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ABSTRACT:  14 

Characterization of therapeutic proteins represents a major challenge for analytical sciences due to 15 

their heterogeneity caused by post-translational modifications (PTM). Among these PTM, glycosylation 16 

which is possibly the most prominent, require comprehensive identification because of their major 17 

influence on protein structure and effector functions of monoclonal antibodies (mAbs). As a 18 

consequence, glycosylation profiling must be deeply characterized. For this application, several 19 

analytical methods such as separation-based or MS-based methods, were evaluated. However, no CE-20 

ESI-MS approach has been assessed and validated. Here, we illustrate how the use of CE-ESI-MS 21 

method permits the comprehensive characterization of N-glycosylation of mAbs at the glycopeptide 22 

level. Validation of the CE-ESI-MS method in terms of robustness and reproducibility was demonstrated 23 

through the relative quantitation of glycosylation profiles for ten different mAbs produced in different 24 

cell lines. Glycosylation patterns obtained for each mAbs were compared to Hydrophilic Interaction 25 

Chromatography of 2-aminobenzamide labeled glycans with fluorescence detector (HILIC-FD) analysis 26 

considered as a reference method. Very similar glycoprofiling were obtained with the CE-ESI-MS and 27 

HILIC-FD demonstrating the attractiveness of CE-ESI-MS method to characterize and quantify the 28 

glycosylation heterogeneity of a wide range of therapeutic mAbs with high accuracy and precision. 29 
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1. Introduction 33 

Monoclonal antibodies (mAbs) were introduced for the treatment of various diseases in the late 1980 34 

and they still represent the most rapidly growing category of therapeutic molecules today [1-3]. mAbs 35 

are particularly interesting because of their good therapeutic efficiency, favorable pharmacokinetic and 36 

pharmacodynamics, and relatively low side-effects [4]. mAbs are tetrameric glycoproteins having a 37 

molecular mass of approximately 150 kDa, composed of two heavy chains and two light chains, inter-38 

linked by several disulfide bonds, and having at least one conserved N-glycosylation site located in the 39 

Fc domain [3]. Glycosylation is a post-transcriptional modification (PTM) that occurs naturally during 40 

excretion of antibodies from the expression system to the extracellular medium. It only represents 2-41 

5% of the total mass of the protein but it is subjected to extensive studies due to its significant influence 42 

on effector functions of mAbs, especially antibody-dependent cell-mediated cytotoxicity (ADCC) and 43 

complement-dependent cytotoxicity (CDC) [5-8]. As a consequence, the mAbs glycosylation profile is 44 

considered as a critical quality attribute (CQA) and must be thoroughly analyzed [9-13]. The complexity 45 

and heterogeneity of the glycosylation pattern is mainly due to mAbs production in living expression 46 

systems [14-16] and requires a number of orthogonal analytical techniques to be fully characterized. 47 

Several analytical methods have been described for the glyco-variants characterization at different 48 

levels (from released glycans to intact protein level) including separative techniques (liquid 49 

chromatography (LC), capillary electrophoresis (CE)) often coupled to spectrometric, amperometric 50 

and mass spectrometric detection [17-21]. Recently, Reusch’s group published two major articles 51 

dealing with the analysis of Fc-glycosylation profiles, and comparing several separation methods 52 

hyphenated or not with mass spectrometry (MS) detection [20-21]. This comprehensive comparison 53 

showed an excellent precision and accuracy for all the methods. However, concerning MS-based 54 

methods [22-25], a large panel of methodologies were evaluated, except the CE-ESI-MS approach. 55 

Nevertheless, in 2008, Gennaro et al. described the development of CE-ESI-MS technology with online 56 

LIF detection that allows identification of major and minor glycan species observed in the routine CE-57 

LIF assay. Despite significant instrumental development to achieve LIF and MS dual detection, their 58 

strategies allowed to perform quantitative analysis provided by the on-line LIF trace and to increase 59 

confidence by providing accurate mass information [26]. More recently, Gahoual et al. reported the 60 

development of CE-ESI-MS technique for the characterization of the primary structure of mAbs 61 

performed in a single injection [27]. Based on a bottom-up approach, they highlighted the benefits of 62 

using electrophoretic separation in complement to chromatographic separation, which is 63 

conventionally applied in this type of study. CE separation selectivity allowed to simultaneously 64 

perform the amino acid sequencing and the PTMs characterization, including the N-glycosylation 65 

profiling. However, concerning the latter point, the approach was not statistically validated and 66 



3 

 

potential bias in the obtained glycosylation heterogeneity could exist [28]. In the meantime, Heemskerk 67 

et al. reported the use of a similar methodology for highly sensitive IgG1 glycosylation profiling as a 68 

complementary method to a high-throughput nano-RPLC-MS [29]. They concluded that CE-ESI-MS 69 

provide information on IgG Fc glycosylation with concentrations below the LODs of the conventional 70 

methods. However, no comparison with reference method were applied to validate the obtained 71 

glycosylation heterogeneity.  72 

In this report, we evaluated and validated CE-ESI-MS method to characterize and quantify the 73 

heterogeneity of the glycosylation pattern with high accuracy, precision and robustness. A systematic 74 

characterization study of glycovariants obtained from ten different therapeutic mAbs produced in 75 

different expression systems (CHO, NS0 and SP2/0), has been performed to evaluate the suitability of 76 

CE-ESI-MS method, according to mAbs properties. Rituximab (chIgG1, CHO), palivizumab (hzIgG1, 77 

SP2/0), natalizumab (hzIgG4, NS0), nivolumab (huIgG4, CHO), trastuzumab (hzIgG1, CHO), 78 

panitumumab (huIgG2, CHO), adalimumab (huIgG1, CHO), infliximab-Remicade® (chIgG1, SP2/0) as 79 

well as two infliximab biosimilars, infliximab-Inflectra® (chIgG1 SP2/0) and infliximab-remsima® 80 

(chIgG1 SP2/0), were selected for this study. Comparison with glyco-profiling of released and 2-AB 81 

labeled glycans (used as a reference method) obtained by state-of-the-art Hydrophilic Interaction 82 

Chromatography (HILIC) was methodically performed to assess the reliability of the CE-ESI-MS 83 

methodology.        84 

 85 

2. Experimental 86 

2.1. Chemicals. Chemicals used were of analytical grade or high purity grade and purchased from 87 

Sigma-Aldrich (Saint Louis, MO, USA). Water used to prepare buffers and sample solutions was 88 

obtained using an ELGA purelab UHQ PS water purification system (Bucks, UK). RapiGest SF surfactant 89 

was purchased from Waters (Milford, MA, USA). mAbs and biosimilars products were all kindly provided 90 

by Pierre Fabre laboratories (Saint-Julien en Genevois, France). 91 

2.2. Sample preparation. A volume corresponding to 100 µg of protein was used. Samples were first 92 

diluted from stock solution to a concentration of 45.6 µM by using milliQ water.  A second dilution to a 93 

concentration of 22.2 µM was performed by using 0.1% RapiGest surfactant and incubation at 40°C for 94 

10 min. Reduction of the samples was then achieved by the addition of dithiothreitol (DTT, final 95 

concentration of 25 mM) and incubation at 95°C for 5 min. Once cooled down to room temperature 96 

(RT), the alkylation of the cysteines (Cys) was performed to avoid the reformation of the disulphide 97 

bonds. Thus, iodoacetamide (IDA, final concentration of 10 mM) was added to the samples, followed 98 

by incubation at RT for 20 min in the dark. For performing the trypsin digestion, a volume of 1 µL of 99 
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trypsin (0.5µg/µL) was added to the samples that were left at room temperature for 3h. Then another 100 

volume of 1µL was added afterward and digestion was performed overnight at 37°C. In order to cleave 101 

the surfactant, formic acid (FA) was added to the samples at a final concentration of 1% (v/v) and 102 

samples were left at RT for 2h. Samples were finally diluted to a final protein concentration of 2.2 µM 103 

using ammonium acetate 50 mM (pH 4.0). 104 

2.3. Capillary electrophoresis. The CE experiments were performed with a CESI8000 capillary 105 

electrophoresis system from Sciex Separation (Brea, CA, USA). A 32 KaratTM (Sciex Separation) was used 106 

for instrument control, data acquisition and data handling. Bare fused-silica capillaries (total length 100 107 

cm; 30 μm i.d.) with characteristic 3 cm porous tip on its final end, a second capillary (total length 80 108 

cm; 50 μm i.d.) filled during experiments with BGE allows electric contact. New capillaries were flushed 109 

for 10 min at 75 psi (around 5 bar) with methanol, then 10 min with 0.1 M sodium hydroxide, followed 110 

by 10 min with 0.1 M hydrochloric acid and water for 20 min at 75 psi. Finally, the capillary was flushed 111 

10 min at 75 psi with BGE which contains 10% acetic acid. Hydrodynamic injection (6 psi for 2 min) 112 

corresponding to a total volume of 90 nL of injected sample was used. Injection volumes were 113 

calculated by using the CEToolbox application (Pansanel, GooglePlay). Separations were performed 114 

using a voltage of +20 kV.  115 

2.4. Mass spectrometry. For glycopeptide analysis, the CESI system was hyphenated with a 5600 116 

TripleTOF mass spectrometer (Sciex, Darmstadt, Germany). The MS instrument is equipped with a 117 

hybrid analyzer composed of quadrupoles followed by a time-of-flight (TOF) analyzer. ESI source 118 

parameters were set as follows: ESI voltage -1.75kV, gas supplies (GS1 and GS2) were deactivated, 119 

source heating temperature 150°C and curtain gas value 5. Experiments were performed in Top15 120 

information dependent acquisition (IDA), accumulation time was 250 msec for MS scans and 100 msec 121 

for MS/MS scans leading to a total duty cycle of 1.75 sec. Mass/charge (m/z) range was set to 100-2000 122 

in MS and 50-2000 in MS/MS. Using those parameters, the mean resolution provided by the instrument 123 

is 40000 in MS (for m/z 485.251) and 25000 in MS/MS (for m/z 345.235). 124 

2.5. MS/MS data analysis. Data obtained from the sheathless CE-MS/MS experiments were analyzed 125 

using Peakview software (Sciex, San Francisco, CA). The allowed mass tolerance for search algorithm 126 

identification, were set to ± 5 ppm and ±0.05 Da for precursor ions and fragmentation ions, respectively. 127 

2.6. HILIC (2-AB) Each mAb (200 μg) was deglycosylated by incubation with 2 μg PNGase F (500,000 128 

U/ml, New England Biolabs) at 37°C for 3 h. Released glycans were labelled with 2-AB at 65°C for 3 h 129 

(Glyko Signal 2-AB Labeling Kit, ProZyme), and then purified using dedicated GlikoClean S Cartridges 130 

(ProZyme). Labeled glycans were washed with 96% acetonitrile (ACN), eluted from the cartridges and 131 

evaporated to dryness using a speedvac, then reconstituted in 30:70 water/ACN (v/v). Analysis were 132 

performed by HILIC using an Agilent AdvanceBio Glycan column (2.1 x 150 mm, 1.8 μm) on a Waters 133 
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ACQUITY UPLC I-Class system equipped with a binary solvent delivery pump, an auto-sampler, a UV-134 

DAD and a fluorescence detector (FD) set at λex= 260 nm and λem= 430 nm. The system included a flow 135 

through needle (FTN) injection system with a 15 μL needle. Data acquisition, data handling and 136 

instrument control were performed with Empower 2 (Waters, Milford, MA, USA). Mobile phase 137 

consisted of 20 mM Ammonium Formate solution (A) and ACN (B). The column temperature was set to 138 

55 °C, and injection volume was 2 μL corresponding to 0.08-0.2 ug glycan sample. The flow rate was 139 

set to 0.5 mL/min, and the gradient conditions consisted of 80% to 60% B in 25 minutes, followed by a 140 

3 min washing step at 20% B and a 15 min re-equilibration step. Peaks were manually integrated and 141 

relative glycan compositions were calculated. For the correct identification of the labelled glycans, 142 

UHPLC-MS analysis were also performed using an ACQUITY UPLC system (Waters), equipped with a 143 

binary pumping system and fixed loop injector of 5 μl. This UHPLC was coupled to a fluorescence 144 

detector (FD) and an electrospray time-of-flight mass spectrometer (XevoTM Q-ToF, Waters). The mass 145 

spectrometer was operated in the positive ion mode and ions were scanned over an m/z range of 500-146 

2500 with a 1 s scan rate. Capillary voltage was set to 3.0 kV, sample cone voltage to 35 V, source 147 

temperature to 120 °C, desolvation gas temperature to 350 °C and gas flow to 800 L/h. The instrument 148 

was calibrated using the singly charged ions produced by a 2 μg/μL sodium iodide solution in 2-149 

propanol/water (1:1). Data acquisition and analysis were performed with MassLynx 4.1 (Waters). In all 150 

cases, a 2-AB labelled dextran ladder standard (1 pmol/μL) was also injected before and after a series 151 

of 5 samples, to check the repeatability of the injections and verify that no drift in retention times was 152 

observed. 153 

 154 

3. Results and discussions 155 

 3.1. Characterization of N-Glycopeptide by CE-ESI-MS. 156 

mAbs are glycosylated proteins whose N-glycans are naturally incorporated in the protein during 157 

secretion into the extracellular environment. Extensive glycans characterization in terms of structure 158 

and relative abundance is of prime importance. The main goal of this study was to demonstrate the 159 

possibility to use CE-ESI-MS method for performing glycosylation profiling of a large panel of 160 

therapeutic mAbs. Therefore, we realized a systematic study of glycosylation characterization on ten 161 

different mAbs produced in CHO, NS0 and SP2/0 cell lines (Table 1). To evaluate the viability of CE-ESI-162 

MS, we focused our characterization on the main Fc N-glycan species typically found in therapeutic IgG 163 

mAb produced in the above mentioned cell lines and listed in Table 1. In this section, natalizumab 164 

results have been selected as example to describe the CE-ESI-MS methodology allowing to assess the 165 

in-depth N-glycan characterization. Fig. 1a illustrates the separation obtained for the tryptic digest of 166 

natalizumab for a 200 fmol injection. The total analysis time was less than 45 min and the resulting 167 
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electropherogram showed that all peptides migrated between 15 and 40 min. As tandem MS data 168 

interpretation and peptide identification was automatically done using Mascot, to obtain fast and 169 

accurate data treatment, it was necessary to manually evaluate the CE-ESI-MS/MS data in order to 170 

identify the glyco-variants and determine their structures.  171 

 172 

Fig. 1. (a) Base Peak Electropherogram corresponding to the analysis by CE-ESI-MS/MS of natalizumab tryptic 173 
digest. (b) MS spectrum of 30.5 – 31.9 min and 34.9 – 36.5. (c) MS/MS fragmentation spectra of [EEQFNSTYR] + 174 
G0F. Experimental conditions described in Experimental section. 175 

 176 

Peak assignment of glyco-structures was performed based on accurate mass measurement in MS1, 177 

provided by high resolution MS (mass accuracy below 2 ppm) (Fig. 1b) and collision induced decay (CID) 178 

fragmentation spectra (Fig. 1c), respectively. Indeed, MS/MS spectra exhibited the fragmentation of 179 

glycan moieties present on the glycopeptide, giving structural information on the glycans along with 180 
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reinforcing the confidence of the identification. Furthermore, the obtained electropherogram showed 181 

the separation of several glycopeptides, demonstrating the benefit of using CE for such 182 

characterization. The charge-based CE separation allowed the baseline resolution of sialic acid and 183 

neutral glycans located on the peptide EEQFN300STYR. Fig. 1a represents two windows on the 184 

electropherogram, corresponding to the neutral glycans separation (between 30.5 and 31.9 min) and 185 

to the sialic acid moieties separation (between 34.9 and 36.5 min). Moreover, particular glycopeptides 186 

having a difference of only one galactose could also be baseline separated. Glycopeptides having such 187 

a small difference in mass tend to compete against each other during the ionization process, potentially 188 

interfering with relative quantification, thus the capacity to separate them is clearly an intriguing 189 

advantage. To perform the glycans profiling of each mAb, relative occurrence levels were estimated 190 

from the sum of isotopic peak intensities, considering all charge states of the ion corresponding to one 191 

glycopeptide (Fig. 2a and Table S-1). A comparison of all glycoforms abundance was then realized (Fig. 192 

2b). To validate the method reproducibility, the digestions of each mAb were performed three times 193 

using different experimenters and triplicate injections of each digested sample were carried out. The 194 

relative occurrence glycan levels reported in Table 1 were calculated for a selected mAb as the average 195 

of all relative abundances of the nine values (three digestions and three injections per digested 196 

samples), with a confidence interval of 95%.   197 

 198 

Fig. 2. (a) Extracted Ion Electropherogram (EIE) of m/z ratios 878.68 and 1317.52 ([EEQFN*STYR] + G0F) and 199 
corresponding MS/MS fragmentation spectra (right-hand side). (b) Glycoforms relative abundance results 200 
obtained through the CE-ESI-MS data for the natalizumab Fc glycopeptide. 201 
 202 
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3.2. Evaluation of CE-ESI-MS method performance 203 

To assess the performance of the CE-ESI-MS methodology with respect to accuracy and precision, each 204 

mAb glycosylation profile was compared with the reference method, namely HILIC-FD glycosylation 205 

profile obtained upon release and 2-AB-labeling of the glycans. HILIC-FD acquisitions were performed 206 

in triplicate and peaks on the FD chromatogram were manually integrated for estimating the relative 207 

glycan compositions. The deviations observed for retention times were minimal (RSDRT = 0.39%, 208 

calculated on G0F, for n = 30). Peak assignment of the 2AB-glycans was accomplished by online coupling 209 

of HILIC with ESI-MS. A detailed list of the glycan composition and the theoretical masses of the 210 

unlabelled/labelled glycans is shown in Table 2. The theoretical 2AB-glycan masses were used to obtain 211 

the extracted ion chromatogram (EIC) of each glycan. Furthermore, GlycoMod software 212 

(http://web.expasy.org/glycomod/) was eventually used for the prediction of the possible glycan 213 

structures based on the experimentally determined masses.  214 

 215 

Fig. 3. Comparison of Infliximab-Remicade® and infliximab-Remsima® glycoprofiling. (a) Quantification of N-216 
glycans adapted following the method of Pisupati et al (adapted with permission from [30]. Copyright (2017) 217 
American Chemical Society. (b) Quantification of N-glycans following CE-ESI-MS analysis. 218 

 219 

http://web.expasy.org/glycomod/
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Table 1 compiles the results of CE-ESI-MS and HILIC-FD (2-AB) relative abundance values obtained for 220 

each mAb. As described in the literature [20], HILIC-FD shows excellent precision with low standard 221 

deviations (with the exception of Infliximab-Remsima® analysis). The suggested CE-ESI-MS method also 222 

presents low absolute variation with values below 4% for the different glycan structures. These values 223 

are comparable to those determined for other MS-based methods, such as NanoLC-ESI-MS described 224 

elsewhere [21]. It is worth noticing that for each mAb, the deviations were obtained based on the 225 

combination of digestions and injections performed in triplicates by different experimenters over an 226 

extended period of several weeks, thus the results strongly support the performance of the method in 227 

terms of robustness and reproducibility. Moreover, the relative occurrence level estimated by CE-ESI-228 

MS method were in good agreement for the values obtained with the reference HILIC-FD method. For 229 

G0F and G1F, which represent at least 75% of the total glycosylation of each mAb, the relative absolute 230 

difference between CE-ESI-MS means and HILIC-FD means expressed as a percentage (100*|MeanCE-231 

MeanHILIC|/MeanCE) showed an average of 7.5% for G0F and 7.8% of G1F. These values confirm the good 232 

fit between the two methodologies for the major forms of glycosylation. Moreover, for glycosylation 233 

expressed at least at 10% of the total glycoforms (i.e. G2F of Palivizumab), this value is up to 20% 234 

meaning a good variability between CE-ESI-MS and HILIC (2-AB) mean amount. For glycosylation 235 

representing less than 10% of the total glycoforms, the relative absolute differences between HILIC-FD 236 

and CE-ESI-MS are no longer representative, because these values can be very high, due to low degree 237 

of expression.   238 

The relative quantification of mono-antennary structures, defined by the lack of N-acetylglucosamine 239 

(G0F-N, G1F-N, G0-N, G1-N), is known to be problematic using MS-based methods. Indeed, in-source 240 

fragmentation of bi-antennary structures resulting in the loss of one antenna can generate elevated 241 

mono-antennary structures levels, along with a charge reduction that is commonly observed in MS 242 

spectra and that is a consequence of a loss of the N-acetylglucosamine [21]. While only low or similar 243 

levels of mono-antennary structures were detected in CE-ESI-MS for eight mAbs, higher levels of these 244 

glycovariants were detected for natalizumab and nivolumab, as compared to HILIC-FD (Table S-2). 245 

However, for these two mAbs, differences between the mono-antennary means obtained by CE-ESI-246 

MS and HILIC-FD were not aberrant, and no charge state reduction was observed by CE-ESI-MS, 247 

meaning that the detected sum of mono-antennary structures were not over-estimated. Moreover, 248 

this result confirmed that during ESI-MS analysis of glycopeptides, in source decay can efficiently be 249 

avoided through the proper choice of the MS conditions and voltages, even for CE-ESI-MS method [21].  250 

The sum of afucosylated species (G0, G1, G2) is a relevant parameter for antibody effector function. 251 

For nine mAbs, similar levels of G0+G1+G2 were observed. Only trastuzumab showed a difference 252 

between CE-ESI-MS (8.3%) and HILIC-FD (4.4%) (Table S-2). Similarly, the sum of highly mannosylated 253 
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species (M5, M6) was evaluated and similar levels of M5+M6 were observed for seven mAbs, along 254 

with small differences concerning M5 species for adalimumab, infliximab-Remicade® and palivizumab. 255 

Finally, good correlations were observed for the mean levels of sialylated structures sum (G1FS, G1FS-256 

N). Overall comparisons of results obtained by CE-ESI-MS approach and HILIC-FD reference method 257 

showed very similar glycoprofiling of the ten therapeutic mAbs. CE-ESI-MS demonstrated to be a 258 

valuable method to characterize and quantify with high accuracy, precision and robustness the most 259 

largely expressed glycan species as well as the low abundance glycoforms.   260 

Recently, Pisupati et al. published an important work describing a multidimensional analytical 261 

comparison of infliximab-Remicade® and the biosimilar infliximab-Remsima® [30]. They performed the 262 

glycoforms quantification by LC-MS using trypsin-digested products and demonstrated, for the first 263 

time, significant differences in the N-Glycan distributions for infliximab-Remicade® and infliximab-264 

Remsima® (Fig. 3a). To confirm the assessment of CE-ESI-MS method in performing the relative 265 

quantitation of mAbs glycopeptides, we compared our infliximab-Remicade® and infliximab-Remsima 266 

means with those obtained by Pisupati et al. It must be highlighted that no collaboration was carried 267 

out between Prof. Schwendeman’s group and our laboratory, which means that samples were not from 268 

the same batch, and that experimenters and instrumentations were different. Fig. 3b represents the 269 

glycoprofiling of infliximab-Remicade® and infliximab-Remsima following CE-ESI-MS analysis for the 270 

selected N-glycan species. Comparison between Pisupati et al. results and our profiles highlights a total 271 

similarity between the two glycoprofilings. While the confirmation of CE-ESI-MS performance in term 272 

of N-Glycan species quantification was proved, significant differences in the N-Glycan distributions for 273 

infliximab-Remicade® and infliximab-Remsima® were confirmed.  274 

Infliximab-Inflectra® is another biosimilar that was studied in this work and not reported by Pisupati et 275 

al..  Thanks to the CE-ESI-MS methodology, we showed for the first time significant differences in the 276 

N-Glycan distributions also for infliximab-Remicade® and infliximab-Inflectra® (Table 1). 277 

 278 

 279 

 280 

4. Conclusions 281 

To summarize, we reported here the development of a CE-ESI-MS methodology to perform relative 282 

quantitation of N-glycan species for mAbs characterization at the glycopeptides level. Validation in 283 

terms of robustness and reproducibility of CE-ESI-MS method were demonstrated through the relative 284 

quantitation of glycosylation profiles for ten different mAbs produced in different cell lines. A 285 
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systematic comparison of the glycosylation patterns obtained for each mAbs was compared with that 286 

obtained with the HILIC-FD reference method. Results obtained with the CE-ESI-MS approach and 287 

HILIC-FD showed very similar glycoprofiling, demonstrating the attractiveness of CE-ESI-MS method to 288 

characterize and quantify the glycosylation heterogeneity of a wide range of therapeutic mAbs, with 289 

high accuracy and precision. Moreover, it must be mentioned that our CE-ESI-MS methodology is not 290 

restricted to the sole purpose of glycopeptides characterization and quantitation, but it can also be 291 

employed for the overall characterization of mAbs, including primary structure assessment with 292 

complete sequence coverage as well as identification and quantification of a large number of PTMs, all 293 

performed within a unique single analysis [27]. In our opinion, this work proves that CE-ESI-MS could 294 

be a viable alternative to LC-ESI-MS for glycosylation profiling and should be considered as an 295 

innovative approaches in MS-based proteomics applied to mAbs characterization.  296 

 297 
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Table 1: Comparison of mAbs glycosylation profiles by HILIC (2-AB) and CE-ESI-MS methods. Relative occurrence level of the various glycopeptides are given in percent with 380 
standard deviation in parentheses. Abbreviation: H, hexose; N, N-acetylhexosamine; F, deoxyhexose; S, N-acetylneuraminic acid; n.d., not detected 381 

  
Adalimumab 

(Humira®) 

Infliximab 

(Remicade®) 

Infliximab 

(Inflectra®) 

Infliximab 

(Remsima®) 

Trastuzumab 

(Herceptin®) 

Glycan 
Species 

Structural 
Scheme 

HILIC 
(2-AB) 

CE with 
Q-TOF 

HILIC 
(2-AB) 

CE with 
Q-TOF 

HILIC 
(2-AB) 

CE with 
Q-TOF 

HILIC 
(2-AB) 

CE with 
Q-TOF 

HILIC 
(2-AB) 

CE with 
Q-TOF 

G0F 
[H3N4F1]  

69.3 
(0.1) 

65.7 
(2.4) 

53.7 
(0.1) 

49.7 
(1.3) 

41.6 
(0.1) 

39.3 
(4.0) 

44.6 
(5.1) 

38.6 
(2.0) 

48.7 
(0.4) 

41.6 
(1.1) 

G1F 
[H4N4F1]  

17.9 
(<0.1) 

18.0 
(3.0) 

21.4 
(0.1) 

19.3 
(1.8) 

40.2 
(<0.1) 

39.7 
(2.2) 

37.5 
(3.7) 

39.2 
(1.4) 

35.4 
(0.2) 

38.7 
(0.8) 

G2F 
[H5N4F1]  

1.3 
(<0.1) 

0.8 
(0.8) 

2.1 
(<0.1) 

2.5 
(03) 

5.7 
(<0.1) 

6.4 
(1.9) 

4.7 
(1.7) 

6.8 
(0.6) 

5.3 
(<0.1) 

7.2 
(0.6) 

G0F-N 
[H3N3F1]  

2.5 
(<0.1) 

3.7 
(1.0) 

6.3 
(<0.1) 

7.3 
(0.5) 

1.4 
(<0.1) 

1.7 
(0.4) 

1.7 
(0.6) 

1.8 
(0.2) 

1.5 
(<0.1) 

1.3 
(0.1) 

G1F-N 
[H4N3F1]  

1.4 
(<0.1) 

0.1 
(0.4) 

2.5 
(<0.1) 

3.2 
(0.4) 

0.8 
(<0.1) 

0.8 
(0.7) 

0.8 
(<0.1) 

0.6 
(0.4) 

1.7 
(<0.1) 

0.5 
(0.4) 

G0 
[H3N4]  

0.8 
(<0.1) 

0.5 
(0.8) 

1.3 
(<0.1) 

2.1 
(0.3) 

0.6 
(<0.1) 

0.8 
(0.1) 

0.8 
(0.3) 

1.0 
(0.1) 

3.5 
(<0.1) 

5.3 
(0.3) 

G1 
[H4N4]  

n.d. 
0.5 

(1.3) 
0.1 

(<0.1) 
0.1 

(0.3) 
0.1 

(<0.1) 
n.d. 

0.1 
(<0.1) 

0.1 
(0.3) 

0.5 
(<0.1) 

2.9 
(0.1) 

G2 
[H5N4]  n.d. n.d. 

0.3 
(<0.1) 

n.d. 
0.1 

(<0.1) 
n.d. 

0.1 
(<0.1) 

0.1 
(0.1) 

0.4 
(<0.1) 

0.1 
(<0.1) 

G0-N 
[H3N3]  

0.4 
(<0.1) 

n.d. 
1.8 

(<0.1) 
2.8 

(0.3) 
0.5 

(<0.1) 
0.6 

(0.1) 
0.6 

(0.3) 
0.6 

(0.1) 
0.8 

(<0.1) 
0.7 

(0.1) 
G1-N 
[H4N3]  

n.d. n.d. 
0.7 

(<0.1) 
0.6 

(0.6) 
0.1 

(<0.1) 
0.1 

(0.1) 
0.1 

(<0.1) 
0.1 

(0.1) 
n.d. 

0.1 
(0.1) 

G1FS-N 
[H4N3FS1]  

n.d. n.d. 
2.8 

(<0.1) 
3.4 

(1.0) 
1.2 

(0.1) 
1.3 

(0.4) 
1.0 

(0.3) 
1.4 

(0.3) 
n.d. n.d. 

G1FS 
[H4N4FS1]  

n.d. n.d. 
1.5 

(<0.1) 
1.6 

(0.5) 
3.0 

(<0.1) 
3.9 

(1.2) 
2.3 

(0.4) 
3.9 

(0.8) 
n.d. n.d. 

M5 
[H5N2]  

4.65 
(<0.1) 

8.2 
(2.6) 

5.4 
(<0.1) 

7.4 
(0.9) 

4.6 
(<0.1) 

5.5 
(0.3) 

5.3 
(1.4) 

5.8 
(0.6) 

1.8 
(<0.1) 

1.6 
(0.1) 

M6 
[H6N2]  

1.57 
(<0.1) 

2.57 
(0.9) 

0.1 
(<0.1) 

n.d. 
0.3 

(<0.1) 
n.d. 

0.3 
(<0.1) 

0.1 
(0.3) 

0.4 
(<0.1) 

n.d. 

  382 
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Table 1 (continued) 383 

  
Palivizumab 

(Synagis®) 

Natalizumab 

(Tysabri®) 

Nivolumab 

(Opdivo®) 

Rituximab 

(Rituxan®) 

Panitumumab 

(Vectibix®) 

Glycan 
Species 

Structural 
Scheme 

HILIC 
(2-
AB) 

CE with 
Q-TOF 

HILIC 
(2-
AB) 

CE with 
Q-TOF 

HILIC 
(2-AB) 

CE with 
Q-TOF 

HILIC 
(2-AB) 

CE with 
Q-TOF 

HILIC 
(2-AB) 

CE with 
Q-TOF 

G0F 
[H3N4F1]  

29.4 
(2.9) 

29.2 
(0.5) 

59.1 
(0.3) 

55.1 
(1.3) 

69.8 
(0.4) 

60.5 
(2.1) 

44.5 
(0.1) 

40.6 
(1.8) 

41.6 
(0.2) 

40.6 
(2.1) 

G1F 
[H4N4F1]  

44.9 
(1.5) 

43.5 
(2.0) 

30.5 
(0.1) 

30.7 
(1.1) 

23.7 
(0.2) 

28.6 
(1.0) 

42.0 
(0.1) 

44.3 
(1.1) 

39.2 
(0.2) 

36.3 
(2.1) 

G2F 
[H5N4F1]  

13.7 
(2.5) 

15.7 
(1.1) 

4.7 
(0.1) 

7.6 
(0.6) 

2.7 
(<0.1) 

5.1 
(0.5) 

7.3 
(0.2) 

10.3 
(0.9) 

7.4 
(0.4) 

7.6 
(0.6) 

G0F-N 
[H3N3F1]  

2.4 
(0.5) 

2.4 
(0.2) 

1.1 
(<0.1) 

2.6 
(0.1) 

0.5 
(<0.1) 

3.1 
(0.2) 

0.9 
(<0.1) 

0.7 
(0.4) 

1.5 
(<0.1) 

1.9 
(0.3) 

G1F-N 
[H4N3F1]  

3.0 
(0.2) 

3.1 
(0.3) 

0.4 
(<0.1) 

0.1 
(0.1) 

0.2 
(<0.1) 

0.1 
(0.1) 

1.2 
(<0.1) 

0.6 
(0.6) 

1.9 
(<0.1) 

0.5 
(0.8) 

G0 
[H3N4]  

0.2 
(<0.1) 

0.2 
(0.2) 

0.3 
(<0.1) 

0.3 
(0.1) 

1.1 
(<0.1) 

1.0 
(0.3) 

1.2 
(<0.1) 

0.9 
(0.5) 

0.8 
(<0.1) 

1.3 
(0.3) 

G1 
[H4N4]  

0.3 
(<0.1) 

0.6 
(0.2) 

0.4 
(<0.1) 

0.3 
(0.1) 

0.2 
(<0.1) 

0.6 
(0.2) 

0.2 
(<0.1) 

0.5 
(0.4) 

0.3 
(<0.1) 

1.2 
(0.3) 

G2 
[H5N4]  

1.2 
(0.1) 

n.d. 
0.4 

(<0.1) 
0.1 

(<0.1) 
0.2 

(<0.1) 
0.2 

(0.2) 
0.4 

(<0.1) 
n.d. n.d. n.d. 

G0-N 
[H3N3]  

0.7 
(0.2) 

0.8 
(0.2) 

0.4 
(<0.1) 

0.5 
(0.1) 

n.d. n.d. 
0.2 

(<0.1) 
0.1 

(0.1) 
0.3 

(<0.1) 
0.4 

(0.3) 
G1-N 
[H4N3]  

n.d. n.d. n.d. 
0.1 

(0.2) 
n.d. n.d. n.d. n.d. n.d. n.d. 

G1FS-N 
[H4N3FS1]  

0.5 
(<0.1) 

0.6 
(0.2) 

0.3 
(<0.1) 

0.2 
(<0.1) 

n.d. n.d. n.d. n.d. n.d. n.d. 

G1FS 
[H4N4FS1]  

0.2 
(<0.1) 

0.1 
(0.1) 

1.4 
(<0.1) 

1.5 
(0.2) 

n.d. n.d. n.d. n.d. n.d. n.d. 

M5 
[H5N2]  

3.4 
(0.5) 

3.8 
(0.5) 

0.9 
(<0.1) 

0.9 
(0.1) 

1.2 
(<0.1) 

0.7 
(0.2) 

1.5 
(<0.1) 

1.9 
(0.4) 

5.6 
(<0.1) 

7.9 
(0.8) 

M6 
[H6N2]  

0.2 
(<0.1) 

n.d. n.d. n.d. 
0.3 

(<0.1) 
0.2 

(0.2) 
0.5 

(<0.1) 
0.1 

(0.1) 
1.5 

(<0.1) 
2.3 

(0.5) 
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Table 2: Overview of 2AB-glycans masses of monoclonal antibody 385 

 386 

Glycan 
Species 

Structural 
Scheme 

Theo M 2-AB M z=1 (+) z=2 (+) z=3 (+) 

G0F 
[H3N4F1]  1444.534 1582.750 1583.757 792.382 528.590 

G1F 
[H4N4F1]  

1606.587 1744.803 1745.810 873.409 582.608 

G2F 
[H5N4F1]  1768.640 1906.856 1907.863 954.435 636.626 

G0F-N 
[H3N3F1]  

1241.455 1379.671 1380.678 690.843 460.897 

G1F-N 
[H4N3F1]  

1403.507 1541.723 1542.730 771.869 514.915 

G0 
[H3N4]  1298.476 1436.692 1437.699 719.353 479.904 

G1 
[H4N4]  

1460.529 1598.754 1599.752 800.380 533.922 

G2 
[H5N4]  1622.582 1760.798 1761.805 881.406 587.940 

G0-N 
[H3N3]  

1095.397 1233.613 1234.620 617.814 412.211 

G1-N 
[H4N3]  

1257.449 1395.665 1396.672 698.840 466.229 

G1FS-N 
[H4N3FS1]  

1710.598 1848.814 1849.821 925.414 617.178 

G1FS 
[H4N4FS1]  

1913.677 2051.893 2052.900 1026.954 684.971 

M5 
[H5N2]  

1216.423 1354.639 1355.646 678.327 452.553 

M6 
[H6N2]  

1378.476 1516.692 1517.699 759.353 506.571 
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