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Abstract: Spectral filter arrays imaging exhibits a strong similarity with color filter arrays. This permits
us to embed this technology in practical vision systems with little adaptation of the existing
solutions. In this communication, we define an imaging pipeline that permits high dynamic range
(HDR)-spectral imaging, which is extended from color filter arrays. We propose an implementation
of this pipeline on a prototype sensor and evaluate the quality of our implementation results on
real data with objective metrics and visual examples. We demonstrate that we reduce noise, and, in
particular we solve the problem of noise generated by the lack of energy balance. Data are provided
to the community in an image database for further research.
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1. Introduction

Spectral filter arrays (SFA) technology [1] provides a compact and affordable means to acquire
multispectral images (MSI). Such images have been proven to be useful in countless applications,
but there extended use to general computer vision was limited due to complexity of imaging set-up,
calibration and specific imaging pipelines and processing. In addition, spectral video are not easily
handled either. SFA, however, developed around a very similar imaging pipeline to color filter arrays
(CFA), which is rather well understood and already implemented in many solutions. Indeed, SFA,
similarly to CFA, is a spatio-spectral sampling of the scene captured by a single shot of a solid-state,
single, image sensor. In this sense, SFA may provide a conceptual solution that improves vision
systems by trading spatial resolution for more spectral information.

Until recently, only simulations of SFA cameras were available, which made its experimental
evaluation and validation difficult. Recent works on optical filters [2–4] in parallel to the development
of SFA camera prototypes in the visible electromagnetic range [5], in the near infrared (NIR) [6] and in
combined visible and NIR [7,8] permitted the commercialization of solutions, e.g., Imec [9], Silios [10],
Pixelteq [11]. In addition, several color cameras include custom filter arrays that are in-between CFA
and SFA (e.g., [12,13]). Recent applications in medical imaging [14], agriculture and environment [15]
have been published. This indicates that we could consider the application of this technology to large
scale use soon after the development of standard imaging pipelines and drivers.

We define and demonstrate the imaging pipeline in this communication. One strong remaining
limitation of SFA is to preserve the energy balance between channels [16,17] while capturing a scene.
Indeed, due to the large number of filters and their spectral characteristics, i.e., narrow band sensitivities
and inadequacy with the scene and illumination, or large inhomogeneity between filter shapes, it is
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frequent to observe one or several channels under- or over-exposed for a given integration time and
illumination, which is common to all filters. This may be solved in theory, by optimizing the filters
before to create the sensor [17]. But filter realization is not yet very flexible. Another way to solve this
issue would be to develop sensors with per-pixel integration control. This is in development within some
3D silicon sensor concepts [18,19], but this technology is at its very beginning, despite recent advances.

On the other hand, in gray-level and color imaging, the problem of under and over-exposure of
parts of the scene is addressed by means of high dynamic range (HDR) imaging [20,21]. HDR imaging
permits to potentially recover the radiance of the scene independently of the range of intensities
present in the scene. Since the dynamic range of a given sensor is limited, the quantization of the
radiance values is a source of problems. The signal detection of very low intensity is limited by the
dark noise. On the other hand, high intensities of the input signal cannot be completely recovered and
are sometimes voluntarily ignored (saturated pixels). To overcome these problems, a low exposure
image could be used to quantify the highest intensities, whereas a high exposure allows us to quantify
relatively low light signals well. Such an approach may also be used to bring less and more sensitive
channels to a common representation space with a reduced noise amount.

In an ideal configuration, an HDR image is created by bringing standard dynamic range (SDR,
typically 8 bits per channel) images in the same domain by dividing each image by its particular
exposure time, and then by summing the corresponding pixel values. However, due to the effect of
electronic circuits, most of the cameras have a non-linear processing regarding to the digitization of
intensities, leading to a finite pixel brightness range and definition. This non-linear transformation
is materialized by the camera response function, denoted g(i), where i indexes the pixel value. It is
assumed that this curve is monotonic and smooth. Some algorithms have been developed to recover
this characteristic [21–23]. The most common method is the non-parametric technique from Debevec
and Malik [21]. For a given exposure time and camera pixel value, the relative radiance value is
estimated by using the integration times, g(i) and a weighting function ω(i). Debevec and Malik use a
“hat” function as weighting function, based on the assumption that mid-range pixels (values close to
128 for 8-bits sensors) are the most reliable and the best exposed pixel for a given scene and integration
time. In addition, recent advances have been done on the capture and processing of HDR video with
low latency, using hardware-based platform [24–26]. For HDR video, merging images captured at
different sequential moments could lead to ghost artifacts when there are moving objects. This has
been largely studied in recent years [27,28]. So, we argue that such methodology could be embedded
in the SFA imaging pipeline without breaking the advantages of SFA technology for computer vision.

HDR multispectral acquisition is already treated by, e.g., Brauers et al. [29] and Simon [30].
However, they consider the problem of HDR using individual bands acquired sequentially, so
each band is treated independently for potentially different integration times. In the case of SFA,
we may consider specific joined processes. We communicated preliminary qualitative results at the
Scandinavian Conference on Image Analysis (SCIA 2017) [31], and this paper extends, generalizes, and
evaluates widely our preliminary results. We compare the HDR resulting images with an SDR database
of the same objects [32]. In addition, we make our HDR database available for further research as
supplementary material.

In this paper, we first generalize the imaging CFA pipeline to SFA in Section 2. This new SFA
imaging pipeline embeds the HDR concept; It is based on multiple exposure spectral raw images.
Then, the experimental implementation is developed in Section 3, the implementation is based on real
data acquired with a prototype state-of-the-art camera [8] that captures visible and NIR information.
Description of the database of images are provided in Section 4. Results and analysis are based on
objective metric scores and visual examples in Section 5.
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2. Imaging Pipelines

2.1. CFA Imaging Pipeline

Several CFA imaging pipelines exist. We can classify them in two large groups: one concerns the
hardware and real-time processing community [33–35], the other concerns the imaging community [36–38].
A very general distinction is that the former one often considers the problem from the sensor and signal
point of view and demosaics the raw image in very early steps, rather the latter considers the problem
from a visualization point of view, and demosaics after or jointly with other processing such as white
balance. In this work, we design the pipeline after the generic version defined by Ramanath et al. [37],
which is shown in Figure 1.

Figure 1. Color filter arrays (CFA) imaging pipeline similarly defined as in [37]. The pipeline contains
pre-processing on raw data, which include for instance a dark noise correction and other denoising.
Raw data would be corrected for illumination before to be demosaiced. Images are then projected into
an adequate color space representation and followed by some post-processing, e.g., image enhancement,
before coming out of the pipeline on a visualization media. Alternatively, this information could be
compressed before archiving or be used for machine vision through adequate image processing.

2.2. HDR-CFA Imaging Pipeline

HDR imaging has been developed mostly within monochromatic sensors for the acquisition
of HDR data. Indeed, the HDR capture is mostly an intensity process performed by channel [30].
However, there is a huge amount of work that developed the tone-mapping of HDR color images for
visualization, (e.g., [39,40]).

We encapsulate a general HDR imaging process in the previous pipeline such as shown in Figure 2.
This pipeline is based on sequence of images of the same scene having different integration times.
The HDR pipeline may have distinguished outputs: one leads to HDR radiance images, which can be
stored or used for automatic application. Another leads to a display-friendly visualization of color
images. Note that these two outputs may overlap in specific applications.

2.3. SFA Imaging Pipeline

SFA sensors are currently investigated and developed, however beside demosaicing and
application dedicated processing, the rest of the pipeline is not very well defined, thus understood,
to our knowledge. We argue that a similar pipeline than CFA may be considered, which is then
defined in Figure 3. In this pipeline, we still consider pre-processing as denoising and an equivalent
to white balance as gain adjustment channel balance (referred to as multispectral constancy by some
research). In the visualization pipeline, the color transform shall project the multispectral data into a
color space representation.
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Figure 2. High dynamic range (HDR)-color filter arrays (CFA) imaging pipeline. In this case, the
pre-processing is typically performed per image, similarly to the standard dynamic range (SDR)-CFA
case. Then, radiance estimation is performed based on the multiple images, providing radiance raw
images. White balancing and demosaicing are performed on this data. Then, the HDR image may
be used as is for machine vision, or it continues into a visualization pipeline, where color transform,
tone-mapping and image-enhancement may be applied before visualization. Bridge between the
different output may occur if, for instance, the machine vision is designed to SDR content.

Figure 3. SFA imaging pipeline. At the instar of CFA, this pipeline defines some illumination discarding
process and demosaicing. The spectral image would be typically used for application after demosaicing.
However, these data may not be observable as they are, so the pipeline is prolonged for visualization.
The color transform is ought to be slightly different than CFAs, for several channels are present and out
of the visible range information, NIR, may be present in the spectral image. Compression of spectral
data and spectral image processing, for, e.g., material identification or texture classification, are yet
active research fields.

2.4. HDR-SFA Imaging Pipeline

According to the introductory discussion, we propose to extend the SFA pipeline to an HDR
version. Beside the advantage of increasing the dynamic range of our images, we are also particularly
interested in a better balance between channel sensitivities and to the reduction and an homogeneous
distribution of noise by channel thanks to the increase of information. We propose to consider the raw
SFA image as a gray-level image for relative radiance estimation, since this process is essentially a
per-pixel operation. Thus, we perform all radiance reconstruction prior to any separation between
bands. The pipeline is defined in Figure 4. We insist on the fact that this is only one possibility to consider
the HDR pipeline for SFA, which has the advantage to imply only little modifications of the gray-level
HDR pipeline and to permit the embedding of any individual algorithms in any of the boxes.
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Figure 4. Our HDR-SFA imaging pipeline. The radiance estimation is performed on the list of raw
image taken as a whole (DB1 in the database), which permit to create the HDR raw images (DB2 in
the database). The raw HDR image may be corrected for illumination [41,42] and demosaiced by
state-of-the-art methods (DB3 in the database). After this, a visualization process projects the data into
a HDR color representation CIEXYZ (DB4 in the database), which is tone-mapped (DB5 in the database)
and processed for visualization on SDR media. Other outputs of the pipeline may be considered
similarly to the previous pipelines.

3. Implementation of the HDR-SFA Imaging Pipeline

This section explicitly defines what processing is embedded in each of the pipeline box in our
experiment. We selected well-established and understood methods from the state-of-the-art in order
to provide benchmarking proposal and analysis and not go towards the evaluation of each of those
methods individually. Those methods are combined into the pipeline. Our proposal is not exclusive in
the sense that any method may be used and different order of processing or joint processing may also
be considered in the future.

The prototype SFA camera from Thomas et al. [8] is used in this study. Detailed information on
sensitivities, spatial arrangement and other aspects may be found in their article. The raw images
are pre-processed and denoised according to what is performed in their article, which is essentially a
dark noise removal. Then, following the pipeline, HDR data are computed. Subsection 3.1 covers the
HDR radiance estimation. HDR images are balanced according to each channel and illumination and
demosaiced, according to Miao et al. [43] algorithm, which form the full resolution HDR multispectral
images. The output of the pipeline and the visualization procedure are developed in Section 3.2.
Discussion on the role of illumination is provided in Section 3.2.1.

3.1. HDR Generation

Debevec and Malik radiance reconstruction [21] is probably the most understood HDR imaging
pipeline. The model is based on the assumption that pixel values can be related to the physical
quantity of radiance, by using a computed camera response function, which is recovered through a
self calibration method. Due to the digitization process that converts radiance into pixel value in the
image, this mapping is generally nonlinear and a calibration should be done before any estimation. To
reconstruct HDR images, the camera response function (CRF) must be estimated. We captured 8 SDR
bracketed images at different exposure times, from 0.125 ms to 16 ms with a one-stop increment, see
Figure 5. This leads to a good response curve estimation in term of robustness to noise.
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Figure 5. The set of SDR raw mosaiced images acquired with different exposure times:
{0.125, 0.22, 0.5, 1, 2, 4, 8, 16} ms (all spaced by one stop). These exposures are used to compute the
global response curves of the prototype camera, shown in Figure 6a.

The algorithm to recover the CRF is based on the resolution of a set of linear equations by the
singular value decomposition method. The algorithm is generally applied on RGB cameras, and it
recovers 3 different response curves, one by channel. In our case, as we get eight spectral channels, we
recover eight curves (see Figure 6a). We notice that the dispersion is relatively low between each of the
channels, so in the following, we use the median of these curves for all channels, allowing us to work
directly on the raw data at once to generate HDR values.

(a) (b)

Figure 6. (a) Camera response functions to correct for the non-linearity between relative real radiance
values and pixel intensities in the images. It is recovered from a complete image set shown in Figure 5.
In the pipeline, the median of these curves is used to treat all of the pixels, independently of their
spectral sensitivities; (b) The well-exposedness hat function used in this implementation.

As described in the pipeline, we recover the relative radiance values directly from the preprocessed
raw data (mosaiced data). A number of 3 exposure times is selected. We chose only three exposures
because it is a number commonly used in the literature [24,28], as it gives relatively high dynamic
range and not too much ghost effects in case of video capture. The radiance values are recovered using
the CRF, and by combining the pixel value with its corresponding exposure time [21]. A weighted sum
of the radiance values computed from all exposure times is done using the hat weighting function, that
gives more contribution to mid-range intensity pixels during the HDR reconstruction (see Figure 6b).

After the radiance is estimated by pixel, we apply a balance that compensates for the different
spectral sensitivities of each band i ∈ N and i ∈ [1, 8] and for the illumination spectral power
distribution. We implement a linear correction similarly to a white balance in color camera based on
Equation (1).

ρi =
∫ 1100

400
IIll(λ).Si(λ)dλ, (1)
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where IIll(λ) is the spectral emission of the illuminant used, Si(λ) is the measured camera spectral
sensitivity of each channel (see Figure 7c). We then can compute the multiplication gain factors F to
correct the data and balance their energy as in Equation (2).

Fi =
max{ρ1, ..., ρ8}

ρi
(2)

We obtain 8 factors FS1−S8 = {3.15, 2.86, 3.29, 2.90, 4.34, 5.39, 6.41, 1.00} that are applied to each of
the channels. This can be performed independently of the illumination by removing its contribution in
Equation (1). In this case, illuminant compensation would not be taken into account and should be
handled in another process.

The raw HDR image is then demosaiced to recover the spatial resolution of each of the HDR
spectral channels. We then obtain the HDR multispectral image.

3.2. Visualization and Other Output

Visualization is the traditional use of HDR data. To this end, we project the radiance data
into an HDR coded CIEXYZ color space according to a linear color transform computed on the
24 Macbeth ColorChecker reflectance patches, and the scene acquisition illumination measured in
situ. This colorimetric image may be tone mapped by state-of-the-art algorithms. We used four
tone-mapping techniques later for a representative illustration of visualization experience. We used
the code furbished in the Matlab HDR Toolbox [44].

Although the visualization process has the very well defined goal of producing a pleasant and
informative visual experience, machine vision output may target several purposes and specific HDR
spectral image processing must be considered depending on the task. One particular challenge lies in
the best way to handle 32-bit wide pixel information per spectral channel in real time applications.
This is also a challenge to compress and store this information, but these aspects are not addressed in
this communication.

3.2.1. Illumination Constraints on the Pipeline

The role of illumination is major in any imaging system. The first constraint on illumination is
that its spectral distribution must be compatible with the camera sensitivities so that it maximizes the
signal to noise ratio of the measurement. If there are a priori assumptions on the material surface, it
may also be used to tune the illumination. The impact of illumination on the pipeline itself depends
highly on the method that is implemented in each of the blocks. First, we assume here that there is
no illumination change between the multiple frames that permits multi-exposure. Second, radiance
estimation is sensitive to illumination as mentioned in Section 2.6 of Debevec and Malik [21]. for
the color case. That means that, if the illumination does not change, there is no issues with the
reconstruction of radiance of multiple bands and means also that if there are changes in spectral
distribution of the illumination, scaling terms should be adjusted for each of the bands. This is handled
in the “Gain adjustment/Channel balance” block of our pipeline. In the article, we measured the light
source. We could consider an unknown light, but then the channel balance would benefit from some
additional tuning that may be scene dependent. This could be done in several ways: by having a white
patch or calibration tile within the scene; by estimating and correct for the illumination based on a
priori assumption and statistics of the image [41,42,45]. Demosaicing is not necessarily dependent on
illumination, but usually methods based on learning are trained on white balanced images, which
makes them sensitive to this aspect. Subsequent color transform and mapping are also dependent on
the illumination to guarantee the neutrality of the color image appearance.
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4. HDR SFA Database

We created a database of images of real scenes, while using this SFA HDR pipeline on the
prototype camera defined on Figure 7.

(a)

S1 S5 S2 S6

S7 S3 S8 S4

S2 S6 P1 S5

S8 S4 S7 S3

(b)

(c) (d)

Figure 7. The hardware and acquisition procedure, from the illuminant source to the digitized output of
the camera. (a) D65 simulator emission spectra used during the experiment; (b) Spatial distribution of
filters over the sensor; (c) Joint spectral characteristics of optical filters and CMOS sensor [8]; (d) Camera
and electronic architecture, composed of a FPGA (Field-Programmable Gate Array) board and an
attached daughter card holding the SFA sensor.

A total of 18 scenes were captured using hardware and conditions shown in Table 1. Care was
taken to select three adequate exposure times. A high exposure was selected for which only a few
pixels are saturated in low intensities, and a low exposure was selected for which only a few pixels are
saturated in high intensities. In the experiment, relatively good highlight conditions were found, and
these exposure times were selected to 4, 8 and 16 ms (by doubling the amount of photons hitting the
sensors between exposures).

Table 1. Summary of the global parameters and the SFA camera characteristics used during the acquisition.

Camera Sensor E2V EV76C661 + MSFA-Global Shutter Mode

Camera resolution 1280 × 1024 (sensor native)–319 × 255 (image pre-processed)
Number of bands 8 (7 visible and 1 NIR)

Wavelength (calibrated) 380–1100 nm
Exposure time 3 exposure times: 4–8–16 ms

Illuminant D65 simulator (see Figure 7a)
Optics/Aperture Edmund optics 12 mm 58001–F/1.8

Focus Fixed (20 cm)
Image format Tiff 8 bits
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All raw images have been pre-processed to remove the dark noise and the neighboring effects due
to NIR blooming, by applying the procedure according to paper [8]. A file set from raw to tone-mapped
processed data is available according to the following organization:

• DB0: A raw HDR scene with image data stored as single page Tiff files. It contains a set of 8
images (see Figure 5), which are used to reconstruct the camera response (see Figure 6).

• DB1: The raw image data for the 18 scenes at the three integration times, stored as single
page Tiff files.

• DB2: The mosaiced HDR data in .hdr files, which contain raw radiance recovered from the three
exposures, following the method by Debevec and Malik [21].

• DB3: The demosaiced HDR multispectral images in .mat files, which contain the demosaiced
radiances by channel, recovered with the demosaicing algorithm by Miao et al. [43] after that
channel sensitivities and illumination are discarded.

• DB4: The HDR color CIEXYZ images in .hdr files are computed from the multispectral HDR
image by a linear colorimetric calibration computed on the Macbeth ColorChecker.

• DB5: The RGB tone mapped .png files for visualization. Four tone-mapping techniques were
implemented for comparison, spanning different processing complexities.

Table 2 gives details about the content of the HDR SFA database, including the scene description,
the file names and the file extensions. The demosaiced and color transformed HDR images can be, for
example, visualized by any software implementation of the PFSTools framework by Mantiuk et al. [46]
(e.g., Luminance HDR software). By using these tools, the user could visualize on his screen the 8-bits
data per RGB channels, enables a HDR rendering and select a tone-mapping algorithm among several
methods to visualize the file. Along with the complete database of images, a Matlab script, named
Script.m is provided to load data into the workspace. The user can select which scene data to load
amongst the 18 scenes available.
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Table 2. The files can be downloaded as supplementary material with the article, or alternatively at http://chic.u-bourgogne.fr [47], where the link SFA_HDR points
out to a zip file that contains five directories, one directory for each stage of the pipeline called “DB_#” in Figure 4. The raw SDR, HDR mosaiced, HDR demosaiced,
HDR CIEXYZ and RGB color tone mapped data are available to the community for further research.

Database DB1DB1DB1 DB2DB2DB2 DB3DB3DB3 DB4DB4DB4 DB5DB5DB5

Scene Name Dynamic Range File Name RAW File Name HDR Mosaiced File Name HDR Demosaiced HDR XYZ HDR Tone Mapped

CD 159.2 raw_preprocessed_cd_"exposure".tiff hdr_mosaiced_cd.hdr hdr_demosaiced_cd.mat hdr_xyz_cd.hdr hdr_tonemapped_"method"_cd.png
Knife 226.5 raw_preprocessed_knife_"exposure".tiff hdr_mosaiced_knife.hdr hdr_demosaiced_knife.mat hdr_xyz_knife.hdr hdr_tonemapped_"method"_knife.png
Water 147.3 raw_preprocessed_water_"exposure".tiff hdr_mosaiced_water.hdr hdr_demosaiced_water.mat hdr_xyz_water.hdr hdr_tonemapped_"method"_water.png

Train front 503.9 raw_preprocessed_train_front_"exposure".tiff hdr_mosaiced_train_front.hdr hdr_demosaiced_train_front.mat hdr_xyz_train_front.hdr hdr_tonemapped_"method"_train_front.png
Pens 145.6 raw_preprocessed_pens_"exposure".tiff hdr_mosaiced_pens.hdr hdr_demosaiced_pens.mat hdr_xyz_pens.hdr hdr_tonemapped_"method"_pens.png

Kerchief 78.8 raw_preprocessed_kerchief_"exposure".tiff hdr_mosaiced_kerchief.hdr hdr_demosaiced_kerchief.mat hdr_xyz_kerchief.hdr hdr_tonemapped_"method"_kerchief.png
Kiwi 216.1 raw_preprocessed_kiwi_"exposure".tiff hdr_mosaiced_kiwi.hdr hdr_demosaiced_kiwi.mat hdr_xyz_kiwi.hdr hdr_tonemapped_"method"_kiwi.png

Macbeth CC 153.3 raw_preprocessed_macbeth_"exposure".tiff hdr_mosaiced_macbeth.hdr hdr_demosaiced_macbeth.mat hdr_xyz_macbeth.hdr hdr_tonemapped_"method"_macbeth.png
Black swimsuit 231.4 raw_preprocessed_black_swimsuit_"exposure".tiff hdr_mosaiced_black_swimsuit.hdr hdr_demosaiced_black_swimsuit.mat hdr_xyz_black_swimsuit.hdr hdr_tonemapped_"method"_black_swimsuit.png

Origan 135.0 raw_preprocessed_origan_"exposure".tiff hdr_mosaiced_origan.hdr hdr_demosaiced_origan.mat hdr_xyz_origan.hdr hdr_tonemapped_"method"_origan.png
Orange object 42.5 raw_preprocessed_orange_object_"exposure".tiff hdr_mosaiced_orange_object.hdr hdr_demosaiced_orange_object.mat hdr_xyz_orange_object.hdr hdr_tonemapped_"method"_orange_object.png

Pastel 331.1 raw_preprocessed_pastel_"exposure".tiff hdr_mosaiced_pastel.hdr hdr_demosaiced_pastel.mat hdr_xyz_pastel.hdr hdr_tonemapped_"method"_pastel.png
Battery 274.7 raw_preprocessed_battery_"exposure".tiff hdr_mosaiced_battery.hdr hdr_demosaiced_battery.mat hdr_xyz_battery.hdr hdr_tonemapped_"method"_battery.png

Train side 296.6 raw_preprocessed_train_side_"exposure".tiff hdr_mosaiced_train_side.hdr hdr_demosaiced_train_side.mat hdr_xyz_train_side.hdr hdr_tonemapped_"method"_train_side.png
Raspberry 871.7 raw_preprocessed_raspberry_"exposure".tiff hdr_mosaiced_raspberry.hdr hdr_demosaiced_raspberry.mat hdr_xyz_raspberry.hdr hdr_tonemapped_"method"_raspberry.png

Ruler 145.6 raw_preprocessed_ruler_"exposure".tiff hdr_mosaiced_ruler.hdr hdr_demosaiced_ruler.mat hdr_xyz_ruler.hdr hdr_tonemapped_"method"_ruler.png
SD card 72.2 raw_preprocessed_sd_"exposure".tiff hdr_mosaiced_sd.hdr hdr_demosaiced_sd.mat hdr_xyz_sd.hdr hdr_tonemapped_"method"_sd.png
Painting 130.6 raw_preprocessed_painting_"exposure".tiff hdr_mosaiced_painting.hdr hdr_demosaiced_painting.mat hdr_xyz_painting.hdr hdr_tonemapped_"method"_painting.png

http://chic.u-bourgogne.fr
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5. Analysis

5.1. Qualitative Evaluation

We provide an exhaustive example of images at each step of the pipeline for one scene in Figure 8.

(a)SDR exposure 4 ms (b)SDR exposure 8 ms (c)SDR exposure 16 ms

(d)SDR well-exposedness (4 ms) (e)SDR well-exposedness (8 ms) (f)SDR well-exposedness (16 ms)

(g)HDR mosaiced radiance
visualization in false color
representation

(h)HDR mosaiced radiance
visualization in false color
representation after channel
balance

(i)Color version of the 4 ms
SDR image

(j)sRGB linear mapping of
the HDR image)

(k)Tone-mapped RGB
image by Krawczyk et al.
tone-mapping [48]

Figure 8. Illustration of the pipeline results for the Macbeth ColorChecker image (a typical low dynamic
range scene). (a–c) Raw images at different exposures; (d–f) false color well-exposedness representation
that use the Jet colormap from MATLAB; (g,h) HDR radiance mosaiced image estimated from the
three exposure set (a–c) and visualized before and after the channel balance using the Jet colormap
from MATLAB; (i-k) color representation of the image based on the SDR single acquisition or after
tone-mapping of the HDR images.

We observe that channels are unevenly affected by noise at the different exposures. This phenomenon
is highlighted in Figures 8d–f, where a pixel position could hold a good intensity for a given exposure
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time (reddish colors of the Jet colormap), and a bad exposition in another (bluish colors). If we look at
the raw images of Macbeth ColorChecker, at one neutral patch, we can clearly distinguish the inherent
energy balance problems between pixel values through the 8 channels. In the white neutral patch, the
NIR channel called S8 is saturated in the middle integration time. These problems lead to visual noise
when visualizing a single SDR reconstructed image (see Figure 8i). Our HDR-SFA imaging pipeline
corrects the problem by a certain amount. On Figure 8g, we can observe the HDR mosaiced image of
radiance, that exhibits unbalanced sensitivities by channel. After we applied the balance correction,
we observe on Figure 8h that we have a more homogeneous representation of the achromatic patches
through the different channels.

The global effect of applying our HDR pipeline can be visually appreciated on the color tone-mapped
version of the image on Figure 8i,k.

In terms of scene dynamic range, we know that the Macbeth ColorChecker scene is a typical
low dynamic range scene. We could capture the whole dynamic range of the scene with only one
exposure (i.e., Figure 8i) and the HDR process used permits only to reduce the noise and to solve the
energy balance issue. However, for a higher dynamic range scene (like the CD scene), in addition
to balancing the exposure among the pixels, we also extend the dynamic range by a certain amount.
This is evaluated below.

Figures 9–12 show the tone-mapped color images of the database processed with different
algorithms. Namely, we applied a simple logarithmic mapping, Krawczyk et al. [48], Fattal et al. [49]
and Banterle et al. [50].
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(a)CD (b)Knife (c)Water

(d)Train front (e)Pens (f)Kerchief

(g)Kiwi (h)Macbeth ColorChecker (i)Black swimsuit

(j)Orange object (k)Origan (l)Pastel

(m)Battery (n)Train side (o)Raspberry

(p)Ruler (q)SD card (r)Painting

Figure 9. Database visualization of all scenes using a global logarithmic tone-mapping. In case of a
high dynamic range scene with high specular reflection, good details are accomplished in specular
regions, at the expense of a global image contrast reduction.
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(a)CD (b)Knife (c)Water

(d)Train front (e)Pens (f)Kerchief

(g)Kiwi (h)Macbeth ColorChecker (i)Black swimsuit

(j)Orange object (k)Origan (l)Pastel

(m)Battery (n)Train side (o)Raspberry

(p)Ruler (q)SD card (r)Painting

Figure 10. Database visualization of all scenes using a tone-mapping that is a combination of local
and global anchoring of brightness values; the Krawczyk et al. [48] tone-mapping. Global contrast is
preserved even in the presence of high specular reflections.
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(a)CD (b)Knife (c)Water

(d)Train front (e)Pens (f)Kerchief

(g)Kiwi (h)Macbeth ColorChecker (i)Black swimsuit

(j)Orange object (k)Origan (l)Pastel

(m)Battery (n)Train side (o)Raspberry

(p)Ruler (q)SD card (r)Painting

Figure 11. Database visualization of all scenes using the gradient domain compression tone-mapping
by Fattal et al. [49]. We can see that this technique highlights details well in areas affected by shadows.
It gives good details in specular regions, preserving a relatively good global contrast in the scene.
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(a)CD (b)Knife (c)Water

(d)Train front (e)Pens (f)Kerchief

(g)Kiwi (h)Macbeth ColorChecker (i)Black swimsuit

(j)Orange object (k)Origan (l)Pastel

(m)Battery (n)Train side (o)Raspberry

(p)Ruler (q)SD card (r)Painting

Figure 12. Database visualization of all scenes using a tone-mapping that is a combination of local and
global tone-mapping developed by Banterle et al. [50] tone-mapping. We observe that this technique
achieves good rendering in term of local and global contrasts.
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Global impression is that noise is reduced and that the quality of the images is better than the best
SDR versions of these images shown in Figure 13. Difference in the tone-mapping algorithms seems to
impact mostly the global brightness of the images, which also depends on the scene. Highlights that
are not handled by the shortest integration time are still not handled after the process. This is due to
the selected exposure time, which may not be optimal for some scenes with high dynamic range of
radiance. However, the quality of the scenes or part of the scenes of low dynamic have been greatly
improved, such as in the Macbeth ColorChecker image. Spatial artifacts, such as seen on the SD card
image, are due mostly to other optical and sampling effects, which we do not assess in this work
(non-uniform illumination, optical effects, and aliasing in demosaicing).
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(a)CD (4 ms) (b)Knife (4 ms) (c)Water (4 ms)

(d)Train front (16 ms) (e)Pens (4 ms) (f)Kerchief (8 ms)

(g)Kiwi (4 ms) (h)Macbeth CC (4 ms) (i)Black swimsuit (16 ms)

(j)Orange object (k)Origan (4 ms) (l)Pastel (4 ms)

(m)Battery (4 ms) (n)Train side (16 ms) (o)Raspberry (8 ms)

(p)Ruler (4 ms) (q)SD card (4 ms) (r)Painting (16 ms)

Figure 13. Visualization of SDR color versions of the scenes without using any HDR processing.
Integration times was selected to be the best exposure as described in [32]. Those SDR versions of
scenes could be compared to the output images of HDR pipeline with tone-mapping.
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5.2. Quantitative Evaluation

We propose to evaluate our pipeline quantitatively by several strategies. Difficulty in this task
comes from the fact that no ground truth is available and from the fact that there are a great number
of factors that affect the final image quality. We propose to evaluate only two aspects: The radiance
estimation and the final tone-mapped color image.

5.2.1. Radiance Estimation

We are interested first in evaluating the estimation of the radiance of the scene. We propose
three indicators:

• We first investigate the relation between the achromatic patches radiance of the Macbeth
ColorChecker evaluated by the camera and computed theoretically by spectral simulation on
Figure 14. The curves do not exhibit a very good linear behavior and show an offset. The CRF
estimation may be impaired by the very high radiance of the lamp in the scene. However, issue
with this evaluation is that it is quite affected by the spatial non-uniformity of the illumination,
so it is not easy to draw strong conclusions from it. Indeed, the achromatic patches are distributed
horizontally across the image, so vignetting and illumination shift impact the results. The curve
of the channel sensitive to the NIR is showing an outlying behavior. This specific channel is not
very well evaluated by this indicator due to lack of measurements of the illumination between 1000
and 1100 nm for material limitation (our measurement device did not reach beyond that limit).

• To produce a better evaluation and break the limitation of the above bullet point, we argue that
the ratio of intensities, by channel, between patches in simulation and in practice should be the
same if the radiance is well evaluated. In addition, if we compute only ratio between adjacent
patches, the effect of the illumination and vignetting should be minimum. Difference in ratio r

between a couple of horizontal adjacent patches is computed such as ∆R =
√
(r̂j

i − rj
i)

2, with
i ∈ N and i ∈ [1, 8] being the channel considered and j ∈ N and j ∈ [1, 20], indexing the ratio
between each pair considered.

Results are shown on Table 3. It is shown that we have a minimum and maximum error in
the range 0% to 46%. This evaluation demonstrates that we obtained a rather good radiance
estimate with an average of 5% of error among patch couples and 5% of error among channels.
Moreover, the error among channels is near to constant, which indicates that we have a good
uniformity in radiance recovery over wavelengths. It appears that the maximum error is reached
when couple of patches shows a large difference in intensity values like 4/5, 10/11, 13/14, 15/16.
We investigated this point separately and found out that the signal to noise ratio is rather high for
specific combinations of radiance and sensor spectral sensitivity. This is due to low radiance from
the patch. When the sensor value is high for one patch and very small for another one, this noise
is amplified. This creates those huge errors. It is yet to be investigated how this effect impacts the
evaluation of HDR radiance accuracy.

• Image quality does not depend only on radiance accurate evaluation, so we also make a tentative
to evaluate the process by means of established no-reference metric. This is an attempt to evaluate
the global quality of the HDR images. BRISQUE [51] no-reference metric scores are computed per
channel on the demosaiced HDR multispectral images. The scores are shown and averaged by
channel on the right part of Table 4. The best scores of BRISQUE are close to 0 and the result on the
HDR images are closer to 100, which should indicate a very bad quality. However, those results
are difficult to interpret since we do not have very natural content, a consistent pixel intensity
range, neither any data to compare with. In addition, we did not re-trained BRISQUE for those
specific data, so that scores over 100 occurs, meaning that the quality of the image is worse than
the training data set wost image quality, according to the measure. Also, HDR linear data may
exhibit different statistics than usual gamma corrected SDR images. This is supported by the
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fact that the magnitude of the score seems not to correlate very well with the observation of the
color images (see next paragraph). We observed similar difficulties with scores from NIQE [52]
or BLIINDS-II [53] image quality measures. The scores of the two last metrics are not presented
in the article because we consider that using those no-reference metrics for this purpose is not
adequate. BRISQUE is shown to report an example of this attempt. We cannot state here how
BLIINDS-II and BRISQUE would become efficient if they were trained on adequate images of
radiance. Nevertheless, we could still observe that the quality of each channel for one image is of
similar quality across channels, and since BRISQUE is computed based on image statistics, this
indicates that we have an homogeneous quality, which is very good.

Figure 14. Study of the channel camera response according to the achromatic patches in the Macbeth
ColorChecker chart. A theoretical response has been computed, taking into account the illuminant and
the camera response (see Figures 7a,c).

Table 3. Ratio difference between radiance computation and estimation between adjacent patches of
the Macbeth ColorChecker. The index refers to the number of the patch on the chart. Except for some
specific couple of patches, we could consider a good estimation at less than 5% in average.

- S1 S2 S3 S4 S5 S6 S7 S8 Mean STD

1/2 0.01 0.03 0.05 0.03 0.00 0.03 0.02 0.04 0.03 0.02
2/3 0.10 0.09 0.08 0.08 0.05 0.05 0.04 0.09 0.07 0.02
3/4 0.04 0.03 0.02 0.03 0.03 0.03 0.04 0.02 0.03 0.01
4/5 0.46 0.31 0.07 0.08 0.15 0.17 0.23 0.11 0.20 0.03
5/6 0.01 0.03 0.02 0.02 0.00 0.01 0.01 0.02 0.01 0.01
7/8 0.07 0.08 0.06 0.04 0.03 0.02 0.00 0.04 0.04 0.03
8/9 0.06 0.05 0.07 0.08 0.10 0.19 0.23 0.10 0.11 0.07

9/10 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.00
10/11 0.04 0.03 0.09 0.09 0.08 0.06 0.06 0.04 0.06 0.02
11/12 0.02 0.00 0.01 0.01 0.03 0.01 0.03 0.00 0.01 0.01
13/14 0.07 0.04 0.14 0.20 0.20 0.19 0.19 0.12 0.14 0.06
14/15 0.07 0.07 0.03 0.05 0.03 0.02 0.05 0.09 0.05 0.02
15/16 0.05 0.04 0.06 0.07 0.09 0.06 0.05 0.05 0.06 0.02
16/17 0.01 0.03 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.01
17/18 0.00 0.01 0.04 0.02 0.01 0.00 0.00 0.00 0.01 0.01
19/20 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.07 0.06 0.01
20/21 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.06 0.05 0.01
21/22 0.04 0.04 0.04 0.04 0.04 0.03 0.04 0.06 0.04 0.01
22/23 0.04 0.03 0.03 0.03 0.02 0.02 0.01 0.06 0.03 0.01
23/24 0.06 0.04 0.06 0.05 0.03 0.02 0.00 0.09 0.04 0.03
Mean 0.06 0.05 0.05 0.05 0.05 0.05 0.06 0.06 - -
STD 0.10 0.06 0.03 0.04 0.05 0.06 0.07 0.04 - -
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Table 4. BRISQUE [51] no-reference metric computed on the SDR color images and also on each channel
of the multispectral HDR images. Results estimate that the best exposure SDR color image is better than
any of the tone-mapped. This is different to what is observed and we may discard BRISQUE to analyze
such data. The results on the spectral channels shows very bad BRISQUE scores, but again, they are
hardly comparable to anything we know. Nevertheless, they also show that scores are relatively similar
across the channels, indicating stability.

Image SDR TM TM TM TM S1 S2 S3 S4 S5 S6 S7 S8Scene Banterle Fattal Log Krawczyk

black_swimsuit 50.2 63.5 72.1 77.5 54.6 88.4 90.4 88.3 92.6 90.2 88.8 78.7 87.5
train_side 29.4 56.8 53.8 65.8 50.7 84.9 85.2 78.8 81.8 87.8 83.4 66.4 89.5

cd 34.0 53.5 53.9 59.7 46.2 54.0 52.5 48.9 47.7 53.5 50.1 44.4 44.2
kiwi 28.4 45.7 39.9 47.0 44.3 46.9 49.3 42.0 42.1 36.5 41.4 32.1 37.3
sd 36.4 50.8 52.0 51.6 47.6 51.7 51.4 49.1 50.8 53.1 56.9 49.5 45.3

pens 18.4 58.1 60.0 63.1 59.3 74.7 76.2 69.0 70.7 73.9 76.0 64.2 75.8
origan 26.9 52.0 50.2 53.1 50.4 55.3 60.7 49.4 57.3 53.1 52.8 49.3 50.3

painting 42.4 45.9 41.2 46.4 39.5 58.6 54.9 52.5 54.2 42.7 51.2 47.7 49.6
macbeth 29.6 61.2 46.1 69.1 66.2 62.0 67.1 63.8 67.5 69.9 69.9 54.4 65.1

knife 32.0 53.3 62.0 58.9 47.9 51.0 49.0 46.4 50.9 54.8 43.4 33.3 44.7
water 24.4 52.4 49.2 53.3 51.9 59.3 56.4 54.3 54.9 52.2 53.8 47.2 53.8

train_front 34.9 60.5 58.4 77.5 51.4 84.1 85.0 77.1 81.6 82.6 79.9 64.2 85.8
kerchief 87.4 102.6 97.5 105.0 105.1 93.6 96.5 98.8 99.0 102.3 99.4 52.9 45.9
pastel 52.1 71.9 59.6 69.7 67.8 70.4 73.5 71.3 69.9 73.9 73.8 68.0 68.3

orange_object 31.5 59.2 49.8 67.5 54.9 60.7 69.9 55.5 59.7 65.8 68.8 56.0 46.5
battery 42.7 56.7 48.4 60.3 49.8 55.0 57.4 55.8 51.3 52.6 49.8 48.7 50.5

raspberry 45.7 59.7 50.7 60.5 56.1 71.0 71.0 63.6 65.1 65.1 66.6 61.8 63.8
ruler 34.5 53.8 49.2 68.3 39.5 44.8 45.6 48.7 47.7 53.1 52.3 46.3 39.3
Mean 37.8 58.8 55.2 64.1 54.6 64.8 66.2 61.8 63.6 64.6 64.3 53.6 58.0
STD 15.2 12.6 13.0 13.7 14.7 15.0 15.6 15.8 16.3 17.7 16.6 12.0 17.0

5.2.2. Evaluation on Color Images

We are interested in the evaluation of the tone mapped color images to demonstrate that we
improved the overall quality. For that, we used again the BRISQUE [51] no-reference metric, and
evaluate the results on the left part of Table 4. Red cells with the worst score are highlighted, whereas
green cells mean best scores. Results are somehow surprising, since the best observed visual quality
is not indicated by the metric (cf. qualitative analysis). We still can explain the worst results by
the dark low contrasted images tone-mapped by the global logarithm. Best results of BRISQUE
indicates that SDR images are best, that probably satisfy more to the conditions evaluated by the
metric. As mentioned above, scores higher than 100 mean that the quality of the image is worse than
the set of training images. It seems however that BRISQUE is not the adequate metric to evaluate the
quality of tone-mapped images. BLIINDS-II [53] exhibits generally similar results in giving generally
the color SDR image as the best between the color images. NIQE [52] does not seem to provide any
strong tendency. The scores of the two last metrics are not presented in the article because we estimate
that using those no-reference metrics for this purpose is not adequate. BRISQUE is shown to report an
example of this attempt.

New metrics are specially designed to evaluate tone-mapped HDR images. We evaluated the
different color images by using a state-of-the-art method called HIGRADE [54]. HIGRADE is a
dedicated method for non-reference image quality assessment. It evaluates the SDR images obtained by
algorithms such as tone-mapping, multi-exposure fusion, or other dedicated processing. This method
is dedicated to perceptual evaluation of HDR images and has been considered as the most efficient
algorithm on a large database of HDR images, called ESPL-LIVE HDR Image Quality database [55].
Table 5 shows the output of the algorithm for SDR images. This evaluation clearly demonstrates that the
HDR versions of the images are better than the SDR one, especially when using the Krawczyk et al. [48]
technique. This technique is based on both local and global contrast enhancements, that seems to give
a good general rendering, as the metric suggests. Other tone-mapping techniques have relatively good
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scores, and all provide better scores than the SDR one after averaging. Standard deviation remains
quite stable, except for Banterle tone mapping.

Table 5. HIGRADE [54] results for evaluation of color images. Scores indicate that the HDR
tone-mapped color images are always better than the SDR single exposure version. Scores indicate also
that Krawczyk et al. tone-mapping provide best results amongst the tested algorithms, which is also
supported qualitatively by visualization of the images.

Image SDR TM Banterle TM Fattal TM Log TM Krawczyk

black_swimsuit −1.33 −0.84 −0.92 −0.91 −0.57
train_side −0.79 −0.94 −0.96 −1.19 −0.71

cd −0.72 −0.12 −0.09 −0.93 −0.08
kiwi −1.07 −0.86 −1.02 −0.62 −0.45
sd −1.31 −0.39 −0.13 −0.45 −0.47

pens −1.23 −0.54 −0.70 −0.56 −0.46
origan −0.90 −0.41 −0.44 −0.13 −0.14

painting −0.60 −0.64 −0.84 −0.47 −0.43
macbeth −0.90 −0.50 −0.42 −0.45 0.02

knife −0.79 −0.39 −0.49 −0.87 −0.07
water −1.01 −0.92 −0.80 −0.86 −0.70

train_front −0.95 −0.64 −0.66 −1.18 −0.72
kerchief −2.02 −2.05 −1.53 −1.77 −1.46
pastel −1.13 −0.59 −0.55 −0.73 −0.32

orange_object −0.99 −0.96 −0.42 −0.61 −0.73
battery −0.92 −0.34 −0.38 −0.79 −0.14

raspberry −0.95 −0.81 −0.89 −0.93 −0.24
ruler −0.40 −0.74 −0.77 −1.21 0.02
Mean −1.00 −0.70 −0.67 −0.81 −0.42
STD 0.34 0.40 0.34 0.36 0.36

5.3. Discussion

The implementation of the HDR-SFA pipelines produce images of better visual quality that its
SDR counterpart. In the previous section, we made a tentative to evaluate the quality of data which are
not easy to handle by quality procedures. First because we do not have references, neither groundtruth
or good knowledge on HDR scenes. Indeed, in general HDR images are evaluated visually after being
tone-mapped. In our context, it is a little more complex since we also add some spectral dimension to
the problem. We try in the following to discuss this according to our evaluation.

One major aspect of SFA images is that we do not have ground truth, for both SDR and HDR
domains. For spatial information, we are limited to the result of the demosaicing method or by the fact
that the information is sparsely distributed over the whole sensor. For spectral information, we are
limited to visual evaluation of content projected in a color space. Evaluation may however be produce
on usability on a specific vision task, which is out of the scope of that article.

In our tentative to produce an evaluation on data quality, it appears that we cannot directly
compare SDR, HDR and HDR tone-mapped results using a SDR image quality metric (such as
BRISQUE). Generally, it is understood that a tone-mapped HDR result tends to compress a high
dynamic range of radiance into a displayable range of intensity (e.g., 8-bits), as the logarithmic
tone-mapping do. It often leads to an image of rather “washed and gray” appearance and devoid
of local and global contrast. In other words, the quantity of visual information is enhanced at the
expanse of the naturalness. So evaluation fails when trying to use SDR metrics to evaluate the image
quality. That is why dedicated HDR quality metrics, such as HIGRADE [54], have been introduced in
the literature, along with emerging perceptual-based tone-mapping techniques [48].

Although we hardly evaluate the radiance estimation, we validated the pipeline for the
visualization output by examples and by objective metrics.
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Based on this pipeline, we consider two typical types of potential applications. SFA camera are
being used in several applications, with promising recent results in, e.g., medical imaging, where
the snapshot aspect is rather important to have stability over physiological parameter changes [56].
However, the dynamic of the scene may be very large in such applications (for instance specular
reflections on wet tissues or difference of intensity light between outside body and inside an opening
in the body). In this case, such pipeline can be useful in situations that are well controlled, including
knowledge about the illumination. Evaluation on how three consecutive image captures generate
noise for a specific application is yet to be investigated. Temporal corrections of the time-dependent
artifacts introduced are well understood in the literature [28]. On the other hand, general computer
vision tasks, e.g., background subtraction [57], within uncontrolled illumination, where the dynamic
range of the scenes could also be great can be targeted (for instance, automotive car getting out of a
tunnel). One of the major constraint in this case is to handle the changes of illumination within the
pipeline. Recent works on illuminant estimation from multispectral images [41,42,45] shall permit
to implement correction in real time as for camera white balancing. Further works are required to
investigate the impact of illumination in those applications. In any application, the HDR imaging
pipeline permits to solve issues with energy balance of the sensor, i.e., when two bands have very
different sensitivities for a similar integration time.

6. Conclusions

We defined a generalized imaging pipeline for HDR-SFA cameras. This is a similar pipeline to
CFA architecture, adding spectral processing blocks and HDR enhancement for the channel balance
correction and noise reduction. By demonstrating the pipeline, we enable the use of SFA camera in
computer vision systems at reduce modification of the existing CFA pipeline.

Further works include the evaluation of the impact of each of the imaging pipeline components
with respect to either visualization or usability of the HDR spectral data. We presented one instantiation,
while many are possible. Further works also include standardization of camera and pipeline as well as
file format and transmission line mixing multiple channel and HDR radiance data.
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