bigger than the
extended metamodel. Thanks to (or because of) this additive nature, tools for the ex-
tended language can still work on models of the new language, yet ignoring all infor-
mation that could be included in the model thanks to the extension. As an example, if
someone extends UML with a profile, UML code generators will be still able to gener-
ate code for profiled UML models, but information carried by the profile application
will be merely ignored, usually without even a warning.

From the modeling tools’ users point of view, the only way to know whether an el-
ement of a model will be ignored or not is to read documentation written in natural lan-
guage, or to try and see either nothing happening, or an error message raised while in-
voking the tools. This situation can be compared to a compiler not considering the com-
plete program code without clearly stating which part of the code is considered. By
indicating formally the subset of the metamodel that is actually covered, a tool could be
made more precise regarding handled models, i.e. regarding its contract. One could thus
check his/her models in order to know exactly what information is to be ignored by a
given tool. Moreover, by supplying a real and clear interface (i.e. metamodel) of han-
dled elements, modeling tools could be more easily selected, verified, or assembled, fol-
lowing the advanced practices of the software component community.

While metamodel extension has deserved significant interest, reduction has not yet
gained the same exposure. As a consequence, the more a metamodel is built by reusing



other metamodels, the more it is likely to contain irrelevant constructs from the perspec-
tive of a given tool. In other words, metamodels contain too many features, one reason
for that being that it is currently impracticable to identify and remove unneeded parts.

In this paper, we examine how reduction of metamodels could be expressed in an
explicit way, basically by describing package unmerge mechanism, built as a counter-
part of the existing package merge metamodel additive extension mechanism as defined
in [7 - section 11.9.3]. 

The paper is organized as follows: after this introduction, section 2 presents three
dominant techniques for metamodel extension, section 3 presents our proposal for re-
duction (which we call package unmerge relation), section 4 describes the package un-
merge algorithm, section 5 provides more in depth examples, section 6 gives a short
overview of the tool support we propose for package merge and unmerge, section 7
compares our approach to others, and section 8 concludes and presents future direc-
tions.

2 Extending metamodels

Typical mechanisms for controlling metamodel extension include UML profiles, pack-
age merge relations, and aspect weaving.

Profiles [6 - section 18] became popular as UML promoted them as a lightweight
approach for language extension. Profiles define extension points (called stereotypes)
for the metaclasses of a (MOF [8]) metamodel. Stereotypes can insert additional prop-
erties or constraints to the metaclass they extend. Stereotypes work as decorations, do
not modify the decorated metamodels, and can be removed or swapped at any moment
in the lifecycle of a model. Therefore, models remain conform to their original meta-
models (regardless of profiles).

Package merge relations [7 - section 11.9.3], as opposed to profiles, are considered
an heavyweight extension mechanism, since they impact directly the metamodel ele-
ments. Package merge relations are available both in the UML standard and in the MOF
metalanguage. Package merge relations combine the contents of two packages into a
single one, following a recursive union-like copy approach. In case of name conflicts,
conflicting elements are merged together into the same element in the resulting pack-
age. Package merge relations make the core of the modularization technique of the
UML metamodel. An illustrating example is the definition of UML compliance levels.
Compliance levels define the modeling concepts that must be supported by tools. A tool
with compliance level L1 must support class diagrams and use case diagrams, while L2
compliance level also requires to support profiles. Since UML modeling elements are
distributed across a set of packages in the UML metamodel, the L1 compliance level is
formalized by a package that is merely built by merging those packages that define the
necessary concepts for class and use case diagrams. Similarly, L2 compliance level is
also defined by a package that merges L1 package and the package that formalizes the
profile concepts (among others).



Aspect weaving was originally proposed in the context of programming [9]. Gen-
erally speaking, aspects define extension points (often called join points) where ele-
ments (often called advices) may be injected (woven in aspect-oriented terminology).
Join points are conveniently specified by pointcuts, which can target different join
points using a single pattern. More recently, aspect weaving has been used to alter mod-
els, and by extension metamodels [10]. Many different formalisms have been studied
so far, including UML class diagrams [11]. As MOF is also based on class diagrams,
MOF metamodels may also be woven with aspect models in order to be extended.

To summarize, profiles provide a lightweight approach, that makes some metamod-
eling capabilities available at modeling time. Package merge relations focus on meta-
modeling time. Aspect weaving, is used at modeling time, but can be used at meta-mod-
eling time as well, since any metamodel is also a model.

3 Unmerging metamodels

A metamodel may be seen as a hierarchical set of information about the structure of
conforming models. For metalanguages such as MOF and Ecore, such structure is de-
fined using a set of meta-classes and relations between meta-classes; a model can thus
be seen as a set of related instances. By altering those meta-classes and relations, it is
possible to restrict the range of conforming models. Typical modifications include re-
moving class properties and strengthening constraints such as multiplicities.

To identify those specific removal points, i.e. elements that should be dropped from
a to-be-reduced metamodel, we found convenient to use the same metalanguage in
which the to-be-reduced metamodel is expressed. Meta-elements to be pruned in a to-
be-reduced metamodel are identified in a reduction metamodel: the elements to be cut
are duplicated in the unmerge metamodel using the same name and included in a match-
ing hierarchy. Thus, prune points are identified as leaves of the reduction metamodel.
Corresponding elements in the to-be-reduced metamodel can thus be identified as to be
removed. In addition, all elements part of the hierarchy of removed element should also
be removed, even if not explicitly designated by the reduction metamodel. Since the
pruning points are matched with elements of the to-be-reduced metamodel according to
their name, and since the metamodeling language is directly used to define a change in
a metamodel, the mechanism looks like package merge. As we aim at reducing a meta-
model rather than extending it, we decided to name this approach «package unmerge».

In order to unmerge metamodels in a deterministic way, we had to define a compo-
sition hierarchy of concepts and matching rules. Hierarchy and matching rules depend
on the metalanguage used to define metamodels. This hierarchy is defined as follows:

• the root is a package,
• a package may contain other packages and classes,
• a class may contain properties and invariant constraints,
• properties and invariant constraints do not contain other elements.

An element in the reduced metamodel will match an element in the unmerge metamodel
if they both have:



• the same name,
• the same metaclass (i.e. packages can only match packages, classes can match

only classes, etc.),
• matching owners.

Constraints can be either strengthened or relaxed. If a leaf element has a stronger
constraint, then the matching element appears in the final metamodel (i.e. is not re-
moved) but updated with this stronger constraint. Elements that hold constraints are the
following:

• classes, that can be either concrete or abstract; an abstract class being more con-
strained than a concrete class,

• properties, that may define multiplicities; a property with a smaller multiplicity
range is considered more constrained than a property with a larger multiplicity
range.

Invariant constraints also have to be updated according to pruning action performed
on the metamodel-to-be-reduced. In the case of package unmerge, any invariant con-
straint depending on a pruned element (e.g. a metaclass or a property) should also be
marked to be unmerged, otherwise the package unmerge definition would be illegal. In
this, we follow our guideline to define package merge as the pure counterpart of pack-
age unmerge that can add new invariant constraints (but not relax existing ones).

Finally, the name of the metamodel resulting from the unmerge transformation is
the name of the unmerge metamodel.

 Package unmerge proceeds the following way. All the elements of the to-be-re-
duced metamodel that match leaf elements of the package unmerge metamodel are re-
cursively removed from the original metamodel. Removing a class C also removes
properties whose type is C (see UC3 in Table 1 below). Moreover, if a C class inherits
from a B class to be removed, and if B inherits from classes A1 and A2 to be kept, then
C class in the reduced metamodel will inherit from classes A1 and A2 directly (see UC7
in Table 1 below). Leaf elements from the unmerge metamodel that do not match any
element in the metamodel to be unmerged are ignored.

Table 1 shows a set of simple example use cases which illustrate the main aspects
of package unmerge. First column shows the to-be-reduced metamodel together with an
unmerge metamodel, and second column shows the reduced metamodel obtained after
unmerging, together with the merge metamodel necessary to get the original to-be-re-
duced metamodel back. This latter part is more extensively explained in the next sec-
tion.

4 Unmerge Algorithm

As shown in Figure 1, the outcome of an unmerge is the reduced version of the original
metamodel (L--). While the unmerging transformation removes some elements from a
metamodel, the dual package merge transformation adds elements to a metamodel. In-
terestingly, package merge and unmerge transformations can also generate the counter-
parts which may be used later to undo the effect of either merge or unmerge. Hence, in



Table 1. Unmerge use cases

Unmerge use cases Results and merge counterparts

UC1 - Unmerging package P

UC2 - Removing package P

UC3 - Removing class C

UC4 - Removing class P::C

UC5 - Removing attribute C.p1

UC6 - Removing reference C.d

UC7 - Removing class C in hierarchy

UC8 - Removing referenced class D
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addition to the resulting metamodel, the transformation may reference all those con-
cepts that were removed from the metamodel to be unmerged (L) in an extension taking
the shape of a package merge (M).

To go back to the unmerged metamodel (L), one just needs to perform a package
merge transformation on the unmerged version (L− −) driven by the previously gener-
ated merge (M). Thus, the generated merge (M) plays the role of the trace of the un-
merge transformation: it makes it possible to control what happened during the un-
merge, and to reverse the unmerge process. It also allows to reflect any eventual change
in L-- or M back to L or U. Symmetrically, the package merge transformation can be
extended to generate the unmerge counterpart, so that any addition to the merged meta-
model (L− −) is referenced in a generated unmerge counterpart (U). As such, the pack-
age unmerge transformation is the inverse transformation of the package merge trans-
formation.

UC9 - Making C class abstract

UC10 - Removing constraint of C

UC11 - Strengthening C.d multiplicity

Table 1. Unmerge use cases

Unmerge use cases Results and merge counterparts
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Fig. 1. Reversibility of the package merge and package unmerge transformations.



 The algorithm for unmerging a metamodel is defined here with the same formalism
as in [4]. The algorithm relies on structure shown in Figure 2 for metamodels (MM,
MMu, MMt, and MMm), though it could be adapted to other class-oriented structures.
elements is an operation returning recursively all composed elements from
Package, and removeElement an operation that removes an element from a pack-
age wherever it occurs in the hierarchy of the package. For sake of space and readabil-
ity, opposite properties and re-affectation of properties type is not discussed in this pa-
per.

Algorithm to find a matching element
match(MM, e): elt

elt ← ∅
MM.elements().each{ ue | 

e.name = ue.name
&& e.metaType = ue.metaType 
&& match(MM, e.owner) = ue.owner ⇒ elt ← ue} 

Algorithm to unmerge a metamodel MM with an unmerge metamodel MMu
packageUnmerge(MM,MMu) : MMt,MMm

1. Copies source meta-model MM into target metamodel MMt and its merge MMm
MMt ← MM, MMm ← MM, Ereq ← {}, Emerge ← {}
2. Checking types
MMt.types.each{ t |

2.1 Types are kept in MMm and removed from MMt (as C in UC3), except if...
match(MMu, t) ≠ ∅ ⇒ Emerge ← Emerge ∪ {match(MMm, t)}
2.1.a it is abstract in MMu while not in MM (as C in UC9)
if !t.isAbstract && match(MMu,t).isAbstract then

Ereq ← Ereq ∪ {t}, t.abstract = true
2.1.b it doe not remove all properties/constraints (as C in UC5/UC10)
elsif match(MMu,t).structuralFeatures ≠ ∅

|| match(MMu,t).constraints ≠ ∅ then
Ereq ← Ereq ∪ {t} 

2.1.c If a class is removed (as C in UC7), its sub-classes (as D in UC7)
else 

Package

elements() : Set(Element)
removeElement(Element)

Type

isAbstract : Boolean

Property

lower : Integer
upper : Integer*

1

Element

name : String

subPackages *

1

structuralFeatures

1

Constraint

constraints1 *

*

*

superClasses

subClasses

owner

types

*

Fig. 2. Expectations on an unmerged metamodel



- are kept in merge (as D in MMm in UC7)
Emerge ← Emerge ∪ t.subClasses.each{ mme |

 match(MMm,mme)}
- inherit from its super-class (D inherits A1 and A2 in UC7 MMt)
t.subClasses.each{ s | s.superClasses ←

(s.superClasses / {t}) ∪ t.superClasses}
end if
2.2 Types not in unmerge are kept only in target meta-model (as D in UC3)
match(MMu, t) = ∅ ⇒ Ereq ← Ereq ∪ {t} }

3. Checking properties and constraints
MMt.types.structuralFeatures ∪ MMt.types.constraints).each{ p | 

3.1 Properties and constraints from MMu are kept in MMm
and removed from MMt (as C.p1 in UC5), except if...
match(MMu, p) ≠ ∅ ⇒ Emerge ← Emerge ∪ {match(MMm,p), match(MMm, p.owner)}
3.1.a the element is a property with a different multiplicity (as C.d in UC11) 
p ∈ p.owner.structuralFeatures

&& ( p.lower ≠ match(MMu, p).lower
|| p.upper ≠ match(MMu, p).upper))⇒ (Ereq ← Ereq ∪ {p}, Ereq ← Ereq ∪ {p.owner},
p.lower ← max(p.lower, match(MMu, p).lower),
p.upper ← min(p.upper, match(MMu, p).upper))

3.2 Elements that are not in unmerge are kept only in target meta-model 
match(MMu, p)= ∅ ⇒ Ereq ← Ereq ∪ {p} } 

4. sub-packages
MMt.subPackages.each{ sp | 

4.1 Packages in unmerge are kept in merge
and removed from target metamodel (as P in UC2), except if...
match(MMu, sp) ≠ ∅ ⇒ Emerge ← Emerge ∪ {match(MMm, sp)} 
4.1.a it removes not all contents (as P in UC4)
match(MMu, sp).types ≠ ∅⇒ ((spu, spm) ← packageUnmerge(sp, match(MMu, sp)),

Ereq ← Ereq ∪ {spu}, Emerge ← Emerge ∪ {spm},
MMt ← (MMt / {sp}) ∪ spu, MMm ← MMm ∪ {spm})

4.2 Packages that are not in unmerge are kept only in target meta-model
match(MMu, sp) = ∅ ⇒ Ereq ← Ereq ∪ {sp} }

5.Remove non-required elements in target meta-model
(elements include sub-packages, types, and constraints) 
MMt.elements().each{ e | e ∉ Ereq ⇒ MMt.removeElement(e)} 
6.Remove non-required elements in merge meta-model
MMm.elements().each{ e | e ∉ Emerge ⇒ MMm.removeElement(e)}

5 Example

This section shows how the package merge and unmerge relations may be used to build
a metamodel by reusing other metamodels. The overall context is model-based testing
of SysML models, and the example is borrowed from the VETESS project [12]. The
goal is to generate a set of test cases from a behavioral model of the system under test.



The available tooling for test generation is based on a dialect of the UML language
(called UML4MBT, UML for Model Based Testing), and a model transformation may
be used to translate UML models to UML4MBT models (which is out of the scope of
this example). 

 The same scheme is implemented for SysML models. A dedicated SysML dialect
(called SysML4MBT, SysML for Model Based Testing) has been defined. A model
transformation has been written to translate SysML4MBT models to UML4MBT mod-
els, thus allowing direct reuse of the tooling for test generation as explained in [13].
Figure 3 describes this transformation chain.

SysML4MBT and UML4MBT are good examples of languages which are more or
less similar. They share a lot of commonalities, but diverge on some parts. To specify a
model transformation between SysML4MBT and UML4MBT, it is convenient to ex-
plicitly state how these two languages compare, and how they can be built from each
other.

 Figure 4 shows how SysML4MBT can be derived from UML4MBT. Construc-
tions to be removed are represented in the package unmerge metamodel while parts to
be added are specified in the package merge metamodel.
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Fig. 3. VETESS tool chain for SysML.

Fig. 4. Deriving SysML4MBT from UML4MBT.
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The representation is interpreted as follows:
• The Instances package has to be removed, including all contained elements.
• The Core::Suite metaclass has to be removed. The containing Core package

will not be removed, but references to Suite will be dropped (in our case
Core::Project.suite).

• Class is made abstract (by the unmerge) and Block is added as a concrete sub-
class (by the merge). Notice here that merging could not be used to set Class as
abstract, because the merge semantics state that merging concrete with abstract
yields concrete.

• The multiplicity of the composition relation between CompositeState and
Statechart is set to 1..* (by the merge).

 As explained earlier, package merge and package unmerge can be used either to
trace their effect each other, or to undo their effect. We will illustrate this last point in
the following lines. Figure 5 shows how to build UML4MBT from SysML4MBT, by
merging and unmerging the respective counterparts.

Again, the representation is interpreted as follows:
• The unmerge part states that Classes::Block should be removed, and that

the StateCharts::CompositeState::StateChart multiplicity
should be strengthened to 1..1.

• The merge part redefines Instances and its components, which are equivalent
to those dropped from UML4MBT, re-introduces the Core::Suite construct

Fig. 5. Deriving UML4MBT from SysML4MBT.

UML4MBT UML4MBT

SysML4MBT

Core
Classes

Classes

StateCharts

Core

Project

Suite

Model

*

1

Instances

ModelInstance

Instance Slot

1
*

*

State Transition

CompositeState

SimpleState Statechart

* *

2 {ordered}

1..*

Package

«abstract»
Class Attribute

1 1

*

0..1

*
*

Class

«unmerge»

Block

StateCharts

CompositeState

1

«merge»

Project

Classes

Block

1



(including incoming and outgoing references), and makes the
Classes::Class metaclass concrete. 

Package merge and package unmerge, along with the respective counterparts, can
be used to go back and forth from one metamodel to another. From this point, it be-
comes possible to automate, at least partially, the translation from SysML4MBT to
UML4MBT (and conversely from UML4MBT to SysML4MBT). Indeed, because of
the way SysML4MBT is produced from UML4MBT, those two metamodels expose
many similarities. In the SysML4MBT to UML4MBT transformation, those similari-
ties take the shape of “copy” rules: SysML4MBT::Project elements create
UML4MBT::Project elements, SysML4MBT::Model create
UML4MBT::Model, etc. Finally, any information whose structure in SysML4MBT
was kept from UML4MBT is merely copied to the resulting UML4MBT model.

6 Implementation

An open-source prototype implementation for both package merge and package un-
merge as it is defined in this paper is available on the project website1. This implemen-
tation takes the shape of an Eclipse plug-in. A set of tutorials, corresponding to Table 1.,
is also available from the VETESS website2.

The transformation can be invoked on an ecore file holding serialization for a pack-
age unmerge metamodel. The metamodel to be unmerged is referenced in an annotation
of the package unmerge metamodel. Once invoked, the file name for serializing the un-
merged metamodel is given and the transformation happens. The outcome is another
ecore file for the unmerged metamodel plus an additional ecore file representing the
merge counterpart. We developed a similar transformation for package merge, which
also produces the merged metamodel and the corresponding unmerge counterpart.

While experimenting UML metamodel unmerge, we found it a very repetitive and
error-prone task to eliminate invariant constraints (i.e. UML well formedness rules) that
depend on an element that was pruned in the unmerged metamodel. That is why we in-
cluded in the prototype a drop mechanism that discards from the unmerged metamodel
any invariant constraint on which a type checking could not succeed.

In order to exchange models, we also developed automatic model transformation so
that a model conforming to an unmerged metamodel can be transformed into a model
conforming the metamodel that was unmerged. We also made the reverse transforma-
tion that removes information from a model of a metamodel that was unmerged so that
it becomes a model of the unmerged metamodel. These two transformation make it pos-
sible to reuse existing models and interact with a tool defined for working on a meta-
model subset defined in terms of package merge.

1. https://sourcesup.cru.fr/projects/vetess/
2. http://bit.ly/litERM



7 Related works

As mentioned in section 1, reducing metamodels was paid much less attention than ex-
tending. However, one interesting proposal was made by Sen et al. [4]. They identify
four reasons to motivate the reduction of a metamodel and thus avoid over-specifica-
tion:

• clearly state what are the input/output domains of a model transformation,
• avoid chaining transformations with inconsistent input/output domains,
• avoid generating input data models with unused concepts when testing transfor-

mations,
• avoid confusing a model designer.

They also propose an algorithm for reducing a metamodel. This algorithm requires the
set of all interesting elements in a metamodel; those elements are kept in the resulting
metamodel, including their dependencies in a transitive way. However, they do not state
how interesting constructs can be identified. Our approach rather identifies elements
that must not appear in the reduced metamodel. Indeed, identifying all interesting parts
may require an effort as important as defining a metamodel from scratch. Moreover, we
state how those “uninteresting elements” can be identified using the metalanguage in
which the metamodel-to-be-reduced is defined. Finally, thanks to the symmetry that ex-
ists between the merge and unmerge relations, we are able to create the reverse defini-
tion to highlight what the reduction actually did. To sum up, our approach fits better
when a lot of top elements are to be removed, and when complex operations are neces-
sary (such as removing a class from an inheritance hierarchy, or making a class ab-
stract). Otherwise, approach of [4] fits better when only a few elements are to be kept
in a metamodel, all of them being well identified.

Some few aspect-oriented modeling techniques, whose purpose is to weave chang-
es into a (meta)model, provide means for deleting modeling constructs as a “removal”
advice. One example is MATA [11] for class diagram-like models. A strength of these
techniques is that they can designate various elements in a metamodel using a single
rule. Such multiple designation rules could easily be integrated in package unmerge
(and package merge), e.g. by introducing more sophisticated pattern matching con-
structs. Compared to aspect-oriented modeling, package merge and unmerge clearly
separate the notions of adding information from removing information in two distinct
specifications. Another difference is that package unmerge is one simple additional re-
lationship construct to be added to metamodeling languages, unlike aspect-oriented
modeling which requires completely new languages, even if aspect languages are de-
fined as extensions to the languages to which aspects are to be applied. Such extensions
include additional concepts to the base language (like pointcuts, a set of designators,
and different categories of advice). Those extensions could be described by means of
package merge and unmerge.

Metamodel matching and differencing [14] is another field related to our work.
Metamodel matching compares two given metamodels and outputs a mapping that can
be used to specify or generate a model alignment transformation [15]. Differences can
be shown in a difference model (such as an AMW model [16]) that would represent the



equivalent for our package unmerge model. First, package merge and unmerge could be
used as alternative models to represent this mapping while emphasizing commonalties
and differences. Second, the difference model usually references the compared (me-
ta)models. As such, it is not possible to compute one metamodel from the other as both
need to exist. However, instead of merely relying on a named elements hierarchy, pack-
age merge and package unmerge could benefit from metamodel matching techniques to
match elements of the package (un)merge with elements of the package-to-be-
(un)merged.

(Meta)model slicing [17] is a technique taking its roots in program slicing and graph
decomposition. It makes it possible to extract from a model (and thus a metamodel) a
sub-model containing elements depending on a set of elements of interest. The set of
elements to be kept is computed from transitive dependencies of the elements of inter-
est, and finally, only those elements that are not related to the elements of interest are
discarded. Package unmerge rather identifies elements to be removed, and all contained
elements are also removed, even if a dependency exists between an element to be kept
and an element to be removed. An example found in section 5 was the Core::Suite
that had to be dropped even though Core::Project had to be kept. Purpose of mod-
el slicing is more about model understanding and impact analysis while purpose of
package unmerge is metamodel reuse.

Steel et al. [18] define rules for comparing two metamodels. This way model trans-
formations may declare their input and output domains, so as to check that a given mod-
el can actually “enter” a transformation. As such, they check that a model which con-
forms to a given metamodel also conforms to another metamodel. Unfortunately, a
model conforming to a reduced metamodel may not always conform to the metamodel-
to-be reduced. This stems from the properties of the merge transformation. As pointed
out in [19], a model conforming to a metamodel-to-be-merged may not conform to the
merged metamodel. As the counterpart of package merge, package unmerge may thus
not preserve model typing. A concluding remark is that extending the perimeter of a lan-
guage is not the only possibility of package merge; symmetrically, reducing the perim-
eter of a language may not be done only by package unmerge.

8 Conclusion

This work is a contribution to the field of metamodel reuse, in the context of language
engineering. We have presented here a new mechanism for controlling metamodel re-
duction, based on the definition of counterparts to package merge relations, that we call
«package unmerge». Package merge and package unmerge can be considered a dual ap-
proach to metamodel engineering, by which the effect of one can be traced and reversed
by the other. Used together, package merge and unmerge allow fine tuning of metamod-
el reuse.

We have developed a tool which implements both package merge and unmerge, and
which provides assistance to determine the subset of a metamodel that a given tool ef-
fectively implements. The tool also automates the generation of package counterparts



for package merge and unmerge. This tool is open-source, and can be downloaded from
http://sourcesup.cru.fr/projects/vetess/.

Package unmerge, due to its definition as the package merge counterpart, inherits
its strengths and drawbacks from package merge. It designates clearly what is to be re-
moved, which may be an advantage (no unexpected removal) or a drawback (different
pruning points all have to be designated). Moreover, as package merge is not the only
mechanism for composing metamodels, the package unmerge we propose here is not be
the only approach to metamodel pruning. For example, in [20], beside metamodel
merge (corresponding to the approach taken by package merge approach) are identified
metamodel interfacing, class refinement, and template instantiation. Counterparts for
some of these approaches might also be possible and deserve to be explored and com-
pared to, now package unmerge is proposed a definition.

We consider a metamodel too big when it is used by a tool that does not handle all
of the concepts it declares. Making clear what actual metamodel is used by modeling
tools would make tools’ behavior clearer, as metamodel of manipulated models is part
of tools’ contract. A problem with many tools is that they do not fulfill their contract,
because they declare a metamodel that is often too big, especially for metamodels con-
structed by reuse. One solution for this problem is to be able to alter extended metamod-
els using subtractive techniques as the one we propose in this paper. Thus, we consider
metamodel reduction as step towards what one could call «component-based model en-
gineering», where modeling tools could be selected, verified or assembled according to
their contract. Hopefully, shifting to component-based paradigm could change the na-
ture of MDE as components changed the nature of software [21].
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