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Biophysical and structural studies of peptide–lipid interactions, peptide topology and dynamics have changed our view on how
antimicrobial peptides insert and interact with membranes. Clearly, both the peptides and the lipids are highly dynamic, change
and mutually adapt their conformation, membrane penetration and detailed morphology on a local and a global level. As a con-
sequence, the peptides and lipids can form awide variety of supramolecular assemblies inwhich themore hydrophobic sequences
preferentially, but not exclusively, adopt transmembrane alignments and have the potential to form oligomeric structures similar
to those suggested by the transmembrane helical bundle model. In contrast, charged amphipathic sequences tend to stay inter-
calated at themembrane interface where they cause pronounced disruptions of the phospholipid fatty acyl packing. At increasing
local or global concentrations, the peptides result in transient membrane openings, rupture and ultimately lysis. Depending on
peptide-to-lipid ratio, lipid composition and environmental factors (temperature, buffer composition, ionic strength, etc.), the
same peptide sequence can result in a variety of those responses. Therefore, the SMART model has been introduced to cover
the full range of possibilities. With such a view in mind, novel antimicrobial compounds have been designed from amphipathic
polymers, peptide mimetics, combinations of ultra-short polypeptides with hydrophobic anchors or small designer molecules.
Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.
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Introduction

Q1 In view of a worldwide re-emergence of infectious diseases and a
rapid increase in pathogens that aremulti-resistant to commercially
available antibiotics, new strategies to fight such infections have to
be developed. When bacteria become resistant, more costly
second-line antibiotics are used, but even these drugs become inef-
fective over time [1]. As a consequence, the development of novel
antibiotics is needed to counteract the steady decline of approved
pharmaceuticals where alternative agents with completely novel
mechanisms of action are desirable. A promising strategy is based
on copying the mechanism of action of natural compounds such
as antimicrobial peptides (AMPs). These effector molecules of in-
nate immunity provide a first line of defence against a multitude
of pathogenic microorganisms and are capable to keep in check
many invaders of higher organisms [2,3]. They work, e.g., by physi-
cal interference with the barrier function of bacterial membranes,
and there is good evidence that the latter are indeed the primary
target of a large number of AMPs. Notably, when compared with
antibiotics that interact with specific receptors, bacteria are less
likely to develop resistance to AMPs interfering with the lipid bi-
layer [4].
Therefore, naturally occurring AMPs are valuable template struc-

tures to develop new concepts for efficient pharmaceutical com-
pounds with increased efficiency. Indeed, recent research efforts
following this strategy have come up with small amphipathic mol-
ecules, pseudopeptides and even polymers that all exhibit potent
antimicrobial activities (e.g. [5–9]). In order to achieve this goal, a
number of membrane-active peptides, many available from natural
sources, some by design, have been studied by biophysical and

biochemical methods. These peptides included early on
alamethicin and melittin [10], and later magainins [11], cecropins
and designed peptides [12–14] (cf Table T11 for sequence informa-
tion). By combining the insights from a variety of biophysical stud-
ies on different sequences, a comprehensive view on polypeptide
lipid interactions and the mechanisms of membrane perme-
abilization and pore formation have been obtained. Up to this
day, unexpected structural and dynamic features of membrane-
associated polypeptides are discovered [15,16], and a picture
emerges withmultiple equilibria that govern their membrane inter-
actions and conformations (Figure F11).

Here, some of the biophysical data from a selected set of
peptides will be reviewed, which consolidate in a view of how the
peptides interact with membranes in a highly dynamic manner.
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Not only the conformation of the polypeptide chains undergoes
profound changes but also the lipid bilayers adapt and respond
to the insertion of peptides into their hydrophobic core and/or in-
terface. The examples that will be discussed include the very hydro-
phobic peptaibols from fungi and some of the much more
amphipathic cationic sequences that are frequently found in am-
phibians. Whereas the schemes presented in Figure 1 provide a
common description of their membrane interactions, the very de-
tails and their preferred topology and aggregation state is dictated
by the physicochemical properties of the peptides and the lipids
under investigation. In the following, biophysical investigations on
hydrophobic peptaibol sequences and amphipathic linear cationic
AMPs shall be reviewed before a model will be presented unifying
different sequences and experimental conditions. The paper starts

by presenting data on the hydrophobic peptides such as
alamethicins, which served for a long time as the paradigm for
peptide–membrane interactions and formed our ‘classical view’
on how proteins and peptides interact with lipid membranes.

Hydrophobic Sequences with a Strong Pro-
pensity for Transmembrane Alignments:
Alamethicin as an Example

Alamethicin is composed of 20 residues and the best-investigated
member of the peptaibol family, peptides of fungal origin that en-
compass α-aminobutyric acid (Aib) residues at high abundance [17]
(Table 1). In the presence of alamethicin and other peptaibols,
voltage-dependent conductance changes have been measured
with well-defined ohmic resistance, opening times and frequency
[18–22]. Therefore, at a timewhen the structures of membrane pro-
teins were largely unknown, alamethicins served as a paradigm for
large voltage- or ligand-gated channel proteins (reviewed, e.g., in
[23]). The alamethicin pore has been modelled as a ‘transmem-
brane helical bundle’ in which the individual helices are grouped
with their more hydrophilic side facing the water-filled pore. The
measured conductivities of the water filled openings created in this
manner agree reasonably well with theoretical predictions where
the smallest conducting oligomers are made of three, four or five
subunits (reviewed in [10,23]). The higher conductance states have
been explained by the assembly of increased order oligomers.
Therefore, it has been suggested that the peptides follow a series
of equilibria where they transfer from the aqueous environment
to an interface-associated - Q2, a membrane inserted state and the for-
mation of oligomers [20,24–27] (Figure 1(A)).
Whereas the initial formation and the decay of the lowest con-

ductance state are characterized by high activation energies (50
and 120 kJ/mol, respectively), further addition and subtraction of
subunits occur quickly on a millisecond time scale. More recently,
molecular dynamics calculations of membrane-bound alamethicin
suggest that the macromolecular arrangement of the helix bundle
is less regular and more asymmetric than the first pictural views
suggested [28].
Indeed, oriented solid-state NMR spectroscopy shows a strong

propensity of alamethicins for transmembrane (TM) alignments in
DMPC and POPC membranes [29–31]. This is consolidated by
solution-state NMR experiments where a preference for helical

Table 1. Sequences of peptides discussed in this paper

melIttin GIGAV LKVLT TGLPA LISWI KRKRQ Q-NH2
Magainin 2 GIGKF LHSAK KFGKA FVGEI MNS-NH2
PGLa GMASK AGAIA GKIAK VALKA L-NH2
cecropin A KWKLF KKIEK VGQNI RDGII KAGPA VAVVG QATQI AK-NH2
PMAP-23 RIIDL LWRVR RPQKP KFVTV WVR

LAH4 KKALL ALALH HLAHL ALHLA LALKK A-NH2
Alamethicin (F50/7) Ac-Aib-Pro-Aib-Ala-Aib-Aib-Gln-Aib-Val-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib-Gln-Gln-Phl

Ampullosporin A Ac-Trp-Ala-Aib-Aib-Leu-Aib-Gln-Aib-Aib-Aib-Gln-Leu-Aib-Gln-Lol

Antiamoebin Ac-Phe-Aib-Aib-Aib-Iva-Gly-Leu-Aib-Aib-Hyp-Gln-Iva-Hyp-Aib-Pro-Phl

Trichonin GA IV nOct-Aib-Gly-Leu-Aib-Gly-Gly-Leu-Aib-Gly-Ile-Lol

Zervamicin IIB Ac-Trp-Ile-Gln-Iva-Ile-Thr-Aib-Leu-Aib-Hyp-Gln-Aib-Hyp-Aib-Pro-Phl

The one-letter code is used for peptidesmade from conventional amino acids only. The peptaibols sequences are given by the three-letter codewith the
following non-standard residues: Aib, a-aminoisobutyric acid; Iva, D-isovaline; Hyp, trans-4-hydroxy-L-proline; Phl, L-phenylalaninol; Lol, L-leucinol; Ac-,
acetyl-; n-Oct, n-octanyl; NH2, the carboxyamide termini.
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conformations with a flexible hinge region around proline-14 has
been observed [32,33].
A more detailed analysis reveals a quite dynamic picture where

the peptides exhibit a high degree of conformational flexibility
and structural details that are a function of the physical state of
the lipid, the lipid–peptide ratio, the presence of TM potentials
and other factors (reviewed, e.g., in [10,23]). It has even been possi-
ble to define peptide-to-lipid ratios and membrane lipid composi-
tions, including the ones close to that of bacterial membranes,
where the alamethicin helices predominantly align parallel to the
membrane surface [16,34]. Finally, related arrangements of TM he-
lices have been revealed for many membrane proteins including
potassium channels, the acetylcholine receptor, the Influenza pro-
ton channel or the phospholamban pentamer [35–37].
It is thought that alamethicin initially adsorbs and intercalates to

the membrane interface, a configuration which is gated into a se-
ries of subsequent equilibria (Figure 1(A)), where the realignment
of the helix dipole by TM electric fields can help in the insertion pro-
cess (reviewed in [10,23]). TM orientations have been observed for
other hydrophobic polypeptide sequences [14,36,38–40], including
the membrane anchors of colicins [41] or Bcl-xL [42]. Interestingly,
the membrane topology of the latter is controlled by a sensitive
equilibrium between in-plane and TM configurations, which may
be important to allow for the reversible association of these pro-
teins, which are of about 20 kDa in size.
Interesting insight into the interaction contributions that deter-

mine the membrane alignment of hydrophobic membrane se-
quences is obtained when closely related peptaibols that carry
fewer residues than alamethicin are investigated. Indeed, shorter
peptaibols (e.g. Table 1) still exhibit single channel conductances
that resemble that of the longer sequence. When studied in more
detail, zervamcin IIa (16 residues) tends to form relatively large olig-
omeric assemblies from which the exchange of monomers occurs
at an order of magnitude increased rate when compared with
alamethicin [21]. In a related manner, alamethicin causes rather
high conductance levels when reconstituted into thick membranes
[43]. Indeed, under conditions of hydrophobic mismatch, consider-
able membrane deformations occur [14,44,45], which can probably
be alleviated by assembly of the peptides into larger structures. In
contrast, antiamoebin (16 residues) does not exhibit single-channel
conductivities under conditions where other peptaibols produce

such conductivities [22]. In a similar manner, the pore-forming ac-
tivities of trichogin GA IV (11 residues extended by n-octanoyl) are
much reduced in membranes of average thickness but can be re-
stored in thinner membranes [45].

Interestingly, when investigated by solid-state NMR, zervamicin
IIa (16 residues) and ampullosporin A (15 residues; Table 1) are
found to predominantly orient parallel to the surface of POPCmem-
branes [31,46]. When reducing the membrane thickness by
reconstituting the peptides into PC bilayers made from C10:0 or
C12:0 fatty acyl chains, these shorter peptaibols insert into a TM
configuration indicating that hydrophobic mismatch energies be-
come an important contribution to membrane topology. In the
thicker membranes, the short peptides impose strain onto the
membrane and disrupt the regular lipid packing shifting the equi-
librium to the in-planar states (Figure 1(A)). Whereas favourable en-
ergy contributions for TM insertion arise by moving hydrophobic
residues from the membrane interface or from the aqueous phase
into the region of the hydrocarbon chains, unfavourable interac-
tions are associated with such lipid-derived energy contributions.
Even though these and other energy contributions have been
discussed previously, including the removal of charges from side
chains, oligomerization or polar interactions within the hydropho-
bic environment (e.g. reviewed in [47]), it should be noted that
overall large favourable and large unfavourable energy contribu-
tions are involved in the insertion process, which makes the predic-
tion of the membrane topology rather difficult. This may also
explain why anticipating the membrane topology by molecular dy-
namics simulations remains a difficult task, and the comparison
with experimental data remains essential to validate such calcula-
tions [48–51].

This short summary of a wealth of biophysical investigations on
peptaibols reveals that even for these peptides that are considered
paradigms for TM helical bundle formation, the situation is much
more complex than was initially expected. Notably, these seem-
ingly ‘well-understood’ sequences can deviate from the classical
view of a stable TM helical bundles. Therefore, it is not surprising
that the situation becomes even more complex when cationic am-
phipathic peptides are consideredwhere additional electrostatic in-
teractions and upon membrane insertion profound changes in the
peptide physicochemical properties along the polar/apolar inter-
face occur.

Figure 1. Schematic diagram showing the equilibria governingmembrane insertion and interactions of (A) hydrophobic sequences such as alamethicin and
(B) charged amphipathic peptides with a high hydrophobic moment such as magainins.

THE SMART MODEL FOR AMPs
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The Membrane Interactions of Strongly
Cationic Amphipathic AMPs

Magainins and cecropins were among the first sequences that
founded the family of linear cationic amphipathic sequences
[3,52] (Table 1). Peptides of this class have meanwhile been identi-
fied inmany species where they establish an efficient and highly re-
active defence mechanisms against a wide variety of infections
[3,52]. A number of observations point to a direct interaction of
these peptides with phospholipidmembranes of bacteria and fungi
where they often disrupt the bilayer integrity. These peptides in-
hibit the growth of sensitive microorganisms, exhibit cell killing ac-
tivities and/or enter into the cell interior [53]. In addition, they have
been found to modulate the immune response of the host organ-
isms. To take into account their extended functionality, the term
‘host defence peptides’ has been introduced [54–56].

When the linear cationic AMPs are considered, magainins and its
derivatives are probably the ones whose membrane interactions
have been investigated most extensively using a wide variety of
biophysical experiments (e.g. [57–61]). Upon addition to preformed
bilayers, magainins and cecropins have been found to often lyse
the membranes. However, in some experiments, discrete multi-
level conductances are also observed [62–64]. Unlike the
alamethicin channels, those recorded in the presence of magainins
or cecropins are less well defined, erratic and characterized by large
variations.

Interesting insights into the membrane interactions of magainin
2 have also been obtained when the kinetics of pore formation and
the size of the openings have been investigated by fluorophore re-
lease experiments using giant unilamellar vesicles (GUVs). These
vesicles are large enough (typically several micrometres) such that
it is possible to follow single events and by repeating the experi-
ment many times analyse theses in a statistical manner [65]. After
addition of magainin, it takes one or a few minute before the re-
lease of fluorophore sets in, which then empties the vesicle within
about 30 s [65]. These data indicate that the rate-limiting step is
pore formation rather than the membrane permeation through a
pore and in agreement with an all-or-none mechanism that has
been obtained when analysing calcein release from LUV suspen-
sions [66]. Pores form when the ratio of membrane-associated
magainin 2 over lipid reaches about 0.7mol% in DOPC/DOPG
GUVs, with only a small dependence on the DOPC/DOPG ratio
[67]. Membrane openings occur in two stages, starting with an ini-
tial rapid release of fluorophore where very large pores form tran-
siently. These have been associated with the unbalance in tension
between the outer and inner monolayers when magainin associ-
ates with the outside of the GUV. Once the membrane ruptures

and lipids and magainin re-equilibrate between the two bilayer
leaflets, smaller pores form, thus slowing down the leakage of the
fluorophore [68]. When the size of these openings is tested, even
the persistent pores are found to be quite large with a cut-off of
the hydrodynamic radius for the exiting molecules in the 3nm
range (corresponding to proteins of MW >20 kDa) [68].
Magainins and cecropins are about 20–40 residues in length,

highly charged (Table 1) and, therefore, soluble in aqueous solution
where they exhibit a high degree of random coil conformations
[69]. When associating with the membrane, helical conformations
are induced (Figure F22), a process that provides about half the Gibbs
free energy of membrane association (about�0.8 kcal/mol per res-
idue undergoing the transition [74,75]). Solid-state NMR and ori-
ented CD spectroscopies indicate that they reversibly associate
with the membranes with the helix axis oriented parallel to the
membrane surface [11]. This alignment of magainins [58,76,77],
their analogues [78–80] and of a considerable number of other
linear cationic AMPs [81–85] contrasts that of the much more
hydrophobic alamethicin. However, an interfacial alignment is in
agreement with the large hydrophobic moment obtained when
these charged amphipathic sequences adopt helical conformations
(Figure 2). Indeed, molecular modelling calculations visualize how
magainin 2 and the designer peptide LAH4 (Table 1) could cause
the formation ofmembrane lipidic pores without the need to adopt
a well-defined assembly of TM domains or of peptide–peptide con-
tacts [50,86,87]. This behaviour can be rationalized by themolecular
shapes of lipids and the peptide [88,89]. When inserted into the
membrane, one would expect that the charged residues reside in
the membrane interface, whereas the hydrophobic side chains lo-
calize below the lipid carbonyls (Figure F33).
Whereas the topology of magainin 2 parallel to the membrane

surface appears stable in solid-state NMR and fluorescence experi-
ments and has been reproduced in a wide variety of lipid bilayers
[11,58], the close relative PGLa changes its tilt angle when
reconstituted in di-saturated membranes at higher peptide-to-lipid
ratio (Figure 1(B)). The change in tilt by about 30° has been rational-
ized by homodimer formation [90], but this hypothesis still needs to
be proven experimentally [91]. The tendency of PGLa to insert into
PC or PC/PG membrane made of di-saturated fatty acyl chains is
further enhanced in thin membranes or in the presence of
magainin 2 [92,93]. However, in bilayers made of palmitoyl-oleoyl-
phospholipids, which are thought to better represent the thickness
and fatty acyl composition of natural membranes, stable in-planar
alignments are also obtained for PGLa even in the presence of
magainin 2 [11,92,94] (cf below).
The association of magainin 2 is characterized by a partitioning

coefficient in the 1000M�1 range, but the apparent partitioning

Figure 2. Helical wheel analysis and hydrophobic moment calculations of the amphipathic helical domains of magainin 2, PGLa, LAH4 and cecropin A using
the Heliquest program [70]. The structures were obtained in DPC micelles [57,71,72] or for cecropin A in 15% hexafluoro isopropanol [73]. For LAH4, the
structural data obtained at pH 4.1 were used. The hydrophobic moments were 0.52, 0.38, 0.46 and 0.59, respectively. In the case of LAH4, this value was
obtained when virtually replacing the histidines by lysines, in order to mimic histidines in its charged state at the low pH of the experiment.
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constant is increased by two to three orders of magnitude in the
presence of acidic phospholipids [95,96]. This is due to the accumu-
lation of positively charged ions and macromolecules next to the
negatively charged surface. In this manner, the binding equilibrium
appears increased, but when the much higher local concentration
next to the surface, rather than the peptide concentration in bulk
solution, is taken into account, very similar partitioning coefficients
are obtained [96]. Therefore, negatively charged lipopolysaccha-
rides and anionic lipids at the outer surface of bacterial cells en-
hance the local concentrations in the proximity of the membrane
and are probably an important determinant for the selectivity of
the peptides for bacterial over eukaryotic cells. This ‘electrostatic re-
sponse’ also explains why tumour cells, where the PS content of the
outer monolayer is increased, are more susceptible to the action of
these peptides when compared with healthy cells [96–100]. Within
the same concept, the changes in the electrostatic potential during
the association of cationic peptides and the concomitant release of
peripheral membrane proteins have been suggested to be a deter-
minant of antimicrobial activities [101].
It seems that themembrane penetration depth and topology are

also modulated by the presence of negatively charged lipids [102]

and that segregation of domains enriched in cationic peptide and
acidic phospholipids occurs [103,104]. Recently, it has also been
demonstrated that the antimicrobial designer peptide LAH4
(Table 1) and other amphipathic sequences distribute unevenly in
mixed PC/PS membranes probably by adopting a mesophase-like
arrangement on the membrane surface [105]. This phenomenon
is still under investigation, but the resulting increase in concentra-
tion and organization could have important implications for the
mechanism of action and the selectivity of AMPs.

When the highly cationic amphipathic peptides adopt an ar-
rangement parallel to the membrane surface, the hydrophobic re-
gion is localized about 10Å above the bilayer centre [58]. This
causes the lipid fatty acyl chains tomove underneath the helical do-
main (Figure 3), concomitant with a disordering of the fatty acyl
chain packing [106] and membrane thinning [61,107]. Ultimately,
the formation of membrane openings [66] and macroscopic phase
transitions of the peptide–lipid assembly occur [89] (Figure F44).
Solid-state NMR measurements in the presence of magainins and
other amphipathic peptides have indeed monitored changes in
the order parameter at the lipid bilayer interior that agreewith such
a model [106,108]. The bilayer disruptions extend far beyond the
immediate proximity of the membrane-inserted peptides and have
been estimated to cover a radius of approximately 50Å [109,110].

In many ways, the peptide interacts with the lipid membranes in
a manner analogous to a detergent [89]. Whereas at high peptide
concentrations both peptides and detergents cause the disruption
of the bilayer integrity as suggested by the ‘carpet model’ [111], a
variety of supramolecular arrangements can be obtained at lower
concentrations [112–114] including ‘aggregates’ of undefined mo-
lecular structure [115]. Therefore, ‘detergent-like’ should not be
confoundedwith ‘always lytic’. In contrary, it should be kept inmind
that at lower detergent (peptide) concentrations, these molecules
may even result in more stable lipid bilayer arrangement, for exam-
ple, when the inverted cone-shaped structure of a detergent com-
pensates for the strain imposed by a cone-shaped PE lipid
[108,116,117] (Figure 3(B)). Depending on lipid composition, pep-
tide concentration, pH, temperature and other environmental fac-
tors, a stochastic and transient rupture and closure of the
membrane is possible (Figure 3(C)–(E)), which can explain the elec-
trophysiological traces, which look (only) on first glance like those
expected when well-defined channel structures form [62–64].

Recent publications had shown that other important physico-
chemical properties of the membranes change upon association
of AMPs. For example, a recent study showed that the lateral and
rotational diffusion of membrane components is reduced in the
presence of the AMP alamethcin or the cationinc PMAP-23 se-
quence (Table 1) [118]. As contacts and exchange between mem-
brane components are essential for proper functioning, this can
have detrimental effects on the viability of the cells.

Finally, it should be considered than many peripheral membrane
proteins and components associate through electrostatic interac-
tions. With a high density of cationic AMPs [53], screening the neg-
ative charges causes the release of many of these proteins, thereby
interfering with cell viability [101].

Synergistic Enhancement of the Activities of
AMPs

Interestingly, the efficiency of some antimicrobial compounds is
considerably potentiated when applied in combination. Such syn-
ergistic enhancements have been observed for naturally occurring

Figure 3. The effects an in-plane oriented peptide (coloured yellow and
ochre) has on the bilayer packing. (A) An isolated amphipathic helix (seen
along the helix axis) in a PC membrane. (B) The smaller head group of PE
lipids partially compensate for the membrane-disruptive effects of the
helix. (C, D and E) Higher local concentrations of peptides cause the
transient opening of the membrane. During such events, the peptide can
diffuse from one side to the other without changing the alignment
relative to the membrane normal (C) or by transiently adopting a different
orientation (D, E). The cylindrical shape of PC lipids is sketched in panel A,
the cone shape of PE and the inverted cone shape of the membrane-
inserted amphipathic helix, respectively, in panel B.
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cocktails of peptide antibiotics such as magainin 2 and PGLa
[119,120], but also for mixtures of peptides with conventional anti-
biotics [121] or ions [122]. When cocktails of peptides have been in-
vestigated by solid-state NMR spectroscopy, magainin 2 has been
shown to enhance the tendency of PGLa to adopt a tilted/more
TM orientation in DMPC or DMPC/DMPG membranes [93]. In con-
trast, PGLa and magainin 2 are found to both orient parallel to
the membrane surface in bilayers made of phospholipids carrying
at least one unsaturated fatty acyl chain [92,123]. These latter are
thought to represent more closely the natural composition of bio-
logical membranes, and therefore, an explanation is searched for
the synergistic enhancement of magainin 2/PGLa where both of
the peptides remain oriented parallel to the surface. On the one
hand, synergisms have been found to be specific for certain pep-
tides where the replacements of selected residues has a pro-
nounced effect on synergism [120,124]. On the other hand,
neither strong interactions nor a defined interaction surface could
be identified so far [125,126]. Therefore, the puzzling question
why the two peptides in combination are so much more active
not only in antimicrobial assays [119] but also calcein release exper-
iments across model membranes remains to be solved [120].

Although at the present time the question how synergism occurs
cannot be answered, it is interesting to note that the situation re-
sembles that of the early 1990s where the structural data indicated
that cationic amphipathic peptides reside at the membrane inter-
face rather than adopt a TM alignment [76,77]. Years of research
were needed to accumulate sufficient experimental data to conclu-
sively show that membrane openings and antimicrobial activities
can be explained with such in-plane alignments [53,117,127,128].
In a related manner, our initial view of synergism to occur by the
formation of TM helical bundles made by the ensemble of
interacting peptides is in disagreement with biophysical data
[92,123], and novel ideas need to be developed. In this context,
the SMART model provides a formidable framework to introduce

new concepts to also extend for an explanation of the synergistic
activities of peptides.

The SMART Model

Upon membrane insertion, the amphipathic peptides intercalate in
between the lipid head groups and thereby act as a spacer at the
membrane interface. As a result chain bends, increased trans-
gauche isomerization or chain interdigitation are introduced into
the lipid fatty acyl chains [117]. Overall, the response of the lipids
should depend on the detailed peptide alignment and penetration
depth, which are determined by the charge, hydrophobicity, con-
formation and the resulting hydrophobic moment and amino acid
distribution. However, also the size and shape of the lipid head
groups contribute to the overall supramolecular arrangement of
the peptide–lipid system. Indeed, it has been observed that the
wedge-like properties of the in-plane oriented helices can be par-
tially compensated for by the presence of cone-shaped shaped
lipids such as POPE [108,116]. Thus, the mode of interaction de-
pends on the peptide sequence, its three-dimensional structure
(distribution of hydrophilic and hydrophobic amino acids), the pep-
tide concentration and the physicochemical properties of the
membrane (concept reviewed in [89,117]), which together establish
a delicate balance of interactions.
As a consequence, a number of sufficiently different supramolec-

ular arrangements of the peptides and lipids can form (Figure 4).
Whereas at lower peptide concentrations stochastic fluctuations
of the in-planar peptides within the membrane surface can explain
the transient and step-wise enhancements in membrane conduc-
tivity that have been observed experimentally (reviewed in [69];
Figure 3), increasing the number of membrane-associated peptides
may result in the formation of toroidal pores [112,113], or a ‘carpet’
of peptides aligned parallel to the surface [111] or structurally badly

Figure 4. Different structures of peptide–lipid assemblies. Whereas the peptide concentration increases along the y-axis, the lipid composition changes from
more cylindrical to more cone shaped along the x-axis. The different supramolecular assemblies can thus also represent different areas in a phase diagram.
(A, B) Bilayers of PC and PE, respectively. (C) Toroidal pore-like arrangement of lipids and peptides. (D) Bicelle emanating from a dense carpet of peptide on a
lipid membrane. (E) Micelle at high peptide-to-lipid ratios. (F) The tendency of hexagonal phase formation by cone shaped lipids (such as PE at higher
temperatures). To include more hydrophobic sequences into this phase diagram, panel A should be modified by a sketch similar to Figure 1(A).
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defined peptide aggregates within themembrane [115]. Further in-
creasing the peptide-to-lipid ratios can cause the formation of
worm-like structures or disc-shaped particles including bicelles,
macrodiscs, nanodiscs and micelles [108,111,115,129].
The lipid membranes are soft and can adapt to a certain degree

to the disruptive properties of the peptides, but at higher peptide
concentrations, macroscopic phase transitions result, first locally
and later upon addition of more peptide globally. Some of the re-
sponses may be transient, for example, to allow for the passage
of peptides from one bilayer leaflet to the other, which is expected
to happen when peptides approach the membrane only from the
outside of the bacterium or of the outer monolayer of a vesicle. This
extensive plasticity of phospholipid membranes when interacting
with peptides is best described by phase diagrams where the large
range of supramolecular morphologies are represented as a func-
tion of peptide-to-lipid ratio, the detailed membrane composition,
temperature, hydration and buffer composition [117] (cf Figure 4).
Indeed, transitions between in-plane and TM alignments have been
monitored where the membrane topologies of some peptides de-
pend of hydration, pH, peptide-to-lipid ratio and lipid composition
[16,130–132] (Figure 1).
In such a phase diagram, conditions exist where bilayers form

(Figure 4(A),(B)). These can be stable, slightly perturbed or for
some lipid compositions even relieved from inherent curvature
strain by the insertion of polypeptide (Figure 4(B)). At higher ratios
of membrane-associated peptide-per-lipid phase, transitions
occur where membrane disintegration into bicelle-like structures
(Figure 4(D)), wormholes (Figure 4(C)) or complete lysis occur
(Figure 4(E)). At some intermediate conditions, the bilayers may just
be slightly destabilized that with stochastic movements of the
peptides along the surface the bilayers open transiently and heal
again (Figure (3)). Thus, the resulting phase alterations are transient
and restricted to a small area, or at different conditions they can
affect the membrane globally.
Previously, we have compared the physicochemical interactions

of amphipathic AMPs with membranes to those of detergents
[69,117], which has caused some misunderstanding as detergents
are often associated withmembrane dissolution and lysis. This is in-
deed one of the many facets of the lipid–detergent phase diagram
[117]. However, at small concentrations, detergents can even stabi-
lize membranes when these are made up of lipids representing an
inverted cone shape [117]. Therefore, following discussions at the
Napoli workshop on AMPs, to which this special issue is dedicated,
and the Antimicrobial Peptide Symposium 2014 in Lorient, France,
here a more comprehensive descriptor for the interactions of pep-
tides (and other molecules) with phospholipid membranes is pro-
posed: Soft Membranes Adapt and Respond, also Transiently, to
external stimuli such as AMPs (SMART model).
Within this model, the more hydrophobic sequences (e.g.

peptaibols) tend to adopt more stable TM alignments and on
first view seem to follow an altogether different mechanism
(Figure 1(A)). However, it should be noted that also in the case of
alamethicin, in-planar orientations have been detected [16,34],
and the shorter peptaibols when interacting with most except the
very thin bilayers (C10 or C12) adopt predominant alignments par-
allel to the membrane surface. Therefore, concepts of the SMART
model (Figure 4) may also apply to these peptides where the panel
A would need extension to a more complex image such as the one
shown in Figure 1(A). Indeed, a recent study demonstrated that the
mode of action of alamethicin and cationic antimicrobial sequences
cannot easily be discriminated solely by testing the lipid depen-
dence of pore formation in calcein leakage experiments [133],

which would be expected if these sequences interacted with mem-
branes in always the same manner. Furthermore, the leak currents
observed in the presence of some of the shorter peptaibols [22]
could be taken as an indication of membrane thinning and a less
tight packing of the lipid fatty acyl chains in the presence of pep-
tides (Figure 4(A)).

When looking at the consequence of the SMART model, one
would predict that other amphipathic molecules can be developed
into potent antibacterial compounds. These should be cationic to
assure a high concentration at the surface of negatively charged
membranes and exhibit a high hydrophobic moment to intercalate
into the membrane interface at the level of the phospholipid
headgroups. To avoid unspecific interactions and toxicity for
healthy eukaryotic cells, differentiation is usually obtained by
tuning the overall hydrophobicity to moderate size. Furthermore,
the compounds are too short/small to span the lipid membranes
to introduce potential mismatch energies that favour the interfacial
localization. Indeed, having recognized that the active mechanism
of magainins and related peptides is based on a partial interfacial
insertion rather than TM helical bundle formation has resulted in
the successful production of new antimicrobials made of either
short peptide sequences [134–138], peptide mimetics [139–146]
or small molecules composed solely of an aromatic ring system, a
hydrophobic chain and cationic functional groups [8].
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Review

The SMART model: Soft Membranes Adapt and Respond, also Transiently, in the presence of
antimicrobial peptides

Burkhard Bechinger

The SMART model aims to provide a unifying view, based on biophysicochemical principles, on how lipids and antimicrobial
peptides interact with each other. The resulting supramolecular ensemble shapes on a local, global and transient level the
resulting membrane and its biological properties.
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