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Abstract: Magnetic Resonance Imaging (MRI) method allows to observe the distribution of different fluids in situ 13 

in porous media, and to measure oil and water saturation. Although this technique has great advantages compared 14 

to others, there remains large space for assessing the method and improving the accuracy of measurement. Using 15 

MRI, the oil secondary migration paths are scanned to measure the saturation distribution during the laboratory 16 

experiments. The resulting map can be calibrated using a device with the same pore structure as the probed sample 17 

and fully saturated with oil. This device is scanned with the probed sample at the same time in order to calibrate 18 

the saturation. The Spin-echo multi-slices sequence (SEMS) is adopted for MRI to ensure that the oil saturation in 19 

migration paths is accurately measured. The relevant spatial resolution of the mapping is defined according to the 20 

concept of REV (representative elementary volume). The oil saturation resulting from data obtained using 21 

different image formats are compared and the resulting saturation evaluation is compared to direct bulk saturation 22 

measurements. This comparison demonstrates that the calculated MRI oil saturation using DICOM image format 23 

is quite accurate, with a relative error less than 2%. 24 
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Introduction 26 

Physical experiment is an important means of observing the hydrocarbon migration phenomenon and studying 27 

the migration mechanism (Dembicki and Anderson, 1989; Catan et al., 1992; Tukunaga et al., 2000; Zeng and 28 

Wang, 2003; Zhang et al., 2003; Zhang et al., 2004). For interpreting these experiments, it is important to evaluate 29 

the oil saturation occurring in the migration channel. Moreover the oil saturation gives an important basis for the 30 
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quantitative evaluation of the migration losses and for the estimation of potential reservoir (Hirsch and Thompson, 1 

1995; Luo, et al., 2004; Luo et al., 2007; Luo et al., 2008). 2 

Many conventional methods of measuring oil saturation, including distillation, chromatography (Tang and Cai, 3 

2007) and water washing method (Dembicki and Anderson, 1989), have been proposed as listed in table 1.  4 

These methods are essentially destructive, i.e. samples are destroyed to measure the oil saturation in the porous 5 

medium so that the oil saturation can not be dynamically monitored. Besides, all results measured with 6 

conventional methods are average oil saturation (Chen et al., 1992; Nicula et al., 1998), which makes difficult to 7 

assess the spatial distribution of oil in the porous medium (Baldwin et al., 1989). So in the recent decades, 8 

scientists have developed some new non-destructive technologies, such as optical techniques and ray attenuation 9 

method in order to test the spatial distribution of fluid saturation in biphasic flows in porous media. Optical 10 

techniques, including light reflection method (LRM) (Van and Sykes, 1998; Fishman et al., 1998; O’Carroll et al., 11 

2004) and light transmission method (LTM) (Hoa et al., 1981; Darnault et al., 1998; Darnault et al., 2001; Conrad 12 

et al., 2002; Bob et al., 2008) are low cost, easy to fulfill, but only apply to quasi2D transparent media. Compared 13 

with conventional light sources, both Gamma rays and X rays have a relatively strong penetrability and apply to 14 

opaque media such as soil and rock (Høst-Madsen and Jensen, 1992; Liu et al., 1992; Ursin, 1992; Illangasekare, 15 

et al., 1995; Imhoff et al., 1996; Bsavaraj et al., 1997; Dicarlo et al., 2000; Hill et al. 2002; Oostrom et al., 2003; 16 

Oostrom et al., 2005). But as for optical methods, they are half-space measuring methods, and only apply to 2D 17 

plate models with low thickness. Computer tomography (CT) methods using Gamma or X ray attenuation can 18 

realize actual 3D local measurement of non-transparent medium without limitation of medium shapes (Shama et 19 

al., 1997; Mogensen et al., 2005; Rangel-German et al., 2006). However, since the absorption and attenuation of 20 

X ray mainly depend on the local density of the porous media (i.e. matrix+ fluid) but not on fluids themselves, it is 21 

hard to distinguish between fluids. Therefore the CT Gamma or X-ray method is not well adapted to observe the 22 

oil and water in porous medium (Edelstein et al., 1998; Li et al., 2007). 23 

Compared with the above methods, MRI method has huge advantages in testing oil saturation. First, as a 24 

nondestructive and noninvasive method, MRI has a high testing precision12 and can be used to monitor the 25 

saturation change during the experimental process; second, MRI provides a much better contrast to distinguish the 26 

fluids between them than CT because it detects the fluids in the porous medium directly; third, MRI does not 27 

require a particular shape, realizing 3D spatial quantitative measurement in a real sense; and last, MRI allows to 28 

see through opaque rocks, unlike optical methods only suitable for Hele Shaw cells. 29 

Many researchers have measured oil saturation by detecting H +  density using MRI since 1990s (Baldwin et 30 
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al., 1989; Mandava et al., 1990; Chardaireriviere and Roussel, 1991; Chen et al., 1992; Enwere and Archer, 1992; 1 

Chang et al., 1993; Mogensen et al., 2005). Washburn (2010) adopted Na element to conduct MRI to distinguish 2 

between the water phase and the oil phase, and tested the distribution of water-phase saturation with MRI. Most of 3 

the tests, however, were carried out in one-dimensional space. Graue et al. (2001) have given the oil distribution 4 

in 2D MRI slices, but the test principle and image processing were not described. 5 

Secondary migration of oil and gas in basins is an extremely heterogeneous process (McNeal, 1961; Harms, 6 

1966; Smith, 1966; Berg, 1975; Schowalter, 1979), and heterogeneous path is found even in homogeneous porous 7 

media as long as the gravitational or viscous contrast between the two fluids destabilizes the invasion process 8 

(Frette et al., 1997; Méheust 2002; Luo et al., 2004; Løvoll et al., 2004; Toussaint et al., 2005). Therefore, 9 

real-time measurement of shape features of the migration path and the change of its interior oil saturation is an 10 

essential basic work for research of hydrocarbon migration mechanism. Miao et al. (2004) and Zhou et al. (2005) 11 

have adapted the MRI method to define oil saturation during the oil migration process. They calibrated the 12 

measurements using pure oil filled in a small glass tube as calibration, but they didn’t consider the possible matrix 13 

effect: this effect results in a significant difference between in-pore oil and pure oil estimate from transverse 14 

relaxation rate and the overall accuracy should take into account this effect  15 

This paper focuses on the technique of using MRI to measure oil saturation in heterogeneous oil clusters 16 

inside a porous medium. Experiments are conducted in a glass tube initially saturated with water where oil 17 

migrates, while another glass tube filled with glass beads and fully saturated with oil is used as the calibration. 18 

This allows measuring the oil saturation and its distribution inside the path of different type of patterns. The paper 19 

also makes a comparative analysis of differences in oil saturation calculated according to data sources of different 20 

image formats, and validates the techniques by comparison with independently measured global saturation results. 21 

1. Measurement Principle 22 

In the experiments, the SEMS was used to scan the samples and the relaxation process of MRI signal can be 23 

described as (Mandava et al., 1990):  24 
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          (1) 25 

in which, ω  is the resonance frequency, M  is the observed magnetic intensity, 0M is the inherent magnetic 26 

intensity, ET  is the echo time, RT  is the repeat time, 1T  is the longitudinal relaxation time, and 2T is the 27 

transverse relaxation time. 1T  and 2T  are dependent on the properties of matter and the surrounding 28 



- 4 - 

environment; ET  and RT  can be set in the MRI sequence. If 1RT T>>  and 2ET T<< , the observed magnetic 1 

intensity is close to the inherent one: 2 

( ) ( )0, EM T Mω ω≈                    (2) 3 

The gray value of the obtained images is in direct proportion to the proton density: 4 

( )0 ( )M kN Hω +=                 (3) 5 

which is the basis for oil saturation testing with MRI (Edelstein et al., 1988; Chen et al., 1992). 6 

During the scan of the probed sample with MRI, if a calibration is carried out aside with a known oil 7 

saturation ( 'S ), then for the calibration sample, as well: 8 

( ) ( )' ' ' ' '
0, EM T Mω ω≈                             (4) 9 

in which, 'M  and '
0M  are the observed magnetic intensity and inherent magnetic intensity of the calibration 10 

respectively. Calling the oil saturation of the probed sample and of the calibration sample respectively as S and 11 

'S ΄, Considering 'ω ω= and '
E ET T= , the oil saturation in the samples can be decided by the oil saturation in 12 

the calibration:  13 
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2Mn +  allows to distinguish MRI signal of oil from that of water by shortening water transverse relaxation 15 

time. In the oil and water two-phase displacement experiments, H +  in both oil and water can incur MRI signal, 16 

but affected by the molecular structure, the relaxation rates of two MRI signals are different, namely, the 17 

relaxation of H +  spin in water molecules is quicker than that in oil. Under addition of water-soluble 2Mn +  in 18 

water, the relaxation time of H +  in water molecule will become even shorter, while that in oil remains 19 

unchanged (Chang et al., 1993). Figure 1 describes the dependence of the transverse relaxation time of manganese 20 

water solution on the 2Mn + concentration, in experimental conditions (i.e. in pores between piled glass beads of 21 

0.6mm-0.8mm grain size). As can be seen on the figure 1, the relaxation times fall dramatically with 2Mn +  for 22 

small concentrations. When 2Mn + concentration above 700 mg/L, water relaxation times become much shorter 23 

than those of oil ( 1T  and 2T  for oil are respectively 1024ms and 868ms, whereas for manganese water 1T ~7 ms 24 

and 2T ~3.5 ms). Under such conditions, it is possible to isolate the MRI signal of oil and neglect the one of the 25 
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manganese water solution. Setting the ET  to values interval between manganese water and oil transverse 1 

relaxation time, i.e. oEw TTT 22 <<<< , and keeping RT above the longitudinal relaxation time of oil, 2 

Ro TT <<1 , allows to neglect the contribution of H +  in water molecule to MRI signal, and to record the 3 

inherent magnetic intensity from the oil molecules .  4 

Oil saturation is measured by comparing MRI signal intensity of the probed sample with that of the 5 

calibration. 6 

2. Effect of the porous matter structure of the calibration sample on the determination of the 7 

oil relaxation time 8 

The accurate measurement of oil saturation requires oil relaxation time in calibration to be the same as in the 9 

probed sample. 10 

As pointed out by Kenyon (1992), the transverse relaxation of fluid in pore medium is governed by free 11 

relaxation, surface relaxation and diffusion relaxation: 12 

2

2
2 2

( )1 1
12

E

bulk

D GTs
T T v

γρ= + +                   (6) 13 

in which, 2bulkT  is the transverse relaxation time of free fluid, 2ρ  is the transverse relaxation intensity, s v  is 14 

the specific surface, D  is the magnetic diffusion coefficient , γ  is the gyromagnetic ratio, and G  is the field 15 

intensity gradient. The first item on the right side of equations (6) represents the transverse relaxation rate of the 16 

free fluid, far from liquid/solid boundaries; the second term represents the surface relaxation rate, while the third 17 

term represents the magnetic diffusion relaxation rate. As can be seen in the equation, compared with a pure fluid 18 

and its free relaxation time, the fluid in porous medium is partly bounded to the solid, affected by surface 19 

relaxation mechanisms, and the transverse relaxation time will be shortened. In general, the diffusion relaxation 20 

mechanism does not cause significant differences between the calibration and testing sample in transverse 21 

relaxation time, and if short enough ET  is adopted to conduct the MRI, the influence of diffusion relaxation can 22 

be neglected. 23 

In the present experiment, we use oil as displacement phase fluid and a porous medium fully saturated with oil 24 

as a calibration sample, '
2 2T T= and ' 100%S = , so the equation (5) can be deducted as: 25 

( )
( )'

,
,

E

E

M T
S

M T
ω
ω

=                 (7) 26 



- 6 - 

The specific surface of the porous medium is a decreasing function of the pore radius (Pape et al., 2009), 1 

namely, the pore radius will affect the transverse relaxation of fluid in the porous media. To quantitatively 2 

evaluate the effect of surface relaxation on the relaxation time, we tested the transverse relaxation time of pure 3 

free oil and of the oil in pores of glass bead piling body of different grain sizes (Table 2), by adopting the 4 

multi-echo spin echo sequence (CPMG) ( Wamg et al., 2008). It can be seen from Table 2 that, with the decrease 5 

of the glass bead size, the transverse relaxation time shortens clearly. In order to eliminate this influence, the 6 

sample and the calibration should be filled with the glass beads with same size. 7 

3. Sample Making and Testing Method and Flow 8 

We conducted secondary migration experiments in a glass tube of length 55cm and inner diameter 2.6cm. To 9 

build the migration model, we adopted the wet filling method (Hou et al., 2004): first, one end of the glass tube 10 

was plugged with a rubber plug and filled with water, next a mixture of glass beads and water was poured into the 11 

tube, which was beaten and shaken from time to time. Eventually when the top surface of the filled glass beads 12 

was 1cm away from the top end, the tube was plugged with another rubber plug, which led to get the model fully 13 

saturated with water. The diameter of the glass beads used was 0.6-0.8mm. Oil was dyed red so that its movement 14 

could be traced directly optically. The calibration tube used in the experiment, with the same specification as the 15 

tube model, was also filled with the same size glass beads using the wet filling method, but it was saturated with 16 

dyed oil.  17 

Dyed oil was injected into the glass tube from the top end while the water was expelled through the bottom 18 

plug. Injection was stopped when the height of the oil column reached 24cm and the glass tube was inverted 19 

upside down. Oil migrated upwards driven by the buoyancy and the migration pattern could be observed visually 20 

as narrow rising strings (Luo et al., 2004). After 10 minutes, the migration front almost reached the top end of the 21 

glass tube and the tube was moved horizontally in the middle of the MRI testing chamber. The calibration sample 22 

was put closely and parallel to the tested sample. 23 

The MRI scanner used in the experiment is Wandong 1.5T superconducting MRI scanner at a proton 24 

frequency of 63.89MHz. According to the measured 1T  and 2T  values of oil in the piling glass bead pores, we 25 

set RT  to 6000ms and set ET  as the minimum value allowed by the meter: 15ms. We also set the slice thickness 26 

(T ) as 2mm and interval between slices (G ) as 0.2mm. It took 52 minutes to complete once scan. 27 

4. NMR Image Processing 28 

Since NMR imaging results from measurements of weak signals, the effect of noise should be taken into 29 
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consideration when calculating oil saturation with MRI. Figure 2A is the MRI slice along the horizontal direction, 1 

perpendicular to the vertical migration direction, and Figure 2B is the gray level distribution along the red line 2 

marked in the slice. In Figure 2A, the white disk in the upper left corresponds to the calibration sample; the white 3 

part in the lower right corresponds to the migration path; and the blue circle marks the position of to-be-measured 4 

glass tube in the image. As seen from Figure 2B, the gray level in the path in not homogeneous, and even outside 5 

of the main migration path, the gray value is not zero, which is commonly called noise. Comparing Figure 2A with 6 

Figure 2B, it can be seen that the noise in non-oil area inside the glass tube is consistent with the noise outside the 7 

tube, indicating that the NMR signal of manganese water has been completely shielded.  8 

The background noise level can be estimated by measuring the gray value of image in an oil-empty area (Chen 9 

et al., 1992), defined as a rectangular area besides the testing sample: From the gray values of each pixel point in 10 

such area, the background level is computed as the average value nB :  11 

1

1 j

n i
i

B g
j =

= ∑                                          (8) 12 

in which j is number of pixels in the rectangular area, and ig is the gray level of the pixel of index i. nB is about 13 

28 and far smaller than the signal of oil. In order to lower the effect of the noise, equation (7) can be modified as: 14 
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                  (9) 15 

Attention must be paid to the image format when computing the saturation according to MRI. The default 16 

image format of MRI is DICOM (Digital Imaging and Communications in Medicine) 3.0 format. The DICOM 17 

image output by Wandong superconducting MRI meter has a 12 digits dynamics, i.e. 4096 gray levels. Commonly 18 

used image processing software, such as ACDSee and Photoshop, can not support DICOM image format. To 19 

facilitate the image display and processing, windowing display technology is often used to convert DICOM format 20 

into BMP format (or TIF format) (Nakashima and Kamiya, 2007; Groesel et al., 2009). This procedure normally 21 

implies to choose a zone in the DICOM image, used for a gray level conversion into the BMP or TIF format. As 22 

will be illustrated hereafter, caution has to be paid on the choice of this window in practice, since this affects the 23 

type of transform and the quality of the quantitative saturation assessment obtained by the whole treatment chain. 24 

The conversion from DICOM format into BMP format is usually partially linear (appendix). The setting of 25 

window width and level can directly influence the relative distribution of gray values at each pixel point of the 26 

converted BMP format image.         27 

Two sets of window and level were compared when converting DICOM image into BMP image. In a first test, 28 
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the window and level were adjusted to make the migration path clearest and to generate the BMP format image 1 

(Figure 3A). In a second test, image format was converted from DICOM to BMP while the window width 2 

covering the whole signal ranges (Figure 3B). The oil saturation distribution was calculated according to Figure 3 

3A and Figure 3B respectively (Figure 4A and Figure 4B). In Figure 4A and 4B, the average oil saturations in 4 

migration path are 48.15% and 35.13% respectively; it is clear that, the selection of windows directly influences 5 

the calculation results of oil saturation. By comparing the oil saturation distribution diagram calculated in BMP 6 

format (Figure 4) with that calculated directly in DICOM format (Figure 5), it can be found that, only when the 7 

window covers the whole pixel interval, both diagrams can match well. This choice should thus always be 8 

preferred for a quantitative saturation estimate – even though it may reduce the brightness and contrast of the 9 

converted image, which is not the most favorable for the direct observation of the structure of the migration path 10 

(Figure 3). 11 

5. Assessment of the MRI saturation measurement precision in a porous medium model 12 

To check the reliability and determine the accuracy of the oil saturation measurement with MRI, a comparison 13 

is done of the total oil mass calculated from the determined saturation distribution with the total oil mass injected 14 

into the model. 15 

The glass tube was first fully filled with water, with two ends closed by rubber plugs. Then water was poured 16 

out and its volume tv  was measured. The glass tube was refilled with manganese water with a 2Mn +  17 

concentration of 700 mg/L, and the mixture of glass beads of 0.6-0.8mm grain diameter and manganese water was 18 

poured into the glass tube. The top end of the glass was blocked with a rubber plug, and total mass of the model 19 

1m was weighed. A certain amount of oil was injected into the glass tube model, and then the glass tube and the 20 

calibrating tube underwent a complete MRI scanning at the same time. Calculating the average oil saturation in 21 

migration path of each slice and the sectional area of migration path with the DICOM format image, the oil 22 

volume of such slice can be calculated as: 23 

* * *s s sv S A T φ
−

=                     (10) 24 

in which, sS
−

 is the average oil saturation of such slice in migration path, sA  is the sectional area of migration 25 

path, T the slice thickness and φ  is the porosity of the model. Though the part between two slices can not be 26 

MRI scanned, since the interval between slices is much smaller than the slice thickness, the oil volume in the gaps 27 

between slices can be interpolated from the two neighboring slices: 28 
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with n is the total number of the slices, the oil volume in the whole model is obtained as: 2 

1

1 1

n n

o s G
s G

v V V
−

= =

= +∑ ∑                             (12) 3 

In the next step, an increment of oil volume is further injected, and the whole measurement chain described 4 

above is determined. A total of nine complete scans of the experiments are conducted. After the completion MRI 5 

tests, the glass beads were taken out from the glass tube model, washed tidily and dried, after that the total mass 6 

2m  of the glass beads, glass tube and rubber plugs is measured. Then the volume of manganese water in the glass 7 

tube model is determined as: 8 

 1 2
p

Mn

m mv
ρ
−

=              (13) 9 

in which, Mnρ  is the mass density of a 700 /mg L concentrated manganese water. The porosity of the glass tube 10 

model is calculated from these volumes asφ =0.36. 11 

A direct comparison of the calculated total oil volume with the actually injected oil volume, in Figure 6, 12 

demonstrates a very good match.. The average relative error between the direct measurements and MRI derived 13 

measurements, among the nine groups of data, is only 1.57%.  14 

Since the type of oil pattern may vary from stable (piston-like) to unstable (finger) as a function of injection 15 

velocity (Tukunaga et al., 2000; Luo et al., 2004), it is important to discuss the accuracy of saturation 16 

measurements as a function of migration pattern. Finger pattern and respectively piston migration pattern were 17 

observed when oil was injected from the bottom of the glass tube at injection flux of respectively 1.0ml/min and 18 

4.0ml/min. Figure 7 and Figure 8 show the oil saturation in one slice of the finger and piston migration path 19 

respectively. For finger migration path, the calculated total oil volume is 32.4ml whereas the actually injected oil 20 

volume is 33ml so that the average relative error between them is 1.82%. For piston migration path, the calculated 21 

total oil volume is 78.7ml whereas the actually injected oil volume is 78ml separately, so that the average relative 22 

error between them is 0.9%. 23 

6. Discussion 24 

Like the porosity and permeability, the saturation is an average physical parameter depending on the 25 

measurement scale. Chardaireriviere (1993) adopted high-field MRI to improve the spatial resolution when testing 26 
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fluid saturation, with the minimum pixel of 100μm×100μm×50μm, but it does not mean that the highest spatial 1 

resolution is the best choice to adopt. If the spatial resolution was high enough, the local oil saturation should in 2 

principle anywhere be either 0 or 100% according to the presence of either water or oil in a pore, which should 3 

reflect the smallest details of the structure of the oil distribution at small scales in the pores, but this choice leads 4 

to very noisy measurements. The proper measurement scale can be decided according to the concept of REV  5 

(Bear, 1972). On the one hand, the REV shall be small enough to fully reflect the change of spatial distribution of 6 

oil saturation on the path, and on the other hand, the REV also shall be large enough to eliminate the effect of the 7 

smallest scales, i.e. the effect of the structure of each pore on the determined oil saturation. Figure 9 is the 8 

distribution of signal intensity of the calibrating tube fully saturated with oil by testing with different spatial 9 

resolutions at the same place. The saturation is homogeneous in the calibration tube, and the choice of the 10 

measurement scale should allow recovering an almost homogeneous signal at the REV scale, erasing the small 11 

scale variations of the porosity. It can be seen on Figure 9 that, when the resolution is too high, e.g. the pixel 12 

reaches 0.25mm*0.25mm, the signal intensity fluctuates dramatically with the change of spatial position; when 13 

the pixel reaches 1mm*1mm, the signal intensity basically reaches stability and the influence of porous media 14 

structure is eliminated. Consequently, in the tests mentioned in this paper, all MRI resolutions are set as 15 

1mm*1mm. It should be pointed out that the proper measurement scale should be determined again by a similar 16 

procedure if the size of the glass beads is changed. The intensity of the signal increases while the pixel size 17 

increasing because larger pixel covers more oil. 18 

Another question is whether the vertical migration path does occur in the columns during the scan time when 19 

the tubes lie on their long side in the MRI chamber . Catalan et al. (1992) computed the minimum height ( minh ) of 20 

oil column for migration as: 21 

( )
( )min
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P P
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                              (14) 22 
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=                              (16) 24 

in which drP and imbP are drainage and imbibition capillary pressures respectively, w a means water-air system, 25 

/w o means the water-oil system, the interface tension of water-oil system ( )/w oσ and water-air system 26 
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( )/w aσ are 0.0289 N/m and 0.072 N/m, the contact angle for water-oil system θ  is 30º, wρ = 1014 kg/m3 is the 1 

density of manganese water, oρ =792 kg/m3 is the density of oil, and g =9.80 2/m s  is the gravity acceleration. 2 

The drainage and imbibition capillary pressures were 1079Pa and 638Pa respectively for the water-air system 3 

when the glass bead diameter was 0.72mm (Catalan et al., 1992). The average diameter used in our experiment is 4 

very close 0.72mm. So the drainage and imbibition capillary pressures (1079Pa and 638Pa respectively) can be 5 

used to predict the minimum height of the oil column for migrating for our experiment.  6 

( ) ( )/ 1079 0.0289 cos 30 0.072 375.1Padr w oP = × × =  7 

( ) ( )/ 638 0.0289 cos 30 0.072 221.8Paimb w oP = × × =  8 

and from equation (14): 9 

( )min (375.1 221.8) / 9.8 1014 792 0.07mh = − × − =⎡ ⎤⎣ ⎦  10 

While the glass tube was placed horizontally, the maximum height of oil column is equal to the inner diameter 11 

of the tube (2.6 cm ), which is obviously smaller than minh . Consequently, oil should not migrate significantly 12 

during the MRI scan when the glass tube is horizontal, and the MRI pictures should hardly be affected by such 13 

fluid flow.  14 

For more precision of the saturation measurements, the MRI signals of manganese water and oil can be 15 

compared quantitatively. In the porous medium, while 1T  and 2T of oil is 1024ms and 868ms, 1T  and 2T  of 16 

manganese water are just 6.88ms and 3.45ms. When RT  and ET are equal to 6000ms and 15ms respectively, 17 

according to equation (1), for manganese water, we can get: 18 

 
0

0.0129*w wM M=                                   (17) 19 

in which, wM  and 
0

wM are the observed magnetic and inherent magnetic intensity and of manganese water 20 

respectively. For oil, we also can get: 21 

0
0.9801*o oM M=                                    (18) 22 

in which, oM  and 
0

oM are the observed magnetic and inherent magnetic intensity and of oil respectively. The 23 

inherent magnetic intensity of H + is decided by the abundance of hydrogen atoms. In water ( 2H O ), the 24 

abundance of hydrogen atoms is 11.11%; in oil ( ( )3 2 3n
CH CH CH , n=8~16), the abundance of hydrogen atoms 25 

is from 14.17% to 15.28%, which is slightly larger than the abundance of hydrogen atoms in water. So the 26 
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difference of inherent magnetic intensity between water and oil is small. Thus, comparing equation (17) with 1 

equation (18), the MRI signal of water is much smaller than the one of oil, and can be neglected. The result of 2 

quantitative analysis is consistent with the observation (Figure 2). If the signals of water want to be shielded, the 3 

following condition is needed: 4 

2 2
w o

ET T T<< <<                                    (19) 5 

in which, 2
wT  and 2

oT  are the transverse relaxation time of water and oil respectively. 6 

7. Conclusions 7 

Compared with the testing methods of fluid saturation commonly used before, MRI can make accurate 8 

measurements of oil saturation and its 3D spatial distribution in porous media. Considering various kinds of 9 

possible influencing factors, a procedure of measure was developed, and it was established that the oil saturation 10 

calculated by MRI has a relatively high precision with the average relative error less than 2.0%. 11 

When adopting the gray values of MRI to calculate oil saturation, it is better to directly use the original image 12 

in DICOM format; or when the windowing technology is used to convert DICOM format into BMP format to 13 

calculate oil saturation, the window must cover the gray value distribution interval of the whole image. Besides 14 

the image format, the measurement resolution also should be selected carefully according to the concept of REV. 15 

MRI technology can be used not only to observe the structural form of migration path, but also to 16 

quantitatively analyze the distribution of oil saturation, and it has broad application potentials in experiments of 17 

secondary migration and even fluid flow in porous medium. For actual rocks, the probed sample itself can be used 18 

as the calibration. After the rock saturated fully with oil being scanned by MRI as the calibration signal, it scanned 19 

again when saturated oil is being displaced by water, while keeping the testing conditions and rock’s position 20 

unchanged. The saturation distribution can be computed by comparing the MRI signal of the two scans. The 21 

detailed determination of the saturation distribution in actual rocks is the subject of ongoing work..  22 
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Appendix 27 

DICOM is a set of communication format of imaging in medicine formulated by ACR (American College of 28 

Radiology) and NEMA (National Electrical Manufacturers Association), aiming to unify the interface calibration 29 
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for equipment of different manufacturers. DICOM image is a kind of gray-level image, and the image file 1 

contains two parts --- file header and data element. It may be 8 digits, 12 digits or 16 digits. Windowing display 2 

technology is often used to convert a DICOM format into BMP format (or TIF format). The so-called windowing 3 

display is to specify a gray-level window, and according to the following equation, convert linearly the image in 4 

such window area into the largest display scope of the display device, and the image data higher or lower than the 5 

limits of window are set as the maximum or the minimum, respectively (Zhang et al., 2003). 6 

0                             -
2

( ) ( )    -      
2 2 2

                             
2

m

m

wV c

g w w wG V V c c V c
w

wg V c

⎧ <⎪
⎪
⎪= + − ≤ ≤ +⎨
⎪
⎪ > +⎪⎩

               7 

In the above equation, G is the gray value of BMP image, V is the gray value of DICOM image, w is 8 

window width (scope of displaying image), c is the window level (central value of the display area), and mg is 9 

the maximum value of image gray value.  10 

 11 
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Figure 1  Water transverse relaxation time as a function of 2Mn +  concentration in tested porous medium 1 

Figure 2  MRI slice (cross section at the middle of the tube) and gray level distribution (In Figure 2A, the 2 

pixel size is 1mm*1mm) 3 

Figure 3  Effect of window widths and levels on the image format conversion from DICOM to BMP. A: 4 

window and level were adjusted to make the migration path clearest; B: the window width covering the 5 

whole signal ranges.  6 

Figure 4  Effect of window widths and levels on oil distribution. Oil saturation in Figure 4A and 4B were 7 

calculated according to figure 3A and 3B respectively. 8 

Figure 5  Oil Saturation distribution calculated in DICOM image format directly. 9 

Figure 6  Comparison of the actually injected oil volume and the calculated total oil volume. The whole 10 

migration path was scanned again once the path front migrated upwards 5cm.  11 

Figure 7  Oil saturation distribution in finger migration path at the middle of the tube. 12 

Figure 8  Oil saturation distribution in piston migration path at the middle of the tube. 13 

Figure 9 Effect of MRI resolutions on the distribution curves of MRI signal intensity as a function of 14 

position 15 

 16 

Table 1 Comparison between saturation measurement methods 17 

Table 2  Relaxation time of oil in glass bead pores of different grain sizes r 18 
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Table 1 1 

r (mm) 0.08 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0 1.0-1.2 1.5-2.0 2.0-2.5 0 

2T  (ms) 294 668 810 868 920 956 987 1028 1151

* Grain size of zero represents a pure oil sample 2 

Table 2 3 

Category Sub-category Disadvantage Advantage 

Distillation method 

and 

Chromatography method 
Conventional 

method 

Water washing method 

1. Samples are destroyed after the 

measurement and saturation can not 

be monitored during the experiment 

2. Just the bulk average saturation was 

given and the saturation spatial 

distribution can not be reflected 

3. Water washing method is only 

suitable to unconsolidated porous 

media  

Direct, reliable, and usually 

used as the verification of other 

saturation measurement methods 

Light 

reflection 

method Optical 

method Light 

transmission 

method 

1. Half quantitative and empirical 

parameters are usually used 

2. only suitable to transparent 

2-dimensional porous media 

Non-destructive and can be 

used to monitor saturation 

changes; low cost and easy to 

fulfill 

Normal 2D 

method 

Only suitable to 2-dimensional porous 

media 
  Apply to actual rock slices 

Non- 

destructive 

method 

Ray 

attenuation 

method 

Computed 

tomography 

(CT) method 

  The testing signal depends on rather 

solid porous media than the fluids 

themselves.  

Real 3D positioning 

measurement; apply to actual 

rock 

 4 
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