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Abstract Localization of signals is a widely applied technique used in different areas of science
telecommunication, medicine, or seismology. In this work, we study microseismic emissions due to
stick-slip events during pneumatic fracture in a transparent setup at laboratory scale and apply a
localization method “Estimated Source Energy Homogeneity.” The seismic location results are compared
with the image correlation results for displacement maps corresponding to the event times. We have
observed (using optics and acoustics) that the movement starts inside the porous medium and progresses
toward the channel tips, eventually causing channels to grow further. This finding could be of interest in
understanding fluid-induced earthquake nucleation processes. Similar to in-site applications of pneumatic
or fluid-related fracturing, it shows that the area influenced extends beyond the fracture tips. This also
shows why even after the end of pumping, we may get earthquakes, such as in the Basel case (Haring et al.,
2008, https://doi.org/10.1016/j.geothermics.2008.06.002).

Plain Language Summary An uncompacted granular medium having a fixed grain size is
placed between two glass plates as a very thin layer. Using air injection, this porous medium is compacted
and fractured. This system is monitored using a camera capable of recording more than 100 images
per second and accelerometers which can record vibrations in high frequencies. During this injection,
earthquake-like vibrations are generated by the system. Sources of these vibrations are located using
acoustic recordings and image processing. We have observed that the channeling starts with a compaction
inside the medium; this compaction propagates toward the channel tips and cause them to advance further
inside the medium.

1. Introduction
Acoustic signal localization is applied in many different areas of science (Elnahrawy et al., 2004; Gershman
et al., 1995; Garnier & Fink, 2015; Fink, 2015; Malioutov et al., 2005; Valin et al., 2003; Zhu et al., 2007). In
robotics, speech source tracking is done to automate cameras to follow the speaker (Brandstein et al., 1997).
In electronics, touch screens are a very popular example of a signal localization. It is necessary for the system
to locate the touch of a user to transmit information to process a simple message (Terlizzi & Minoo, 2009).

Similarly, in earth sciences, finding the epicenter of an earthquake is necessary to understand how it
was generated, where exactly the movement occurred, and which region is more risky for the aftershocks
(Aki & Richards, 2002). For a better quality risk assessment, it is important to know the origin of the seis-
micity along with its location. In nature, seismic events based on gas-solid interactions are very common.
For example, there are many existing studies about a volcano-heated fluid that becoming gas and causing
phreatic eruptions or geysers (Christenson et al., 2010; Jolly et al., 2014; Manga & Brodsky, 2006; Oppen-
heimer, 1986; Sudo et al., 1998; Tazieff, 1989). Moreover, fast air or fluid injection deforming porous medium
is used in industrial applications of pneumatic fracturing (Accutech, 1994; Gao et al., 2014; Schuring et al.,
1996) or hydraulic fracturing (Aochi et al., 2011; Charléty et al., 2007; Cuenot et al., 2008; Dorbath et al.,
2009). At very large scales (tens or hundreds of meters) and high-pressure injection, compressibility plays a
role in the interactions between the pressurized fluid and deformable solid medium similar to the gas-solid
interactions mentioned earlier. This physical phenomenon can be observed in magma fracturing, eruptions
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(Poland et al., 2012; Rivalta & Segall, 2007), fluid injection into rocks, or reservoir stimulations in geothermal
fields (Candela et al., 2018). Stanchits et al. (2011) have studied the acoustic emissions on rock samples dur-
ing thermo-hydro-chemo-mechanical coupled deformations. Water injection into porous sandstone under
applied stress induced acoustic emission events. These events are generated close to the migrating water-
front. Kobchenko et al. (2013) studied the transport of CO2 by diffusion and fracturing the gel layer in a
Hele-Shaw cell. They studied the length scales of diffusion and flow in fracture networks, which are eventu-
ally linked to statistical properties of river networks and hierarchical-fracture networks. In the very recent
research of Jamtveit et al. (2018), they have found that the strike-slip lower crust earthquakes are caus-
ing fluid pressure pulses toward the lower crust and fluid-driven associated metamorphic and structural
transformations of this zone follow these earthquakes. More importantly, at large scales, a common way to
understand and control the fluid-induced fracturing is to monitor the microseismicity (Cornet et al., 1998;
Cornet, 2015; Fehler et al., 1987; Holland, 2013; Valkó & Economides, 1995). The source locations of seismic
events are mainly focusing on the fluid-solid coupled events.

Even though the localization of the microseismicity due to volcanoes and industrial applications (e.g.
hydraulic fracturing) have very rich scientific literature, the locations of acoustic emissions based on interac-
tions between the injected gas and deformable solid (or gas-metal in pressure tanks, Peacock, 1996) remain
challenging. To the best of our knowledge, acoustic emissions have not been studied during pneumatic
fractures in the scientific literature prior to this article. In this article, we are investigating the source mech-
anisms and locations of pneumatic fractures in a porous medium in a transparent Hele-Shaw cell. The
main focus of this work is to first locate the stick-slip events using acoustic emissions and then to compare
them with the displacement field obtained from digital image correlation. The main reason behind using a
Hele-Shaw cell is to optically record the deformations associated with the microseismic event while record-
ing the vibrations on the glass plate with accelerometers. This work is based on an experimental approach
similar to Turkaya et al. (2015), Eriksen et al. (2017), Eriksen et al. (2018), and Turquet et al. (2018).

Some of the signal localization types have been recently reviewed in Turkaya et al. (2016). In the present
article, we show the application of the estimation of source energy homogeneity (ESEH) to locate the source
of the acoustic emissions during aerofracturing experiments (Turkaya et al., 2015). These localization results
are compared with the Digital Image Correlation (DIC; details can be found in Eriksen et al. (2018) results),
as obtained from the optical recordings via a high-speed camera during the experiment.

2. Experimental Setup
The aerofracturing experiments analyzed here are conducted in a Hele-Shaw cell made of two glass plates
80 cm × 40 cm × 1 cm with an aperture of 1 mm between them—see details in Turkaya et al. (2015), Eriksen
et al. (2017), Eriksen et al. (2018), and Turquet et al. (2018). The experimental setup is shown in Figure 1a.
The acquisition chains of optical and acoustic data are presented. The system is triggered via a signal gen-
erator to have synchronization between optical and acoustic data. The optical data were recorded at 125 or
1,000 images per second using a Photron SA5 and a flicker-free Dedolight 400-W projector, and for acoustic
data, we use 1-MHz sampling rate. Three boundaries of this cell are sealed with a double-sided tape, while
the fourth side is covered with a 40-𝜇m mesh filter. This filter lets the air pass to the surrounding atmosphere
while keeping the grains inside the cell. In this particular experiment, we used 1-bar overpressure from the
inlet and we used 80-𝜇m grains having material density 1.05 g/cm3 in loose state inside the cell. Prior to the
experiment, the cell is filled vertically before sealing with a semipermeable mesh. Then, the cell is rotated
vertically so that the grains fall freely to the other end of the cell. This leads to solid ratio be very close to
the random loose packing with a solid fraction of 𝜙 = 0.44 ± 0.04 (Eriksen et al., 2017). Finally, the cell is
carefully placed horizontally without affecting this loose state. This simple preparation procedure ensures
that the experiments are reproducible. An empty space is provided between the air inlet and the solid-air
interface to provide a homogenous pressure over the width of the cell. The air overpressure at the inlet is
then raised and maintained at a constant level (1 bar in the example on Figure 1).

During this experiment, acoustic signals are recorded using four accelerometers attached to the bottom plate
(see Figure 1b). The sensors are placed toward the outlet (where most of the stick-slip events are happening)
to have a better signal resolution. The sensors are miniature piezoelectric charge accelerometer 4374—Brüel
& Kjaer associated to a NEXUS Charge Amplifier—Type 2692-A conditioner, and the signal is digitized using
a National Instruments NI-DAQ mx acquisition card PCI-6133 8 Channels acquisition card. The accelerome-
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Figure 1. (a) The acquisition chain of the aerofracturing experiments with a Hele-Shaw cell. The signal acquisition
card, camera, and the electrovalve connected to the air pump are triggered at the same time via a Transistor-Transistor
Logic (TTL) signal sent from the signal generator to have synchronized optical and acoustic data. The sensors are
placed on the bottom glass plate of the Hele-Shaw cell using a solid crystallized phenyl salicylate. (b) The image
showing the accelerometers stick under the Hele-Shaw cell is given. In (c), accelerometers are sketched and numbered.
Red dots show the positions of the accelerometers. (d) We present several snapshots of the cell during injection.
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ters have 1 Hz to 26 kHz flat response. Using the function given by the manufacturer the response is flattened
up to 200 kHz. These accelerometers can detect plate motions normal to the glass plate surface only. Depend-
ing on the sign of the cumulative displacement (positive or negative) recorded at the sensor we mark the
corresponding signals with the polarization up or down, respectively. The acoustic events are located using
ESEH for a certain window of the signal which starts at the arrival time and ends somewhere in the coda.
We have presented a more detailed discussion linking the acoustic signal polarization to medium deforma-
tion in Text S1 of the supporting information. More information about time windowing can be obtained
from Supplementary Figure S1 and associated caption. Furthermore, the procedure of detecting the acoustic
events from raw recordings is described in Text S2.

3. The ESEH
ESEH considers that the source energy calculated from different recordings should be the same after the
correction of energy loss due to the travel path attenuation (based on material and distance). Let Es be the
energy of the source and assume that the energy spread cylindrically on the plates. In that case, the recorded
energy En at receiver n at a distant R can be expressed as En = Es

2𝜋Rh
, where h is the plate thickness. Es can

be estimated following Farin et al. (2016), Hibert et al. (2011), and Turkaya et al. (2016) by

Es(rs, rn) = ∫
𝜔N𝑦q

0
2𝜋R(n)𝜌hc(𝜔) |a(𝜔)|2

𝜔2 d𝜔, (1)

where Es(rs, rn) is the computed energy coming from a source at rs recorded by a sensor at rn. The variable 𝜌
is the mass density of the plate, c(𝜔) is the group velocity of the waves over different angular frequencies𝜔 up
to Nyquist frequency 𝜔Nyq, a(𝜔) is the Fourier transform of the accelerometric recordings. R(n) = ||rn − rs||
is the distance between the source and the receiver, and h is the plate thickness. Depending on the plate
material, there could be a viscous attenuation factor e(2𝛾(𝜔)R(n)) added to the right side of equation (1) to
account for viscous energy losses where 𝛾(𝜔) is the viscous attenuation inverse distance. However, for glass
plates and the distances that are used in this experiment, viscous attenuation can be neglected (i.e., 𝛾 ≈ 0,
Farin et al., 2015). In the experimental setup, four sensors are placed on the bottom glass plate on different
locations (see Figures 1b and 1c) to have a good spatial coverage. Standard deviation 𝜎(rs) for source energy
Es at different test positions rs on a regular grid for four different sensors are calculated. The minimum of
this standard deviation over all tested positions rs, indicates the source location (Turkaya et al., 2016). We
used 5-mm grid spacing for the trial positions rs on the 45 cm × 30 cm area covered by the porous medium
inside the Hele-Shaw cell.

4. Image Processing for Deformation Localization
The optical images were captured via a high-speed camera (FastCam SA5-Photron, recorded with 125 or
1,000 fps with a resolution 1,024 × 1,024 pixels) during the experiments. These images are analyzed to local-
ize the deformation corresponding to the time interval when the acoustic signal is emitted. The deformation
of the medium during the acoustic emission leads time-lapse displacement fields of the porous medium
(Chevalier et al., 2009; Eriksen et al., 2015, 2017, 2018; Niebling et al., 2010; Travelletti et al., 2012).

First, two successive images corresponding to the start and the end of the acoustic event is taken. Fol-
lowing this pretreatment, a digital image correlation (DIC) procedure, called Ncorr (an open source 2-D
digital image correlation MATLAB software) is applied to obtain frame-to-frame displacement fields.
Ncorr cross-correlates subwindows between two images to find displacement fields in between. A detailed
description of Ncorr is given in Blaber et al. (2015).

In Figure 2a, an example of the displacement magnitude field obtained is given in the background. This
map shows the magnitude of the absolute displacement of the medium (without any defined direction in
the format of ||ū|| = √

u2
x + u2

𝑦
where ux,y are the displacements in directions x and y) occurring between

two images taken at 8 ms apart. The grey-scale map shows the norm of the displacement field over the
Hele-Shaw cell. As it can be seen for this snapshot, the displacements are localized near the fingertips. How-
ever, it is still possible to see nonzero displacements (of lower amplitudes) farther from the fingertips into the
porous medium.

TURQUET ET AL. 4
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Figure 2. Localization of an acoustic event. (a) The localized source and receiver positions are indicated. Diamond
markers show the accelerometer locations. The circle markers with different colors show the estimation of source
energy homogeneity results with different input signal lengths starting from the red triangle at (b) and ending at the
associated colored dot. The grayscale bar indicates the optically computed displacement magnitude in centimeter.
(b) The acoustic event with different window sizes are presented. The red triangle shows the picked arrival time, which
is the start of the signal for all time windows. The colored dots are the different ends of all windows used, resulting in
different locations shown in (a).

5. Results and Discussion
In Figure 2 the localization for an acoustic event is given. Displacement maps (in gray) are overlaid by
acoustic localization results. Markers with different colors are calculated for different time window lengths
to define the primary signal (see supporting information, Figure S1 for window lengths). The size of the time
window is set to extend stepwise to give multiple estimations for a single event for a better comparison with
DIC results. DIC gives us an idea about the evolution of the signal location by indicating the location of the
displacement that occurred during this time interval. In Figure 2 we see that the event source starts inside the
porous medium and progresses toward the channel tips. Moreover, by increasing the size of the time window
of the signal, we increase the sensitivity of the sensors for the waves coming from a larger area. The waves
propagating on thin plates—similar to the glass plates which are used in this experimental study—may
propagate at different velocities as a function of their frequency, which is the definition of dispersive waves.
In this work, the dispersion of the Lamb Waves is taken into account in wave velocity calculations using
experimental and theoretical computations (Royer & Dieulesaint, 2000).

In Figure 3, compared to the displacement magnitude given in Figure 2a we increased the temporal resolu-
tion to 1,000 frames per second instead of 125 fps. Moreover, to increase the spatial resolution of the images
(and the resulting displacement maps) we are focusing on subparts of the Hele-Shaw cell where most of
the grain displacement takes place. These settings allow us to follow the stick-slip events using the optical
equipment with higher spatial and temporal resolution. In Figure 3(bottom) we see the location of the ana-
lyzed area in the cell (the channels are white, the granular porous medium is black, the analyzed part of the
medium is gray).

Figure 3 also shows us how this stick-slip event starts inside the zone being compacted around 20 cm away
from the tip of the channels with a decompacting zone behind. The pulse, pair of compacting zone and
decompacting zone behind, travels backward toward the most advanced fingertip (in a direction opposite
to the grains direction) and then gets distributed toward the tip of the channels. This is very similar to the
phenomenon that we observed in Figure 2a where the source of the microseismic emission starts inside the
porous medium and progresses toward the channel tips (see the circled zone). The first part of the signal is
more sensitive to the start of the event than the whole slip event. Later on, the displacement gets distributed
around most of the fingertips and ends up with the slip of the grains around the tips. The ESEH method is
more sensitive to observe this evolution than the conventional arrival-time-based seismic location methods,
since the arrival time of the event does not vary with time but the energy emitted per second does. As the
time window gets enlarged, the sensors are more and more sensitive to signals coming from a larger area,
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Figure 3. (top) Displacement magnitude (mm) in successive time windows (tw). The image set covers 8 ms. (b) Sketch of the Hele-Shaw cell and the location of
the analyzed area.

and the resulting location, which assumes that the source is point-like, seems to come approximately from
points belonging to the mobile region, closer to the fingertips.

6. Conclusion
In this article, we show that digital images and acoustic signals are very good (and coherent) monitoring
tools to detect and localize fracturing and channeling in a porous medium. Different acoustic events hav-
ing different natures (and locations) are investigated optically and acoustically (see Figures S5–S27 in the
supporting information for more events and corresponding event recordings). The deformation magnitude
maps obtained from digital image correlation method are compared with the acoustic signal based source
localization results. The size of the time windows was set to extend freely so that the method would give
multiple results for a single event for a better comparison. Depending on the polarization found on different
sensors, it is possible to define the type of the source leading acoustic emissions. Localization results seem
to fit well with displacement map obtained from the optical analysis techniques.
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