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Abstract

Objective: Each surgical procedure is unique due to patient’s and also surgeon’s particularities. In this study, we propose
a new approach to distinguish surgical behaviors between surgical sites, levels of expertise and individual surgeons thanks
to a pattern discovery method. Methods: The developed approach aims to distinguish surgical behaviors based on shared
longest frequent sequential patterns between surgical process models. To allow clustering, we propose a new metric called
SLFSP. The approach is validated by comparison with a clustering method using Dynamic Time Warping as a metric to
characterize the similarity between surgical process models. Results: Our method outperformed the existing approach.
It was able to make a perfect distinction between surgical sites (accuracy of 100%). We reached an accuracy superior
to 90% and 85% for distinguishing levels of expertise and individual surgeons. Conclusion: Clustering based on shared
longest frequent sequential patterns outperformed the previous study based on time analysis. Significance: The proposed
method shows the feasibility of comparing surgical process models, not only by their duration but also by their structure
of activities. Furthermore, patterns may show risky behaviors, which could be an interesting information for surgical
training to prevent adverse events.
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1. Introduction

Surgical procedures are unique due to a patient’s anatom-
ical particularities, and due to the habits and experience of
the surgical team. The surgical process modeling method-
ology was introduced about 15 years ago to study such
variabilities [1, 2]. A surgical process model describes a
surgical procedure at different levels of granularity as a list
of phases, steps, and/or activities [2]. A surgical procedure
can be divided into successive phases corresponding to the
main periods of the procedure. A phase is composed of
one or several steps. A step is a sequence of activities used
to achieve a surgical objective. An activity is a physical
action performed by the surgeon. Each activity is decom-
posed into different components, including the action verb,
the target concerned by the action (anatomical structure),
and the surgical instrument used to perform this action.
Surgical Process Models (SPM) have been developed for
three main purposes: (1) Formalizing surgical knowledge,
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(2) evaluating surgical skills and systems, (3) assisting the
surgeon during a surgical intervention.

A SPM can be acquired manually from observations [3]
or automatically thanks to recent advances in the auto-
matic recognition of phases [4, 5], steps [6, 7] or activities
[8, 9]. These SPMs have been recently used to identify
differences between surgical behaviors, like the differences
between surgical sites [10], surgical skills [11], types of pro-
cedures [12] and levels of surgical expertise [10, 13, 14].

In these studies, the differences between surgical be-
haviors were mostly computed by comparison of the sur-
gical duration [10, 11, 13, 14]. For instance, Riffaud et
al. [11] highlighted statistical relationship between surgical
practice and surgical experience based on duration. Some
studies computed a generic SPM (gSPM) to express the
differences between surgical behaviors. For instance, Neu-
muth et al. [12] compared inpatient and outpatient proce-
dures by creating one gSPM for each type of procedure,
and used duration as metric to highlight the differences.
However, a surgical behavior is not only characterized by
the duration, but also by the succession of activities. To al-
low a better identification of surgical behavior, we present
a method based on pattern discovery to identify a sequence
of activities specific to a population of surgical cases.

Pattern discovery is used in various domains, like biol-
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ogy [15, 16], telecommunications [17], web [18] or medicine
[19, 20, 21]. In all applications, the authors try to identify
patterns (i.e. successions of elements that have multiple
occurrences in a given set of sequences) to explain or un-
derstand the apparition of phenomena, for example, the
apparition of an alert signal in telecommunications, or a
protein promoter site in biology. In the medical field, the
patterns are used to create a generic representation of the
clinical pathway of patients from the admission to the dis-
charge [19, 20] or to identify relationships between peri-
operative data [21]. Up to our best knowledge, pattern
discovery has never been used to identify surgical behav-
iors yet.

A pattern uniquely specific to a surgeon is a mark
of his (her) behavior. We developed a pattern discovery
method exploiting this characteristic based on expansion
from short patterns, similar to the APRIORI method [22],
for identifying differences in surgical behaviors.

2. Method

The aim of this study is to find the longest frequent
patterns in surgical procedures and cluster these proce-
dures thanks to the amount of patterns shared between
them. For this purpose, we developed a pattern discovery
method (section 2.1), and defined a new similarity metric
for the clustering of surgical procedures (section 2.2).

2.1. Sequential Pattern Discovery

Sequential pattern discovery consists in finding pat-
terns in sequences, where each element is directly followed
by another. In our case, the sequences are surgical pro-
cess models (SPMs) at the granularity level of activities
performed by the surgeon’s dominant hand. Therefore, a
sequential pattern is a series of activities, at least 2, where
an activity is followed by another determined activity. In
our method, we search for longest frequent patterns. A
pattern is frequent if the succession of activities it repre-
sents is present at least min fr times in a set of SPMs,
where min fr is a predetermined threshold. We search the
longest pattern in agreement with the lemma 1 of Mannila
et al. [17]: “If an episode α is frequent in an event se-
quence s, then all subepisodes β � α are frequent”, where
an episode is a pattern. Therefore, with longest patterns,
we limit the number of results without any loss of infor-
mation. The following subsections present the developed
algorithms.

2.1.1. Main algorithm (algorithm 1)

Algorithm 1 computes all the longest frequent patterns
present in a set of activity sequences. In a first step, the
algorithm establishes a vocabulary of frequent activities
(algorithm 2). Secondly, the algorithm generates candi-
date patterns of size k from the frequent patterns of size
k-1 and frequent activities (algorithm 3). In a third step,
the frequency of candidate patterns is computed to de-
termine the frequent patterns of size k, and the longest

frequent patterns of size k-1 (algorithm 4). Steps 2 and 3
are repeated to extend patterns until we do not find any
new frequent patterns of size k. At each loop, the longest
frequent patterns of size k-1 are added to the longest fre-
quent patterns of inferior sizes. Figure 1 illustrates the full
process for a simple example.

input : S: A set of activity sequences. min fr: A
frequency threshold.

output: allLongestFrequentPatterns: A set of
longest frequent patterns.

1 begin
2 frequentActivities ← Get Vocabulary

Activities(S, min fr); /* Algorithm 2

*/

3 k = 2; /* Length of patterns */

4 frequentPatternsk−1 ←frequentActivities;
5 while |frequentPatternsk−1 | > 0 do
6 candidatePatterns ← Get Candidate

Patterns(frequentPatternsk−1,
frequentActivities, k); /* Algorithm 3 */

7 frequentPatternsk,allLongestFrequentPatterns
← Get Frequent Patterns(min fr, k,
S, candidatePatterns); /* Algorithm 4

*/

8 k + +;
9 frequentPatternsk−1 ←frequentPatternsk;

10 end
11 return allLongestFrequentPatterns;

12 end
Algorithm 1: Main Algorithm.

2.1.2. Get Vocabulary Activities algorithm (algorithm 2)

This algorithm extracts a vocabulary of frequent activ-
ities. First, it parses each sequence s (line 4) to count the
number of apparitions of each activity. Them (line 13),
if the number of apparitions is superior to the threshold
min fr, the activity is added to the frequent activities
vocabulary.

With this vocabulary of frequent activities, we are cer-
tain that all the patterns constructed with these activities
can be frequent. The vocabulary of frequent activities lim-
its the candidate patterns created in algorithm 3.

2.1.3. Get Candidate Patterns algorithm (algorithm 3)

The aim of this algorithm is to return candidate pat-
terns that could be frequent (good candidate).

First, an activity a of the vocabulary of frequent ac-
tivities is added at the end of a frequent pattern of size
k-1, to create a potential candidate of size k (line 5). At
this instant, every activity constituing the potential can-
didate is frequent (thanks to algorithm 2), but we do not
know if each sub-pattern is frequent. Therefore, we test if
the sub-patterns of size k-1 are frequent (line 7). We test
the sub-pattern containing the activity a only, since the
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Figure 1: Proceeding of the sequential pattern discovery method for a simple example. S is a set of activity sequences,
min fr is a frequency threshold.

other, due to the construction of a potential candidate,
is frequent. If the sub-pattern containing the activity a
is one of the frequent patterns of size k-1, the potential
candidate is a good candidate. This is repeated for each
frequent pattern of size k-1 associated to each activity.

2.1.4. Get Frequent Patterns algorithm (algorithm 4)

This algorithm has two functions: (1) return the fre-
quent patterns of size k, and (2) return the longest frequent
patterns of size k-1.

First, the algorithm counts the number of apparitions
of each candidate pattern in activity sequences S (lines 4
to 13). The number of candidate patterns can be impor-
tant, especially for candidate patterns of 2 activities: In-
deed, for 100 frequent activities, algorithm 3 gives 10,000
candidate patterns (100 x 100). To improve the computa-
tion time, instead of using brute search, we look through
each activity sequence only once, and compare a window
of size k to each candidate c (line 7). If a sequence window
matches a candidate pattern c, the number of apparitions
of c is incremented (line 8), we do not test the remain-
ing candidates and we shift the position of the windows
(line 9).

The second step (lines 14 to 18) consists in checking
if the number of apparitions of candidate c is superior to
the threshold min fr. This step separates candidate pat-
terns into frequent patterns (patternsk) and infrequent
candidates (infrequentCandidates). The frequent pat-
terns will be used in the next loop of algorithm 1.

The infrequent candidates are composed of frequent
sub-patterns (algorithm 3). The last step (lines 20 to 27
of algorithm 4) consists in checking if these sub-patterns
are contained in the frequent patterns (patternsk). If it
is not the case, these frequent sub-patterns constitute the
longest frequent patterns of size k-1.

2.2. Hierarchical Clustering

Clustering [23] consists in the creation of sets of sim-
ilar objects (called clusters). Hierarchical clustering is a
bottom-up clustering method. First, each object consti-
tutes its own cluster. And, clusters are iteratively merged
by pairs into a higher-level cluster. To performed cluster-
ing, we need to specify a metric characterizing the simi-
larity between surgical process models and an approach to
merge the clusters. We propose a new metric called Shared
Longest Frequent Sequential Pattern metric (SLFSP met-
ric) based on the number of shared longest frequent se-
quential patterns between 2 SPMs divided by the number
of unique longest frequent patterns of both SPMs:

SLFSP (A,B) =
|sharedA,B |

|patternsA|+ |patternsB | − |sharedA,B |
,

(1)
where A and B are 2 SPMs, |sharedA,B | is the number
of shared longest frequent sequential patterns between A
and B, and |patternsA| and |patternsB | are respectively
the number of longest frequent patterns of A and B.
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1 Get Vocabulary Activities(S, min fr)
input : S: A set of activity sequences. min fr: A

frequency threshold.
output: frequentActivities: A set of frequent

activities.
2 begin
3 /* Count frequency of apparition of

each activity. */

4 foreach sequence s of S do
5 for i=1 to |s| do
6 if s[i]/∈activitiesMap then
7 activitiesMap.insert(s[i],1) ;

/* activitiesMap contains

activities (keys) and their

frequency of apparition

(values) */

8 end
9 else activitiesMap [s[i]]++ ;

10 end

11 end
12 /* Save frequent activities in

frequentActivities. */

13 foreach activity a of activitiesMap do
14 if a.value ≥min fr then
15 frequentActivities.insert(a.key);
16 end

17 end
18 return frequentActivities;

19 end
Algorithm 2: Algorithm to return all frequent
(>min fr) activities in a set of sequences S.

We used the average-link approach with UPGMA al-
gorithm (Unweighted Pair Group Method with Arithmetic
Mean) [24] to merge the clusters. The average-link ap-
proach consists in evaluating the similarity between two
clusters according to the average distance between all cou-
ples of objects in the two clusters. Therefore, the distance
between clusters C1 and C2, composed of SPMs, is defined
as:

d(C1, C2) =
1

|C1||C2|

|C1|∑
i=1

|C2|∑
j=1

SLFSP (spmi, spmj) , (2)

where |Cn| is the number of SPMs in the cluster n.
To analyze the clusters, created by the hierarchical

clustering, we use a dendrogram.

3. Validation

To validate our method, we compared our approach
with the study of Forestier et al. [10]. In this study, the au-
thors compared surgical practices between three different
surgical sites through a Dynamic Time Warping distance.
First, we briefly present the data. Secondly, we present

1 Get Candidate Patterns(patternsk−1,
frequentActivities, k)
input : patternsk−1: A set of frequent patterns of

k-1 activities. frequentActivities: A set of
frequent activities. k: The length of
patterns to generate.

output: candidatePatterns: A set of candidate
patterns of length k.

2 begin
3 for i=1 to |patternsk−1 | do
4 foreach activity a of frequentActivities do
5 potentialCandidate ←

Concatenation(patternsk−1 [i], a);
/* Add activity a at the end of

the ith pattern of patternsk−1 */

6 if potentialCandidate [2,k ] ∈
patternsk−1 then

7 /* if sub-pattern of size k-1

with a is frequent */

8 candidatePatterns.insert
(potentialCandidate);

9 end

10 end

11 end
12 return candidatePatterns;

13 end
Algorithm 3: Algorithm to generate candidates of
length k thanks to the frequent patterns of length k-1
(patternsk−1) and the frequent activities.

the previous results obtained by the authors. Finally, we
present the results with our method.

3.1. Data

The data consist of 41 one-level Anterior Cervical Dis-
cectomies (ACDs) performed in three different surgical
sites by 11 different surgeons. During an ACD, a cervi-
cal disc is removed by an anterior approach. In the 41
surgeries, 11 were performed on site A, 12 on site B, and
18 on cite C (sites are anonymized). Two expertise levels
were defined by Forestier et al. [10]: expert and interme-
diate. An expert is a neurosurgeon who has performed
more than 200 ACDs, whereas an intermediate is a neuro-
surgeon who has performed less than 100 ACDs. Table 1
presents the number of surgeries, the number of experts
surgeons and intermediates surgeons by surgical site.

The data were recorded on-line by two surgeons, an ex-
pert surgeon for site A and C, and an intermediate surgeon
for site B. Both operators used the Surgical Workflow Ed-
itor [3] for data recording and possessed the same level of
training in this editor. However, Forestier et al. [10] have
shown a vocabulary heterogeneity between surgical sites,
specifically, between site B and the others two (less than
50% of similarity). To remove this issue, the terms used
on sites A and C were matched with the terms used on
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1 Get Frequent Patterns(min fr, k, S, candidatePatterns)

input : min fr: A frequency threshold. k: The length of patterns. S: A set of activity sequences.

candidatePatterns: A set of candidate patterns of length k.

output: patternsk: A set of frequent pattern of k activities. longestFrequentpatternsk−1: A set of frequent

pattern of k-1 activities not present in patternsk.

2 begin

3 /* Count frequency of apparition of each candidate c of candidatePatterns in S */

4 foreach sequence s of S do

5 for start=1 to |s|−k do

6 foreach candidate c of candidatePatterns do

7 if s[start, start+k ]=c then

8 c.freq++;

9 start++; Stop and go to line 5

10 end

11 end

12 end

13 end

14 foreach candidate c of candidatePatterns do

15 /* save frequent candidates in patternsk */

16 if c.freq ≥ min fr then patternsk.insert(c);

17 else infrequentCandidates.insert(c);

18 end

19 /* Save sub-patterns of infrequentCandidates were not sub-pattern of patternsk */

20 foreach infrequent candidate i of infrequentCandidates do

21 for start=1 to 2 do

22 subPattern←i[start, k-2+start];

23 if !Contains Sub-pattern(patternsk, subPattern) then

24 longestFrequentpatternsk−1.insert(subPattern);

25 end

26 end

27 end

28 return patternsk, longestFrequentpatternsk−1;

29 end
Algorithm 4: Algorithm to get a set of frequent pattern of k activities (patternsk) and a set of longest frequent

pattern of k-1 activities (longestFrequentpatternsk−1).

Surgical site A B C
Number of surgeries 11 12 18
Number of experts 3 3 2

Number of intermediates 1 0 2

Table 1: Repartition of surgeries and surgeon expertise by
surgical sites.

site B by an expert surgeon. For our study, we used the
SPMs obtained after vocabulary uniformization.

3.2. Previous study

In their study, Forestier et al. [10] used Dynamic Time
Warping distance as the metric to characterize similar-
ity between surgical process models. This metric and an

average-link approach are used to perform the hierarchical
clustering.

The authors made three levels of analyses: distinguish-
ing surgical sites, distinguishing individual surgeons and
distinguishing levels of expertise. They had an accuracy
of 97.5% (40/41) for distinguishing surgical sites, 72.4%
(21/29) for distinguishing individual surgeons, and 86.2%
(25/29) for distinguishing levels of expertise. The two last
analyses were only performed for site A and C, because
for surgical site B all surgeons were expert and no clear
sub-clusters emerged .

The authors announced few minutes to compute the
distance matrix.
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3.3. Results

Figure 2 represents the results of our clustering method
by pattern discovery with a threshold minfr of 6. Which
was selected because it is the threshold which offers the
best results for clinical sites clustering. We identified 207
longest frequent patterns in the 41 surgeries. The compu-
tation time to find the patterns and to create the distance
matrix was inferior to 30 seconds.

We identified 3 clusters (CLA, CLB , and CLC), one
for each surgical site. In reality CLC is not a cluster, but
3 separate clusters with the same surgical site. Therefore,
our method has an accuracy of 100% to identify surgical
sites.

We separated each of the previous clusters into sub-
clusters where the surgeries were performed by the same
surgeon. These clusters are noted CLn, where n is the id
of the surgeon in this cluster. Only three surgeons have
misclassified surgeries: (1) the two surgeries of surgeon
10 are classified with surgeon 9 (CL9), (2) one surgery of
surgeon 3 is classified in CL4, and (3) surgeon 6 has one
surgery in CL5, one in CL7 and one alone. Our method
has an accuracy of 85.4% (35/41) for all surgical sites, and
89.6% (26/29) for surgical site A and C.

We also studied the clustering by levels of expertise.
Like Forestier et al. [10], we did not perform this study for
surgical site B due to the fact that all surgeons are experts.
Only CL9 has different level of expertise due to the pres-
ence of surgeries of the intermediate surgeon 10 in this ex-
pert cluster. Therefore, the accuracy we obtained for dis-
tinguishing the levels of expertise is 93.1% (27/29). These
results are compared with those of Forestier et al. [10] in
table 2.

Analysis
Surgical

sites

Levels
of ex-
pertise

Individual
surgeons
(sites A
and C)

Individual
surgeons

(all
sites)

Accuracy
for

Forestier
et

al. study[10]
(%)

97.5 86.2 72.4 Na

Accuracy
for our
method

(%)

100 93.1 89.6 85.4

Table 2: Accuracy of distinguishing surgical sites, of lev-
els of expertise and individual surgeons by both methods.
Study of level of expertise was only performed for surgical
site A and C. Na: Not applicable

4. Discussion

In this paper, we proposed an approach for studying
surgical procedures based on pattern discovery. We ap-
plied this approach to define a new metric called SLFSP.
We compared our approach with an existing approach and
demonstrated that pattern analysis had a better discrimi-
native power.

Our method distinguishes the surgical sites with an
accuracy of 100%, and clusters levels of expertise (only for
surgical site A and C) with an accuracy of 93.1%. In these
two cases, for the same number of surgical process models,
we outperformed the results of Forestier et al. [10] (97.5%
for clustering by surgical sites and 86.2% for clustering by
level of expertise). Moreover, Forestier et al.proposed a
clustering by surgeons only for site A and C, because no
clear sub-clusters emerged with their method for site B,
with an accuracy of 72.4%. In our case, for all surgical
sites, we had an accuracy of 85.4%. Our method thus
results in better clustering.

However, the accuracy for the surgical site classifica-
tion must be nuanced. In figure 2, we can see that the
cluster of the surgeon 8 (CL8) has a distance closer to site
A than other clusters of surgical site C (CL10 and CL11).
This result could be explained by the fact that surgical
behavior is not completely different depending on the sur-
gical site. However, the clear clusters obtained for sites A
and C suggest that it does have an influence that could
be explained by knowledge and practice sharing between
surgeons working at the same surgical site.

Regarding the clustering by individual surgeons and
by levels of expertise, CL9 clusters an expert surgeon (9)
and an intermediate surgeon (10) together. This could be
explained by the fact that the surgeon 9 was the mentor of
the surgeon 10, implying that they both were performing
similar patterns.

The main limitation of our method is the necessity to
define a threshold for the number of apparitions of the pat-
tern, in order to limit the number of irrelevant patterns.
Indeed, if we define the threshold at 2, our pattern discov-
ery method will give a lot of patterns specific only to the
particularities of few surgeries, for example the execution
of specific activities to cut the excess of fat for an obese
patient. So, these patterns being rather non-specific to a
surgical behavior, it will be more difficult for distinguish-
ing such behaviors. In our case, we chose a threshold of
6 because it offers the best results for clinical sites clus-
tering of our 41 surgeries. This threshold is dependent
on the number of sequences, consequently, it is necessary
to determine the best threshold by testing. However, it
is possible to search for the optimal threshold by exhaus-
tive search, due to the low computation time (less than 30
second with our threshold).

Even for an off-line method, it seems necessary that
the calculation time is as small as possible for a restricted
data set, in order to be applicable to larger data set. Our
method better addresses this issue, with a computation
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Figure 2: Dendrogram representing the hierarchical clustering based on our method, using 41 surgeries, for a threshold
of 6. The horizontal axis represents the surgeries. The vertical axis represents the dissimilarity (1- SLFSP). For each
surgery, the site (A, B, and C), the surgeon id (1-11) and the level of expertise (Expert (E), Intermediate (I)) are
mentioned.

time inferior to 30 seconds, than Forestier et al., where it
is a few minutes.

5. Conclusion

With our clustering method, thanks to longest fre-
quent patterns, we obtain better results than Forestier et
al. study [10] for the same data.

For the computation of the SLFSP metric, we only
used longest frequent patterns. It is possible that sub-
patterns also give information. It will be interesting to
add information of sub-patterns to allow better clustering.

In this study, we focused on fixed consecutive patterns.
Currently, if two activities only differ by a surgical instru-
ment, we considered them as two different activities. But
if both surgical instruments have the same function (for
example, to cut an anatomical structure), it could be log-
ical to consider both these activities as equivalent. So,
enhancing the method by allowing substitution of similar
activities inside a pattern, according to ontological rules,
may lead to interesting improvements.

This study highlights the possibility to identify spe-
cific surgical behaviors of different populations of surgeons.
The objective of this work is the identification of surgical
behaviors which may be correlated to the apparition of
intraoperative adverse events. Such identification of be-

haviors may help preventing their apparition or limiting
their severity.

Additionally, our approach may improve automatic recog-
nition of surgical phases or steps, by providing some addi-
tional a priori knowledge on expected surgical patterns
in complementary to other existing approaches such as
where hidden Markov models or Dynamic Time Warping
[4, 5, 6, 7].
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