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Abstract: Fluorinated heterocycles are important building blocks in pharmaceutical, agrochemical
and material sciences. Therefore, organofluorine chemistry has witnessed high interest in the
development of efficient methods for the introduction of emergent fluorinated substituents (EFS)
onto heterocycles. In this context, fluoroalkyl amino reagents (FARs)—a class of chemicals that was
slightly forgotten over the last decades—has emerged again recently and proved to be a powerful
tool for the introduction of various fluorinated groups onto (hetero)aromatic derivatives.
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1. Introduction

The incorporation of fluorine or fluorinated moieties into organic compounds plays a key role
in life science-oriented research, as it can often result in profound changes to the physico-chemical
and biological properties of the resulting compounds [1]. Therefore, organofluorine chemistry has
become a new challenge in the context of small-molecule research in agro- [2–8] and medicinal
chemistry [9–13]. Consequently, extensive and increasing attention has been devoted in the last decades
to the development of new and more efficient methods for the introduction of fluorinated motifs.
Classic methods for rapid assembly of fluoralkyl-substituted compounds rely almost exclusively on the
commercial availability of fluorinated building blocks that are manufactured by Swarts-type reactions,
a method for which no industrially viable substitute existed up to recently. Indeed, an alternative
strategy emerged in the last decade in industrial scale applications, based on the use of fluoroalkyl
amino reagents (FARs) as new tools to introduce fluoroalkyl moieties. This review will cover the
preparation and the reactivity of FARs as well as their numerous applications.

2. Preparation and Properties of Fluoroalkyl Amino Reagents

2.1. Preparation and Availability

Following the discovery of polytetrafluoroethylene (PTFE) by Plunkett in 1938, early examples of
N,N-dialkyl ↵,↵-difluoroalkylamines made from fluorinated alkenes were reported right after the Second
World War. Indeed, the first reaction between nucleophiles and chlorotrifluoroethylene was reported for
the first time in 1950 by Pruett et al. [14]. Then, Knunyants et al. reported in 1956 the addition of several
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nucleophiles, including secondary amines, on perfluoropropene [15]. In 1959, Yarovenko et al. described
for the first time the preparation and application of 2-chloro-N,N-diethyl-1,1,2-trifluoroethan-1-amine
(1b), later called the Yarovenko reagent, for deoxyfluorination of alcohols [16]. In 1960, England et al.
reported a broad extension of the scope of a number of base-catalyzed additions to fluoro-olefins [17].
Although already synthesized by the Knunyants group, Ishikawa et al. described in 1979 the preparation
of N,N-diethyl-1,1,2,3,3,3-hexafluoropropan-1-amine (1c) by condensation of perfluoropropene and
diethylamine [18]. Based on previous work from the England group, Petrov et al. described completely
the preparation of 1,1,2,2-tetrafluoro-N,N-dimethylethan-1-amine (1a, TFEDMA, sometimes called
Petrov’s reagent) in 2001 [19]. Recently Walkowiak et al. reported the preparation of other FARs
from 1,1,3,3,3-pentafluoropropene and various secondary amines to study the influence of alkyl chains
of the secondary amine on the HF elimination process [20].

Nowadays, Petrov’s reagent (1a), Yarovenko’s reagent (1b) and Ishikawa’s reagent (1c) are
commercially available from many suppliers, but their syntheses remain unchanged. FARs are
still prepared by hydroamination of polyfluoroalkenes with secondary amines, which are both bulk
chemicals produced on ton-scale in the fluoropolymer industry. This represents an advantage, as
both ingredients for the preparation of FARs are rather cheap. TFEDMA (the Petrov reagent) can be
purchased in a relatively high purity (>97% wt.) and the use of this yellow liquid is very convenient.
Yarovenko’s reagent is a dark brown oil (available with 97% wt. purity), whereas the Ishikawa reagent
is a pale brown oil with lower purity (ca. 90% wt.). Both are less stable than TFEDMA and degrade
much more rapidly. Their purity must be measured prior to use by means of NMR analysis in strictly
anhydrous, non-protic and non-nucleophilic deuterated solvents (e.g., CD3CN). One should indeed
have always in mind that these FARs have to be handled under inert-gas atmospheres, as they are
moisture sensitive, and their hydrolysis results in the release of hydrofluoric acid (HF). In 2015 a new
FAR, (CF3OCFHCF2N(CH3)2) 1d was developed by Leroux and Pazenok [21,22] for the introduction
of CHFOCF3 as a challenging emergent fluoroalkyl substituent. It can be prepared in situ under its
activated form (see next section) from commercially available gaseous trifluoromethyl trifluorovinyl
ether. The new fluoroalkoxyfluoroalkyl group is highly electron withdrawing and has lower steric
hindrance than CHFCF3 (in Ishikawa’s reagent) due to the oxygen spacer between the CF3 moiety and
the reactive electrophilic center (Scheme 1).
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2.2. Lewis Acid Activation of Fluoroalkyl Amino Reagents

FARs show a unique reactivity due to the presence of highly electron-withdrawing fluorine atoms
located closely to the tertiary amine. Indeed, the negative hyperconjugation resulting from an overlap
of the filled non-bonding orbital of nitrogen with an empty anti-bonding orbital of the C–F bond
weakens the latter to generate an equilibrium between the amines 1a–d and the fluoroiminium forms
2a–d, although intermediates 2a–d could never be observed directly. This phenomenon is responsible
for the specific reactivity of FARs. The difluoroalkylamine/fluoroiminium equilibrium can be fully
shifted to the iminium form after activation by a Lewis acid, yielding iminium tetrafluoroborate salts
3a–d in case of BF3·OEt2. These intermediates display a powerful electrophilic reactivity similarly to
an acylium ion (Scheme 2). They also have some structural analogy with well-known iminium salts,
such as the Vilsmeier reagent [23].

Molecules 2017, 22, 977 3 of 26 

 

2.2. Lewis Acid Activation of Fluoroalkyl Amino Reagents  

FARs show a unique reactivity due to the presence of highly electron-withdrawing fluorine 
atoms located closely to the tertiary amine. Indeed, the negative hyperconjugation resulting from an 
overlap of the filled non-bonding orbital of nitrogen with an empty anti-bonding orbital of the C–F 
bond weakens the latter to generate an equilibrium between the amines 1a–d and the fluoroiminium 
forms 2a–d, although intermediates 2a–d could never be observed directly. This phenomenon is 
responsible for the specific reactivity of FARs. The difluoroalkylamine/fluoroiminium equilibrium 
can be fully shifted to the iminium form after activation by a Lewis acid, yielding iminium 
tetrafluoroborate salts 3a–d in case of BF3·OEt2. These intermediates display a powerful electrophilic 
reactivity similarly to an acylium ion (Scheme 2). They also have some structural analogy with well-
known iminium salts, such as the Vilsmeier reagent [23]. 

 
Scheme 2. Lewis acid-mediated activation of FARs. TFEDMA, 1,1,2,2-tetrafluoro-N,N-dimethylethan-
1-amine. 

Both fluoroiminiums (fluoride 2a–d or tetrafluoroborate 3a–d salts) are highly moisture sensitive; 
they release hydrogen fluoride in contact with air to afford the corresponding fluorinated acetamides 
4a–d. The activation of FARs with Lewis acids is usually carried out in DCM or MeCN. The activated 
form is soluble in MeCN whereas it precipitates in DCM; evaporation of the latter solvent allows to 
isolate the fluoroiminium salt which is stable for a few hours under inert atmosphere (only for a few 
minutes under air). TFEDMA 1a and “OCF3-FAR” 1d can be used quite conveniently without this 
precipitation step; thus, they can be activated directly in MeCN over 15 min, as this solvent usually 
constitutes the medium for further reactions. However, due to their lower purity and slower activity, 
the Yarovenko 1b and Ishikawa 1c reagents are activated over 45 min to 1 h and are preferably used 
after precipitation from DCM (Scheme 3). 

 
Scheme 3. Activation of FARs with BF3·OEt2. 

Scheme 2. Lewis acid-mediated activation of FARs. TFEDMA, 1,1,2,2-tetrafluoro-N,N-dimethylethan-1-amine.

Both fluoroiminiums (fluoride 2a–d or tetrafluoroborate 3a–d salts) are highly moisture sensitive;
they release hydrogen fluoride in contact with air to afford the corresponding fluorinated acetamides
4a–d. The activation of FARs with Lewis acids is usually carried out in DCM or MeCN. The activated
form is soluble in MeCN whereas it precipitates in DCM; evaporation of the latter solvent allows to
isolate the fluoroiminium salt which is stable for a few hours under inert atmosphere (only for a few
minutes under air). TFEDMA 1a and “OCF3-FAR” 1d can be used quite conveniently without this
precipitation step; thus, they can be activated directly in MeCN over 15 min, as this solvent usually
constitutes the medium for further reactions. However, due to their lower purity and slower activity,
the Yarovenko 1b and Ishikawa 1c reagents are activated over 45 min to 1 h and are preferably used
after precipitation from DCM (Scheme 3).
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Concerning the choice of the Lewis acid, boron trifluoride diethyl etherate (BF3·OEt2) and
aluminium (III) chloride are commonly used with a preference for the first one. Indeed, the activation
of TFEDMA with AlCl3 in MeCN is slightly longer than with BF3·OEt2 (1 h instead of <15 min).
The resulting counter-anion is also important in the reactivity of FARs. Tetrahedral BF4

� is less
nucleophilic and basic than nitrates and halides and tetrafluoroborate salts are usually more soluble in
organic solvents. Experimentally, FARs are usually rather simple to use on small-scale reactions even
though small quantities of hydrogen fluoride are released. Simple glassware was conveniently used
without excessive corrosion. Teflon flasks are however used when reactions are carried out on large
scale (>10 g scale).

3. Fluoroalkyl Amino Reagents: Efficient Tools for Fluorination and for the Transfer of

Fluoroalkyl Groups

3.1. General Reactivity Modes of FARs

The high electrophilicity of FARs, especially in their activated iminium form, and their ability
to release hydrogen fluoride confer them a specific reactivity, which can be divided in four modes
(Scheme 4) depending on the substrates and on the FAR used:

(A) No carbon of the FAR is incorporated in the desired product of the reaction. The FAR acts
as an activator of hydroxyl groups, leading to their replacement by fluorine (with release of
the hydrolysed FAR as a fluorinated acetamide) or another intramolecular nucleophile as in
an example of Beckmann rearrangement. Aldehydes can also be deoxofluorinated. (Section 3.2).

(B) All carbons of the FAR are present in the desired product of the reaction but only one, the carbon
of the iminium, undergoes transformations via one or two nucleophilic attack(s). This reactivity
mode concerns the acylation of aromatic derivatives (Section 3.3.) and the synthesis of fluorinated
heterocycles by ring-closing attacks of heteroatomic nucleophiles (Section 3.4).

(C) All carbons of the FAR are present in the desired product of the reaction and 2 carbons, the carbon
of the iminium and the methine in ↵ position, undergo transformations. This kind of reactivity is
observed when nucleophiles are either allylic or propargylic alcohols (Section 3.5).

(D) All carbons of the FAR are present in the desired product of the reaction and all of them, namely the
carbon of the iminium, the ↵-methine and the carbon in � position (CF3) undergo transformations.
Accordingly, this reactivity is observed only with the Ishikawa reagent (Section 3.6).
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3.2. Nucleophilic Fluorination of the Hydroxyl or Carbonyl Functions

Since the 1960s till today, the Petrov reagent (1a), the Yarovenko reagent (1b) and the Ishikawa
reagent (1c) have been commonly used as selective fluorination agents of compounds containing
a hydroxyl moiety, such as alcohols [18,19,24–49], including hydroxyproline [50–53] or carbohydrate
derivatives [54], sulfonic [19] and carboxylic acids [55–58]. Interestingly, carbonyl compounds can
also react with FARs to afford difluoromethylated compounds [59]. The mechanism consists in
the formation of intermediate 6 as a result of the reaction between the hydroxyl function and the
fluoroiminium followed by the decomposition of intermediate 6 to afford the fluorinated product 7

and the corresponding fluorinated acetamide 4a–c (Scheme 5).
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The Yarovenko [60] and the Ishikawa [61] reagents were also used to prepare amide compounds
thanks to their capacity to provide efficiently acyl fluorides from carboxylic acids. They have also found
applications as dehydrating agents to prepare acetylenic ketones from �-diketones [62]. TFEDMA can
be reacted with 1,3-linear diketones (enolizable ketones) to provide �-difluoroketones [63].

Finally, the Yarovenko reagent was also used to trigger the Beckmann rearrangement of
↵-methioxyketoxime (Scheme 6) [64,65]. Indeed, the hydroxylamine can react with the Yarovenko
reagent to form intermediate 9. Then, instead of undergoing an attack by the fluoride anion, as for usual
reactions of alcohols with FARs, intermediate 10 engages in an intramolecular addition of the sulfur
atom, releasing the fluorinated acetamide 4b and leading to a thiazete 11 which finally fragments.
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3.3. Acylation of Aromatics

The chemistry of FARs enriched in 1975, when Wakselman et al. used them for the fluoroacylation
of electron-rich aromatics and more precisely, of dimethylaminobenzene, naphthalene, indole,
thiophene and N-Me-pyrrole (compounds 13a–j) using the activated forms of TFEDMA (3a),
Yarovenko’s reagent (3b) and Ishikawa’s reagent (3c) in a Friedel-Crafts-type reaction. After hydrolysis
of the resulting arylcarbiminium salt intermediate, acylated aromatics 14a–j were isolated in moderate
to good yields (Scheme 7) [66].
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This method was recently extended to other heterocycles, such as pyrrole, furan, thiophene or
N-methylindole (15a–g). For example, pyrrole was efficiently difluoroacylated and the introduction of
a second difluoroacyl group was achieved to provide 16b with high yield. Furan 16c and thiophene
16d gave lower yields, due to a high volatility and sensitivity towards hydrolysis or decomposition.
3-Aminopyrazole reacted via nucleophilic attack of its most nucleophilic position, namely the amino
function, to afford the corresponding amide 16e. N-methylindole and trimethylmethyleneindoline led
to the corresponding derivatives 16f and 16g, respectively (Scheme 8) [67].
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Although thermal conditions usually used give good results, microwave assistance allows one to
achieve much shorter reaction times and higher yields. Several difluoroacylated aniline and anisole
derivatives 18a–e could be isolated with moderate to excellent yields and with a regioselectivity governed
by the substituents, as in usual SEAr (electrophilic aromatic substitution) reactions (Scheme 9) [67].
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In order to access the other regioisomers and to broaden the substrate scope, halogen/metal
exchanges can be employed to convert aryl halides into the desired difluoroacyl derivatives. Indeed,
nucleophilic species formed in situ after the bromine/lithium exchange can be trapped with
N,N-dimethyldifluoroacetamide (4a, obtained by hydrolysis of TFEDMA) to afford the difluoroacylated
carbocycles 20a–c (Scheme 10) [67].
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A few examples of C-fluoroacylation of non-aromatic substrates were also reported. Whereas
non-cyclic 1,3-diketones undergo deoxofluorination (Section 3.2), the cyclic analogues react with
TFEDMA to yield the product of fluoroacylation of the active methylene [63]. Finally, we can notice
that in presence of a tertiary amine (N,N-diisopropylethylamine (DIPEA) for example), some alkyl
alcohols react with the Ishikawa reagent to afford the corresponding ↵-perfluoroesters, i.e., the products
of O-acylation instead of the usual dehydroxyfluorination [68]. Similar results were obtained with
aliphatic �-nitroalcohols [69] and ↵-halogenocyclohexanols [70], even in absence of additional base.
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3.4. Synthesis of Fluoroalkylated Heterocycles

3.4.1. Synthesis of Mono-Fluoroalkylated Benzo-Fused Heterocycles from
1,2-Diheteroatom-functionalized Arenes

In 1979, the group of Ishikawa described the first FAR-based preparation of fluoroalkylated
heterocycles, such as benzimidazoles, benzothiazoles and quinazolones from the Yarovenko reagent
1b. New heteroarene compounds 21a–j bearing a CHFCl group are produced with yields ranging from
50 to 75% (Scheme 11) [71].
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These first results demonstrate the powerful potential of FARs to transfer fluoralkyl groups and
access to various fluorinated (hetero)arenes which are ubiquitous in life science-oriented research.

3.4.2. Synthesis of Mono-Fluoroalkylated Pyrazoles

Since the beginning of the 21st century, difluoromethylpyrazoles [72] have attracted considerable
attention in crop science, since the 3-CHF2-pyrazolecarboxamide motif is actually found in
new-generation top selling succinate dehydrogenase inhibitor (SDHI) fungicides (Figure 1) [72–77].
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fluorinated pyrazolecarboxamides.

Whereas synthetics approaches towards pyrazoles bearing “classical” fluorinated substituents
(F and CF3) have been widely studied and reviewed by Fustero et al. [78], the introduction of
fluoroalkyl groups other than CF3 onto various N-based heterocycles is still the focus of intense
research interest. In 2008, Pazenok et al. reported the utilization of TFEDMA for the preparation of ethyl
3-(difluoromethyl)-1-methyl-1H-pyrazole-4-carboxylate (DFMMP), the key intermediate of Bixafen®

(a modern SDHI fungicide) [79]. This first example of use of a FAR to access fluoroalkylpyrazoles
prompted further investigation on FAR chemistry, as a means to develop new synthetic methods
towards N-based heterocyles bearing emergent fluorinated substituents (EFS).
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Towards the 3-CHF2-Pyrazolecarboxamide Motif

Several methods are described in the literature to prepare fluoroalkylpyrazoles. Most of them
consist in the use of fluorinated precursors derived from difluoroacetic acid and subsequent cyclisation
with hydrazines. All these methods were already reviewed in 2013 [80]. Another way consists in the
construction of the fluoroalkyl group on the already formed pyrazole ring, by nucleophilic fluorination
of chloroakyl or formyl groups or reductive dechlorination of chlorofluoroalkyl groups [81]. The first
preparation of the desired DFMMP intermediate 22a (Scheme 12) was patented in 1992 and was carried
out starting from ethyl difluoroacetoacetate [82]. The product was obtained with good yield (74%), but
the lack of regioselectivity and the difficult access to the starting material at this time (its availability is
easier now) were major drawbacks of this first attempt. Several approaches have been described later to
optimize the synthesis of DFMMP with full regioselectivity, high yield, low cost or non-toxic conditions
which may be applied industrially. However, it was difficult to combine all these parameters.

To meet all required specifications, a new strategy was employed, based on the use of
a specific FAR, namely TFEDMA (1a). The initial attempt involved the nucleophilic attack of ethyl
3-methoxyacrylate on activated TFEDMA to form the resulting iminium in situ, which was further
cyclized by treatment with methyl hydrazine to afford the targeted DFMMP with 68% yield and a 87:13
ratio of isomers (Scheme 12A) [83]. This partial regioselectivity can be explained by the competition of
two electrophilic centers during the attack by the hydrazine, resulting from the delocalization of the
positive charge along the conjugated system. The ratio could be improved to 92:8 by replacing ethyl
�-methoxyacrylate by ethyl �-dimethylaminoacrylate (Scheme 12B) [79]. Finally, full regioselectivity
and high yield (94%) were obtained when the in situ formed fluoroiminium tetrafluoroborate salt was
reacted with the protected hydrazine analogue of ethyl �-dimethylaminoacrylate (Scheme 12C) [84].
The preparations of CF3CHF- and CHFCl-functionalized analogues were successfully carried out using
the same strategy (yields are not reported).
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Scheme 12. Use of FARs ((A) Reaction of TFEDMA with methoxy acrylate; (B) with dimethylamino
acrylate; (C) with a methylhydrazone) and acrylates to prepare ethyl 3-(difluoromethyl)-1-methyl-
1H-pyrazole-4-carboxylate (DFMMP) with full regioselectivity.

Synthesis of Various Substituted Mono (Fluoroalkyl)pyrazoles and Isoxazoles

As described above, activated FARs reacted well with amino- or alkoxyacrylates to form in
situ highly reactive dielectrophilic species, precursors of mono(fluoroalkyl)pyrazoles. As a logical
extension, the reactivity towards other nucleophiles was studied to prepare several substituted
mono(fluoroalkyl)pyrazoles and -isoxazoles [67]. First, activated TFEDMA 3a can react smoothly
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with vinyl ethers 24 and ketene acetals 28 to form iminium intermediates 25 and 29 and afford
corresponding substituted mono(CHF2)-NMe-pyrazoles 26, 27 and 30 after cyclization with methyl
hydrazine (Scheme 13).
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Second, investigations about the reactivity of 3a with silyl enol ethers were conducted [67].
Commercial silyl enol ethers of cyclopentanone 31 and cyclohexanone 32 can react with fluoroiminium
salt 3a affording CHF2-iminium intermediates 33 and 34, which can be either used directly in
cyclization or hydrolyzed to isolate the corresponding �-(2,2-difluoro-1-hydroxy-ethylidene)cycloalkyl
ketones 39 and 40. When treated with methyl hydrazine, 40 gave a 1:1 mixture of regioisomers 41/42,
whereas iminium intermediates 33 and 34 led to the major isomers 35 and 37 with very good to
complete regioselectivity (Scheme 14). This difference of regioselectivity can be explained by the higher
electrophilicity of the iminium carbon in 33 and 34 with regard to the same carbon of enolic type in 39

and 40 and to the carbonyl group.
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Scheme 14. Reaction of 3a with silyl enol ethers of cyclopentanone and cyclohexanone.

These differences of regioselectivity were equally observed with the silyl enol ether of
acetophenone 43 affording the major isomer 45 with very good selectivity (94:6) when avoiding
hydrolysis of the iminium intermediate 44. The latter was able to react also with hydrazine hydrate
and hydroxylamine hydrochloride to provide NH-pyrazole 47 and isoxazole 48 respectively. The silyl
enol ether of acetylacetone 50 afforded a single acetyl pyrazole isomer 52 (Scheme 15) [67].
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Third, 3-difluoromethylpyrazoles and -isoxazoles bearing an amino group in position 5
can be obtained by reacting activated TFEDMA 3a and CH-acidic nitrile derivatives, namely
malononitrile 53 and ethyl cyanoacetate 58, and following with a cyclization step with hydrazines
or hydroxylamine (Scheme 16). The implementation of the first stage of the reaction proved delicate.
The choice of the base and the isolation of the intermediate difluoro(dimethyamino)ethylidenes 54

and 59 appeared critical. However, the cyclization step was much easier and afforded efficiently
3-difluoromethyl-5-aminopyrazoles (55, 56, 60 and 61) and -isoxazoles (57 and 62) in presence of
corresponding dinucleophiles (BOC-hydrazide (BOC, tert-butoxycarbonyle) was used instead of
hydrazine hydrate in the case of compound 61 in order to improve the efficacy of the reaction) [67].
Last, monofluoroalkylpyrazoles could also be prepared by reaction of activated FARs and azines; this
strategy will be described in Synthesis of 3,5-Bis(fluoroalkyl)-NH-pyrazoles from Azines Section.
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3.4.3. Synthesis of Bis-fluoroalkylated Pyrazoles

The huge diversity of targets in crop science and the success of DFMMP derivatives (Figure 1)
motivated the search for analogues of this key motif bearing an additional fluoroalkyl group on the
pyrazole ring.

Synthesis of 3,5-Bis(fluoroalkyl)pyrazoles from Fluoroacetoacetates

Previous work already described the synthesis of pyrazoles bearing two fluorinated groups by
reaction of bisperfluoroalkyl diketones with hydrazines, but the synthesis, isolation and purification of
the starting fluorinated diketones is very complex [85–90]. To circumvent these issues, FARs proved
a very valuable tool and allowed to develop a scalable and operationally convenient method. Indeed,
they could act as a source of one fluoroalkyl group, while the other one was provided by available
fluoroacetoacetates, leading after treatment with hydrazines to 3,5-bis(fluoroalkyl)-pyrazolecarboxylates
63–66 with excellent regioselectivity (>97:3) using a one-pot procedure (Scheme 17) [91]. This method
could be applied on 100 g scale without any problems related to exothermicity or stirring [92]. In the
case of N-substituted pyrazoles, esters 63–66 could be further functionalized by saponification, yielding
carboxylic acids 67–70 as possible precursors for the synthesis of pyrazolecarboxamides towards SDHI
ingredients (see Figure 1), and an additional decarboxylation step led to 3,5-bis(fluoroalkyl)pyrazoles
71–73 unsubstituted in position 4. On the other hand, the saponification conditions failed on NH-pyrazoles.
Consequently, an alternative pathway was used to access to “naked” 3,5-bis(fluoroalkyl)-NH-pyrazole
71a via cleavage of the N-tBu moiety of N-tBu-3,5-bis(fluoroalkyl)pyrazoles in harsh acidic conditions
prior to decarboxylation (Scheme 17) [91,92].
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The strategy was also used by Leroux and coworkers for the synthesis of 3,5-bis(fluoroalkyl)
isoxazolecarboxylates 74–77 by replacing hydrazines with hydroxylamine. The corresponding
carboxylic acids 78–80 were also prepared similarly by hydrolysis, although the latter was carried out
in acidic medium (Scheme 18).
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Synthesis of 3,5-Bis(fluoroalkyl)-NH-pyrazoles from Azines

The method described above gave very good results in the access to 3,5-bis(fluoroalkyl)-
pyrazolecarboxylates 63–66. However, it suffered some limitations in the preparation of
3,5-bis(fluoroalkyl)-NH-pyrazoles 71a—harsh acidic conditions were needed to deprotect the N-tBu
moiety. To circumvent this inconvenience and prepare efficiently unprecedented 3,5-bis(fluoro-alkyl)-
NH-pyrazoles 71a–j, another pathway was developed, based on the use of fluorinated azines 81a–e.
The latter are a synthetic equivalent of fluorinated propanyl-2-ylidenehydrazines, whose free NH2
is revealed upon in situ hydrolysis of the benzophenone-derived imine subunit. By reaction with
activated FARs 3a–c followed by addition of acid, a cyclization would occur to provide the desired
NH-pyrazoles (Scheme 19) [93].
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The preparation of fluororinated azines 81a–e was straightforward. First benzophenone hydrazone
83 was prepared quantitatively by reaction of hydrazine hydrate with benzophenone 82. Then
fluoroacetones were condensed onto 83 to afford azines 81a–e with excellent yields (Scheme 20) [93].
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Then, fluorinated azines 81a–e were reacted with activated FARs 3a–c (activation with BF3·OEt2)
to form vinamidinium intermediates 84a–j. On the one hand, the latter led, upon hydrolysis by
dilute aqueous HCl (1 N), to �-(diphenylmethylenehydrazinyl)-bis(fluoroalkyl)-enones 85a–h, which
represent analogues of unsymmetrical fluorinated 1,3-diketones that are usually difficult to prepare.
On the other hand, treatment of 84a–j with concentrated HCl (12 N) hydrolyzed the benzophenone
imine moiety and triggered the ring-closing attack of the resulting hydrazine onto the electrophilic
�-fluoro iminium. This step provided the desired 3,5-bis(fluoroalkyl)-NH-pyrazoles 71a–j with
moderate to excellent yields (Scheme 21, pathway A). Interestingly, several of these pyrazoles could
also be prepared from vinamides 85a–h, by treating them with concentrated HCl, to compare the
reactivity of vinamides versus vinamidiniums. Whereas the cylization proceeded smoothly at room
temperature from vinamidiniums 84a–j, heating the vinamides 85a–h at 50 �C for 1–2 h was necessary
to afford the cyclized products with lower yields (Scheme 21, pathway B). This difference in reactivity
can be ascribed to the faster release of the secondary amine rather than that of water during the final
aromatization step (Scheme 22) [93].
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This strategy was also used to prepare 3-(CHF2)-5-(fluoroaryl)-NH-pyrazoles 88a–d from
fluorinated acetophenones 86a–d with moderate yields (Scheme 23) [93].
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This use of fluorinated azines represents the first efficient pathway to prepare unprecedented
3,5-bis(fluoroalkyl)-NH-pyrazoles. However, application of this method in industrial processes appears
difficult, due to the tediousness of the complete removal of benzophenone released in the reaction.
Moreover, the method was limited to the preparation of 3,5-bis(fluoroalkyl)-NH-pyrazoles. Several
attempts of N-methylation of these compounds were achieved and proved that the regioselective
N-functionalization is really difficult and mostly influenced by thermodynamic factors (unpublished
results). Consequently, a new facile and efficient method was then reported to prepare series of
3,5-bis(fluoroalkyl)pyrazoles bearing not only a hydrogen or a methyl substituent, but also a large
diversity of groups in position 1, while maintaining the control of regioselectivity [21]. This method
will be described in the following sections.

Synthesis of 3,5-Bis(fluoroalkyl)-NH-pyrazoles from Ketimines

This new strategy was based on the addition of N-benzyl fluoroacetimines 89a–c on activated
FARs 3a–d. The reaction could be carried out under mild conditions (25 �C in MeCN for up to 1 h) to
produce vinamidium intermediates 90a–j. These species can be directly reacted with hydrazine hydrate
to afford 3,5-bis(fluoroalkyl)-NH-pyrazoles 71a–j under similarly mild conditions with moderate to
excellent yields (Scheme 24). Interestingly, better results were attained with this ketimine-based method
than with the azine-based route when starting from TFEDMA 1a. The trifluoromethoxy-subsituted
FAR 1d, transferring a CHFOCF3 group, was also used and afforded new pyrazole scaffolds with
very good yields (81–85%). On the other hand, the Yarovenko and Ishikawa reagents proved overall
less efficient (except when starting from the CHF2-ketimine) due once again to the lower reactivity of
N,N-diethyl iminiums with regard to their dimethyl congeners, and to the lower purity of the starting
commercial FARs 1b–c [21].
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Synthesis of 3,5-Bis(fluoroalkyl)-NMe-pyrazoles from Ketimines

Unlike the synthesis of NH-pyrazoles from hydrazine hydrate, the access to NMe-pyrazoles
implies an additional regioselectivity issue, due to the non-symmetrical nature of methyl hydrazine
whose first nucleophilic attack can proceed via the NH2 or the NHMe groups (Scheme 25). The control
of regioselectivity is critical since regioisomers 71 and 71

0 are usually difficult to separate.
When vinamidinium intermediates 90a–j were treated with methyl hydrazine under acidic

conditions (Scheme 25, pathway A), the best results were again observed with TFEDMA 1a and the
“OCF3-FAR” 1d, which led mainly to regioisomer 71 (71/71

0 ratio = 71:29 to 100:0). For example, full
regioselectivity in favour of isomer 71 was observed when 3d was opposed to CF3- and C2F5-ketimines.
Conversely, the activated Yarovenko and Ishikawa reagents 3b–c gave poorer results in terms of both
reactivity and regioselectivity. Indeed, no reaction occurred with electron-poor and bulkier ketimines
(Rf2 = CF3 and C2F5); and while it proceeded with the CHF2-ketimine, a lower selectivity was observed,
sometimes surprisingly in favour of isomer 71

0 [21].



Molecules 2017, 22, 977 16 of 26
Molecules 2017, 22, 977 16 of 26 

 

 
Scheme 25. Synthesis of 3,5-bis(fluoroaryl)-NMe-pyrazoles. Pathway A: from in situ formed 
vinamidiniums; Pathway B: from isolated vinamides. 

To account for the regioselectivity, one can assume that in the case of TFEDMA and its -OCF3 
analogue, which both lead to N,N-dimethyliminiums, the major isomer is formed due to two reasons. 
The first attack is believed to be more favorably affected by the NH2 moiety of methyl hydrazine, 
instead of the NHMe one, in order to avoid the steric clash between the methyl group and fluorinated 
substituents Rf1 or Rf2. Second, this first attack is driven by the release of the more volatile 
dimethylamine instead of benzylamine. On the other hand, for the two other FARs, the lower 
reactivity of more congested N,N-diethyliminium salts 3b–c renders their attack by the NH2 group 
more difficult and affords mixed regioselectivities. 

Vinamidiums 90a–j can also be hydrolysed to afford vinamides 91a–e, which can react 
afterwards with methyl hydrazine as 1,3-dielectrophiles (Scheme 25, pathway B). In this case, a 
reversed regioselectivity is observed with regard to the reaction of vinamidiniums. For example, 
treating unsymmetrical vinamide 4-(benzylamino)-1,1,5,5-tetrafluoropent-3-en-2-one (Rf1 = Rf2 = CHF2) 
with methyl hydrazine led to isomer 71′ as major product, presumably after initial addition of the 
NH2 moiety of methyl hydrazine onto the iminium tautomer which is more electrophilic than the 
carbonyl function of vinamides 91 [21]. 

Synthesis of 3,5-Bis(fluoroalkyl)-N-substituted-pyrazoles from Ketimines 

After the development of efficient methods to prepare 3,5-bis(fluoroalkyl)-NH- and NMe-pyrazoles 
regioselectively, the synthesis of analogous pyrazoles bearing a wide diversity of substituents in 
position 1 was tackled, from commercially available substituted hydrazines. To avoid problems of 
regioselectivity, symmetrical bis(CHF2)pyrazoles were first prepared, by means of either hydrazine 
hydrochloride salts in presence of NEt3 (helping to solubilize salts and the aromatization), or free 
hydrazines in presence of sulfuric acid. Vinamidinium intermediate 90a provided efficiently 1-alkyl- 
and 1-arylpyrazoles 92a–d with very good yields (90–99%). For some hydrazines, especially the more 
hindered or more electron-deficient ones, microwave assistance was needed to afford the desired aryl 
pyrazoles 90d–f with moderate yields (48–66%). Some limitations were observed, such as the non-
compatibility of the reaction conditions with acid-labile groups on the final pyrazoles (BOC, tosyl, 
tBu and benzoyl under certain conditions) or a sluggish mixture in the case of 92f, but various  
N-substituted pyrazoles could still be obtained (Scheme 26) [21]. 

Scheme 25. Synthesis of 3,5-bis(fluoroaryl)-NMe-pyrazoles. Pathway A: from in situ formed
vinamidiniums; Pathway B: from isolated vinamides.

To account for the regioselectivity, one can assume that in the case of TFEDMA and its -OCF3
analogue, which both lead to N,N-dimethyliminiums, the major isomer is formed due to two
reasons. The first attack is believed to be more favorably affected by the NH2 moiety of methyl
hydrazine, instead of the NHMe one, in order to avoid the steric clash between the methyl group
and fluorinated substituents Rf1 or Rf2. Second, this first attack is driven by the release of the more
volatile dimethylamine instead of benzylamine. On the other hand, for the two other FARs, the lower
reactivity of more congested N,N-diethyliminium salts 3b–c renders their attack by the NH2 group
more difficult and affords mixed regioselectivities.

Vinamidiums 90a–j can also be hydrolysed to afford vinamides 91a–e, which can react afterwards
with methyl hydrazine as 1,3-dielectrophiles (Scheme 25, pathway B). In this case, a reversed
regioselectivity is observed with regard to the reaction of vinamidiniums. For example, treating
unsymmetrical vinamide 4-(benzylamino)-1,1,5,5-tetrafluoropent-3-en-2-one (Rf1 = Rf2 = CHF2) with
methyl hydrazine led to isomer 71

0 as major product, presumably after initial addition of the NH2
moiety of methyl hydrazine onto the iminium tautomer which is more electrophilic than the carbonyl
function of vinamides 91 [21].

Synthesis of 3,5-Bis(fluoroalkyl)-N-substituted-pyrazoles from Ketimines

After the development of efficient methods to prepare 3,5-bis(fluoroalkyl)-NH- and
NMe-pyrazoles regioselectively, the synthesis of analogous pyrazoles bearing a wide diversity of
substituents in position 1 was tackled, from commercially available substituted hydrazines. To avoid
problems of regioselectivity, symmetrical bis(CHF2)pyrazoles were first prepared, by means of either
hydrazine hydrochloride salts in presence of NEt3 (helping to solubilize salts and the aromatization),
or free hydrazines in presence of sulfuric acid. Vinamidinium intermediate 90a provided efficiently
1-alkyl- and 1-arylpyrazoles 92a–d with very good yields (90–99%). For some hydrazines, especially
the more hindered or more electron-deficient ones, microwave assistance was needed to afford the
desired aryl pyrazoles 90d–f with moderate yields (48–66%). Some limitations were observed, such as
the non-compatibility of the reaction conditions with acid-labile groups on the final pyrazoles (BOC,
tosyl, tBu and benzoyl under certain conditions) or a sluggish mixture in the case of 92f, but various
N-substituted pyrazoles could still be obtained (Scheme 26) [21].
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fluorinated 1,3-diketones or analogues, but the intermediate fluorinated 5-hydroxypyrazolines are 
often not dehydrated readily under the reaction conditions [94–96]. Since vinamidiniums 90 or 
vinamides 91 can be regarded as mono- or bis-iminium analogues of bis(fluoroalkyl)-1,3-diketones, 
it is not surprising that their reaction with hydrazines bearing a H-bonding N-substituent leads to 
non-aromatized products. Indeed, the latter substituent binds to the proton of the hydroxy or 
benzylamino group, thus increasing electron-density at O and N respectively, and therefore 
decreasing the acidity of the β-proton whose abstraction would lead to aromatization. 

Several pyrazolines were thus isolated and demonstrated an excellent stability (Scheme 28) [21]. 
Interestingly, these experiments demonstrate the opposite reactivity of vinamidinium and vinamide 
intermediates. Indeed, 5-(N-benzylamino)pyrazolines 96a–e were selectively prepared from 
bis(CHF2)-substituted vinamidinium 90a (Method 1) whereas 5-hydroxy-pyrazolines 97a–e were 
obtained from the corresponding vinamide 91a (Method 2). These results seem again to indicate that 
the first nucleophilic attack is carried out by the less hindered NH2 moiety of hydrazines onto the 

Scheme 26. Synthesis of various N-substituted pyrazoles from vinamidiniums and vinamides.
Method 1: hydrazine/conc. H2SO4, or hydrazine·HCl/NEt3, MeCN, 25–50 �C, 1 h.; Method 2:
hydrazine, conc. H2SO4, toluene/MeCN, 120–140 �C, MW, 0.5–2 h.

Interestingly, when 2,4-dinitrophenylhydrazine 93 was reacted with vinamidinium 90a,
hydrazonamide 95 was formed in 83% yield, thus supporting the scenario where the first nucleophilic
attack is effected by the NH2 end of the hydrazine onto the N,N-dimethyl iminium moiety of the
vinamidinium (Scheme 27).
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On the other hand, when hydrazines bearing a H-bonding N-substituent (benzoyl, BOC, carbamyl,
2-pyridinyl, tosyl), were used, the dehydration/deamination step (aromatization step) did not proceed
and the corresponding hydroxy- or N-benzylaminopyrazolines were obtained (Scheme 28) [21].
As reported by several research groups, fluoroalkyl pyrazoles can be prepared from hydrazines
and fluorinated 1,3-diketones or analogues, but the intermediate fluorinated 5-hydroxypyrazolines
are often not dehydrated readily under the reaction conditions [94–96]. Since vinamidiniums 90 or
vinamides 91 can be regarded as mono- or bis-iminium analogues of bis(fluoroalkyl)-1,3-diketones,
it is not surprising that their reaction with hydrazines bearing a H-bonding N-substituent leads
to non-aromatized products. Indeed, the latter substituent binds to the proton of the hydroxy or
benzylamino group, thus increasing electron-density at O and N respectively, and therefore decreasing
the acidity of the �-proton whose abstraction would lead to aromatization.

Several pyrazolines were thus isolated and demonstrated an excellent stability (Scheme 28) [21].
Interestingly, these experiments demonstrate the opposite reactivity of vinamidinium and vinamide
intermediates. Indeed, 5-(N-benzylamino)pyrazolines 96a–e were selectively prepared from
bis(CHF2)-substituted vinamidinium 90a (Method 1) whereas 5-hydroxy-pyrazolines 97a–e were
obtained from the corresponding vinamide 91a (Method 2). These results seem again to indicate that
the first nucleophilic attack is carried out by the less hindered NH2 moiety of hydrazines onto the
N,N-dimethyl iminium part of vinamidinium 90a, while, in vinamide 91a, this attack takes place on
the N-benzyl iminium instead.
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Using the fluorinated polar protic solvent hexafluoropropan-2-ol (HFIP) involved a critical
improvement in the reaction of vinamides (Method 3). This non-nucleophilic and highly H-bonding
solvent proved highly appealing in the preparation of 5-hydroxypyrazolines 97a–e since it provided
excellent yields in absence of strong Brønsted acid. This method was also used with non-symmetrical
vinamides 91b–e and for every Rf1/Rf2 couple, the reactivity of the N-benzyl iminium moiety formed
in situ was always higher than that of the fluoroalkyl ketone function towards attack by the NH2
end of the hydrazine. Four different unsymmetrical 5-hydroxy-pyrazolines 97f–i were selectively
formed with yield ranging from 62 to 99%. Using a mixture of vinamides 91d/91

0
d (65:35) provided

respectively a mixture of 5-hydroxy-pyrazolines 97h/97
0
h (68:32) further separated by chromatography

with almost complete conservation of the initial ratio (Scheme 28) [21].
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NH-pyrazole 71 formed. c R group cleaved between 80 °C and 120 °C. bis(CHF2)-NH-pyrazole 71 
formed. d prepared from a mixture of semicarbazide hydrochloride and NEt3, with no acid added.  
e Pyrazole 103 was isolated directly. f No conc. H2SO4 used. g N-(pTolyl)-pyrazole (104) was separated 
by chromatography from pyrazoline 96e (29% isolated). h Pyrazolines 97h and 97’h were prepared 
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(50 wt. % aq.) used instead of hydrazine. j Hydroxylamine·HCl used instead hydrazine. 

Scheme 28. Regioselective preparation of 5-N-benzylamino- and 5-hydroxypyrazolines and isoxazolines.
Method 1: hydrazine, conc. H2SO4, MeCN, 25–50 �C, 1 h. Method 2: hydrazine, toluene/MeCN,
120–140 �C, MW, 0.5–2 h. Method 3: hydrazine, HFIP (hexafluoropropan-2-ol), 100–140 �C, 0.5–5 h.
a 19F NMR yield with PhF as internal standard. b R group cleaved between 120 �C and 150 �C.
bis(CHF2)-NH-pyrazole 71 formed. c R group cleaved between 80 �C and 120 �C. bis(CHF2)-NH-pyrazole
71 formed. d prepared from a mixture of semicarbazide hydrochloride and NEt3, with no acid added.
e Pyrazole 103 was isolated directly. f No conc. H2SO4 used. g N-(pTolyl)-pyrazole (104) was separated
by chromatography from pyrazoline 96e (29% isolated). h Pyrazolines 97h and 97’h were prepared
from a 65/35 mixture of vinamides 91d and 91’d and separated by chromatography. i Hydroxylamine
(50 wt. % aq.) used instead of hydrazine. j Hydroxylamine·HCl used instead hydrazine.
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The synthesis of the corresponding isoxazolines was achieved similarly using aqueous
hydroxylamine or hydroxylamine hydrochloride instead of hydrazine. 5-(N-benzylamino)isoxazoline
98 and 5-hydroxypyrazoline 99 were isolated in very good yields (Scheme 28) [21]. This demonstrates
that the more nucleophilic nitrogen attacks the more electrophilic iminium group in both
starting vinamidinium salt 90a (N,N-dimethyl iminium) and vinamide 91a (N-benzyl iminium).
The stabilization of the non-aromatized isoxazoline is permitted by either 1,4-H-bonding interactions
or intermolecular H-bonding interactions.

Then, a selection of bis(fluoroalkyl)pyrazolines was successfully rearomatized under basic
conditions (excess of pyridine) using thionyl chloride. N-benzoyl-5-hydroxypyrazoline 96

and N-2-pyridinyl-5-hydroxypyrazoline 97 were readily and quantitatively dehydrated at room
temperature to yield the corresponding pyrazoles 100 and 103. Conversely, reflux heating was required
for the aromatization of N-benzoyl-5-(N-benzylamino)pyrazoline to provide pyrazole 100 and similarly
for the N-(BOC)-analogue, which afforded quantitatively the bis(CHF2)-NH-pyrazole 71 due to the
thermal instability of the BOC group (Scheme 29) [21].
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b 19F NMR yield with PhF as internal standard. c bis(CHF2)-NH-pyrazole 73 formed after BOC
(tert-butoxycarbonyle) cleavage.

To complete the investigation, a variety of functional groups (halogen, nitro, amine, aldehyde,
carboxylic acid, boronate) was introduced into the 4-position of the model substrate, 3,5-bis(CHF2)-
NH-pyrazole 71, to improve the applicability of 3,5-bis(fluoroalkyl)pyrazoles [21].

3.4.4. Synthesis of 2,4-Bis(fluoroalkyl)-substituted Quinoline Derivatives

The previous section covered the reaction of FARs with fluorinated N-benzylketimines to prepare
3,5-bis(fluoroalkyl)pyrazoles. When N-aryl fluoroketimines are used instead, the reaction outcome
drastically changes. In this case, the vinamidinium intermediate readily cyclizes without addition of
a hydrazine or of hydroxylamine as cyclization partner. The highly electrophilic distal fluorinated
iminium indeed undergoes attack by the aryl substituent of the remote nitrogen, in a Friedel-Crafts-type
reaction, to finally afford 2,4-bis(fluoroalkyl)quinolines after rearomatization. The synthesis of
quinoline derivatives bearing two fluorinated groups in both positions 2 and 4 is scarcely described;
only syntheses of bis(trifluoromethylated)quinolines were reported [97–100]. The use of FARs allowed
to prepare in one step, from two series of variously substituted aryl fluoroketimines 106a–l and 107a–u,
a large diversity of 2,4-bis(fluoroalkyl)quinolines 109a–l and 110u bearing different fluorinated groups
on the pyrido moiety and various substituents on the benzo ring under mild conditions. Interestingly,
complete regioselectivity was always observed, obviously with N-(4-substituted-phenyl)imines, but
also with the 2- and 3- substituted analogues. The reaction yields were dependent on the nature of the
substituents (R1), of the starting aniline of the Rf1 and Rf2 groups and the R substituents of the FAR
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nitrogen atom. Indeed, the critical intermediate 108, where the nucleophilic and electrophilic termini
required for cyclization are part of the same molecule and heavily conjugated, is strongly affected
by the electronic and steric effects of all substituents decorating the N-aryl vinamidinium backbone
(Scheme 30) [101].
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3.5. Reaction with Allylic and Propargylic Alcohols

In previous Sections 3.2–3.4 we have described the uses of FARs to perform the
dehydroxy-fluorination of alcohols, with no carbon of the FAR present in the final product, and
reactions where all carbons of the FAR are present in the product but only one, the carbon of the
iminium, undergoes transformation.

When allylic or propargylic alcohols are reacted with FARs, another, distinct outcome is revealed,
with two carbons of the FAR being transformed and incorporated in the reaction product. Indeed,
the reaction between the Ishikawa reagent 1c and the hydroxyl function of allylic 111 and 116 or
propargylic 120 alcohols affords iminium intermediates 112, 117 and 121. Due to the acidic proton in
a position of the imidate carbon, the latter undergoes tautomery leading to the enamine form which
can then react intramolecularly as a nucleophile to form different fluoralkylated molecules. Thus,
↵-fluoro-↵-trifluoromethyl-�-lactones 115 can be formed stereospecifically from Ishikawa’s reagent
and racemic or enantioenriched �-hydroxy-↵,�-unsaturated sulfones 111 (Scheme 31, pathway A) [102].
The diastereoselective formation of 2-fluoro-2-trifluoromethyl-4-alkenamides 119 was also reported
from 1c and (Z)-allylic alcohols 116 via a Claisen rearrangement (Scheme 31, pathway B) [103].
The same technique was reproduced from propargyl alcohols 120 to afford the related allenes
123 with good yields (Scheme 31, pathway C) [104]. These reactions were then applied to the
diastereoselective and enantioselective synthesis of ↵-trifluoromethylated ↵-amino acid derivatives
from �-hydroxy-↵-fluoro-↵-trifluoromethyl carboxamides [105]. In the end, although this reactivity
mode of FARs has only been reported for the Ishikawa reagent, one can assume that other FARs can
be compatible.

3.6. Transformation of the Three Carbons of the Ishikawa Reagent

Finally, another application of FARs makes a constructive use of all carbons of the FAR, which
are al transformed and incorporated in the reaction product. The Ishikawa reagent, like other FARs,
can be easily hydrolysed to form the corresponding acetamide 4c, which can then be treated with
a polar organometallic species (ArMgX) to afford acylated products, as detailed in Section 3.3. The ↵

position of this ketone is relatively acidic and can be deprotonated by an alkoxide, to form in situ
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the corresponding difluoromethylene upon elimination of fluoride. The transient �,�-difluoroenone
then reacts quickly with excess alkoxide to afford ↵-fluoro-�-ketoesters 126a–g. It is important to note
that this step is possible only when starting from the Ishikawa reagent, which is the only FAR among
1a–d to be derived from a 3-carbon alkene. The resulting ↵-fluoro-�-ketoesters 126a–g possess two
electrophilic sites and can react with dinucleophiles to provide fluorinated heterocycles. For example,
monofluorinated pyrazoles and coumarins can be prepared by reaction with hydrazine and phenols
respectively (Scheme 32) [106].

Molecules 2017, 22, 977 21 of 26 

 

electrophilic sites and can react with dinucleophiles to provide fluorinated heterocycles. For example, 
monofluorinated pyrazoles and coumarins can be prepared by reaction with hydrazine and phenols 
respectively (Scheme 32) [106]. 

 
Scheme 31. Reaction between the Ishikawa reagent and allylic or propargylic alcohols. 

 
Scheme 32. Synthesis of fluorinated heterocycles from the hydrolyzed Ishikawa reagent [106]. 

4. Conclusions 

While fluoroalkyl amino reagents were discovered more than a half century ago, their utilization 
was really diversified in 1975 when Wakselman et al. published their first applications as 
fluoroacylating agents for aromatics. The chemistry of FARs underwent a second impulse at the 
beginning of the 21st century when the need for fluorinated heterocycle-based crop protection 
ingredients by agrochemical companies focused on difluoromethylpyrazoles. Indeed, 3-CHF2-
pyrazolecarboxamide derivatives showed high activity as SDHI fungicides and several analogues 
were marketed by agro companies. In order to enhance the diversity and activities of these active 
ingredients, novel structures were sought and their preparation was studied. The development of 
new methods to introduce diverse emergent fluorinated substituents on heterocycles was necessary 
and FARs showed very interesting applications. Numerous fluorinated N-based 5- and 6-membered 
heterocycles bearing “classical” or new fluorinated substituents, particularly CF3, C2F5, CHF2, CHFCl, 
CHFCF3 or CHFOCF3 were successfully prepared using fast, efficient, robust and scalable methods. 

Acknowledgments: We thank the CNRS France (Centre National de la Recherche Scientifique), the University 
of Strasbourg and are very much grateful to Bayer S.A.S. for a grant to E.S., F.A. and B.C. The French Fluorine 
Network (GIS CNRS Fluor) is also acknowledged. 

Conflicts of Interest: The authors declare no conflict of interest. 
  

Scheme 31. Reaction between the Ishikawa reagent and allylic or propargylic alcohols.

Molecules 2017, 22, 977 21 of 26 

 

electrophilic sites and can react with dinucleophiles to provide fluorinated heterocycles. For example, 
monofluorinated pyrazoles and coumarins can be prepared by reaction with hydrazine and phenols 
respectively (Scheme 32) [106]. 

 
Scheme 31. Reaction between the Ishikawa reagent and allylic or propargylic alcohols. 

 
Scheme 32. Synthesis of fluorinated heterocycles from the hydrolyzed Ishikawa reagent [106]. 

4. Conclusions 

While fluoroalkyl amino reagents were discovered more than a half century ago, their utilization 
was really diversified in 1975 when Wakselman et al. published their first applications as 
fluoroacylating agents for aromatics. The chemistry of FARs underwent a second impulse at the 
beginning of the 21st century when the need for fluorinated heterocycle-based crop protection 
ingredients by agrochemical companies focused on difluoromethylpyrazoles. Indeed, 3-CHF2-
pyrazolecarboxamide derivatives showed high activity as SDHI fungicides and several analogues 
were marketed by agro companies. In order to enhance the diversity and activities of these active 
ingredients, novel structures were sought and their preparation was studied. The development of 
new methods to introduce diverse emergent fluorinated substituents on heterocycles was necessary 
and FARs showed very interesting applications. Numerous fluorinated N-based 5- and 6-membered 
heterocycles bearing “classical” or new fluorinated substituents, particularly CF3, C2F5, CHF2, CHFCl, 
CHFCF3 or CHFOCF3 were successfully prepared using fast, efficient, robust and scalable methods. 

Acknowledgments: We thank the CNRS France (Centre National de la Recherche Scientifique), the University 
of Strasbourg and are very much grateful to Bayer S.A.S. for a grant to E.S., F.A. and B.C. The French Fluorine 
Network (GIS CNRS Fluor) is also acknowledged. 

Conflicts of Interest: The authors declare no conflict of interest. 
  

Scheme 32. Synthesis of fluorinated heterocycles from the hydrolyzed Ishikawa reagent [106].

4. Conclusions

While fluoroalkyl amino reagents were discovered more than a half century ago, their
utilization was really diversified in 1975 when Wakselman et al. published their first applications
as fluoroacylating agents for aromatics. The chemistry of FARs underwent a second impulse
at the beginning of the 21st century when the need for fluorinated heterocycle-based crop
protection ingredients by agrochemical companies focused on difluoromethylpyrazoles. Indeed,
3-CHF2-pyrazolecarboxamide derivatives showed high activity as SDHI fungicides and several
analogues were marketed by agro companies. In order to enhance the diversity and activities of these
active ingredients, novel structures were sought and their preparation was studied. The development
of new methods to introduce diverse emergent fluorinated substituents on heterocycles was necessary
and FARs showed very interesting applications. Numerous fluorinated N-based 5- and 6-membered
heterocycles bearing “classical” or new fluorinated substituents, particularly CF3, C2F5, CHF2, CHFCl,
CHFCF3 or CHFOCF3 were successfully prepared using fast, efficient, robust and scalable methods.
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