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Abstract

The Gcm/Glide transcription factor is transiently expressed and required in the Drosophila nervous system. Threshold Gcm/
Glide levels control the glial versus neuronal fate choice, and its perdurance triggers excessive gliogenesis, showing that its
tight and dynamic regulation ensures the proper balance between neurons and glia. Here, we present a genetic screen for
potential gcm/glide interactors and identify genes encoding chromatin factors of the Trithorax and of the Polycomb groups.
These proteins maintain the heritable epigenetic state, among others, of HOX genes throughout development, but their
regulatory role on transiently expressed genes remains elusive. Here we show that Polycomb negatively affects Gcm/Glide
autoregulation, a positive feedback loop that allows timely accumulation of Gcm/Glide threshold levels. Such temporal fine-
tuning of gene expression tightly controls gliogenesis. This work performed at the levels of individual cells reveals an
undescribed mode of Polycomb action in the modulation of transiently expressed fate determinants and hence in the
acquisition of specific cell identity in the nervous system.
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Introduction

One of the most challenging issues in biology is to elucidate the

mechanisms underlying cell fate determination and maintenance.

The Drosophila melanogaster Glial cell missing/Glial cell deficient

transcription factor (Gcm/Glide, referred throughout the text to as

Gcm) is transiently expressed and is key to decide between glial

and neuronal fates in the multipotent neural precursors [1–6].

Threshold levels of Gcm are necessary and sufficient to induce

gliogenesis and the tight regulation of its expression prevents

defective/excessive gliogenesis [7–11]. These features make Gcm

an ideal tool to study cell differentiation and plasticity.

Two major classes of proteins that modify the chromatin

structure and its condensation state, the Polycomb group (PcG)

and the Trithorax group (TrxG), are known as critical regulators

of HOX transcription factors, which act as molecular switches that

are maintained in a silent or in an active state [12]. PcG and TrxG

proteins act in large multimeric complexes that bind specific DNA

regions called Polycomb (or Trithorax) response elements (respec-

tively PREs and TREs) [13]. PcG and TrxG complexes trigger

posttranslational modification of histone tails that have opposite

effects on gene activity, mainly methylation of H3K27 induced by

PcG complexes (negative regulation) and methylation of H3K4,

H3K36 as well as acetylation of H3K27 by TrxG complexes

(positive regulation) ([12,14] and references therein). PcG proteins

enter two main conserved complexes called Polycomb Repressive

Complex 1 and 2 (PRC1 and PRC2). The latter is formed by four

core components including, in flies, Enhancer of zeste (E(z)), and

catalyzes the reaction that leads to di- and tri-methylation of

H3K27. This epigenetic mark is recognized by Polycomb (Pc),

which belongs to the PRC1 complex.

Recent chromatin immunoprecipitation studies have shown that

PcG and TrxG binding is also associated with dynamic

transcriptional states modulating different processes including

mitogenic pathways and progression from multipotency to

differentiation ([12,15–19] and references therein). Understanding

the mode of action of PcG and TrxG proteins in dynamic

processes, however, requires analyses at the level of identified cells

PLOS Genetics | www.plosgenetics.org 1 December 2012 | Volume 8 | Issue 12 | e1003159



and times. This is particularly important for developmental genes

that are expressed transiently and in specific cell populations. The

present in vivo study analyzes the role of Pc in fly gliogenesis.

To identify components and regulators of the Gcm pathway, we

designed a screen for genetic modifiers of a dominant phenotype

due to gcm ectopic expression and identified PcG and TrxG

proteins. Importantly, mutations in PcG components and in TrxG

members found in chromatin remodeling complexes enhance the

gcm dominant phenotype, whereas mutations in TrxG proteins

known to specifically counteract PcG function rescue it. This

suggests that a balanced action of these chromatin modifiers

regulate Gcm function. Moreover, we demonstrate that the gcm

regulatory sequences carry a PRE and are bound by Pc. Finally,

Pc inhibits the autoregulatory loop ensuring threshold Gcm levels

[7] and hence gliogenesis.

To our knowledge, this is the first direct evidence that PcG

proteins negatively modulate a transiently expressed fate determi-

nant, thereby affecting a specific lineage in the nervous system.

Results

A screen to identify gcm genetic interactors
The need of tight Gcm regulation prompted us to screen for

interactors using a sensitized background. This approach allows

the dissection of molecular cascades when the loss of a gene

product is embryonic lethal. The Drosophila thorax (notum) carries

a stereotyped number of sensory organs called macrochaete or

bristles. gcmPyx/+ flies ectopically express gcm in the larval notum,

which triggers the differentiation of supernumerary sensory organ

precursors (SOPs) and bristles (Figure 1A–1C) [20]. gcmPyx/+
females show, in average, 18,5 bristles instead of the 11/

heminotum typical of wild-type (wt) animals. Using large

overlapping deficiencies (67–75% genome coverage, Deficiency

kit, Bloomington), we performed a primary screen and identified

42 genomic regions that dominantly enhance or suppress the

gcmPyx dominant phenotype when deleted (Figure 1D–1E, Figure

S1Aa and S1B). These regions were selected for quantitative

analyses (Figure S1Ab), which identified weakly and strongly

modifying deficiencies. We further analyzed the latter ones (Figure

S1Ab, S1B) and identified 28 interacting genomic regions. A

secondary quantitative screen with smaller deficiencies (Figure

S1Ac, Table 1) allowed us to identify those that act as strong

modifiers, based on statistical analyses. Single gene loss of function

mutations within those deficiencies were then analyzed and the

interaction was confirmed for 18 of them (Figure S1Ad, Figure S2,

Table 1). In sum, the Deficiency kit allowed us to identify large

interacting regions and to progressively refine the analysis to single

mutations.

To evaluate the specificity and the sensitivity of the screen, we

asked whether the selected deficiencies eliminate genes expected to

interact with gcm. The gcmPyx phenotype correlates with the ectopic

formation of proneural territories and precursors of the central

(CNS) and peripheral (PNS) nervous systems, neuroblasts (NB) and

SOPs, respectively [21,22]. Thus, mutations of NB/SOP specific

genes should act as gcmPyx suppressors and indeed, the large and

the small deficiencies covering three genes – escargot (esg), worniu

(wor) and snail (sna) – expressed in most embryonic NBs act as

gcmPyx suppressors (Table 1, Figure S1C). Testing single gene loss

of functions confirmed that sna and esg mutations act as gcmPyx

suppressors. Accordingly, esg overexpression triggers the opposite

phenotype (Figure S1C). Finally, genes as pimples (pim) and crooked

legs (crol), identified in a microarray as induced by Gcm [23], were

also identified in our screen (Figure S1D).

The fact that known and predicted gcm interactors were

identified validates our screen and shows that the dominant bristle

phenotype is a reliable and very sensitive readout.

The Pc and the trx group mutations interact with gcmPyx

A genomic region identified in the screen covers the trxG gene

brahma (brm), which encodes a transcriptional coactivator related to

yeast SWI/SNF proteins and plays a role in ATP-dependent

nucleosomal remodeling [24]. The large and the small deficiencies

covering brm, Df(3L)brm11, Df(3L)th102 and, most importantly, a

null brm allele, enhance the gcmPyx phenotype (Figure 1F). To

extend our findings, we tested osa, an integral component of the

Brahma complex [25]. osa loss of function also enhances the gcmPyx

phenotype, whereas osa gain of function (GOF: hs-Gal4;UAS-osa

flies) suppresses it (Figure 1G, 1I). Thus, osa acts as brm, moreover,

double brm/osa heterozygous mutants show an even stronger

phenotype.

Furthermore, a deficiency covering Enhancer of bithorax (E(bx))

and the E(bx) mutation itself enhance the gcmPyx phenotype

(Table 1, Figure 1G, 1I). Interestingly, E(bx) (also called

NURF301) encodes a transcription coactivator that belongs to

the ISWI chromatin remodeler complex, another TrxG complex,

and negatively regulates the JAK-STAT pathway [26], which is

known to interact with gcm [27].

We then tested members of two TrxG complexes that

specifically counteract Pc function. Trx is a SET-domain

containing protein able to induce H3K4 methylation [28]. It has

been purified as a subunit of the Drosophila COMPASS-like

complex [29] and of the TAC1 complex that combines histone

methylating and acetylating activities (reviewed in [30]). The trx

null mutation acts as a suppressor of the gcmPyx phenotype

(Figure 1G, 1I). Ash1 is a SET-domain protein reported to have

histone methyltransferase activity [30]: its null mutation also

suppresses the gcmPyx phenotype (Figure 1G, 1I). Finally, the

Drosophila CREBS-binding protein (dCBP) encoded by nejire (nej) is

responsible for H3K27 acetylation [31] and is associated with both

TAC1 and ASH1 complexes. The nej null mutation suppresses the

gcmPyx phenotype (Figure 1G, 1I). In conclusion, we found that

mutations in TrxG proteins known to specifically counteract PcG

Author Summary

Epigenetic mechanisms are essential to define cell identity,
and the Polycomb and the Trithorax Group proteins (PcG
and TrxG, respectively) control the body plan by main-
taining the epigenetic state of homeotic genes. PcG and
TrxG act by triggering stable chromatin modifications that
are ‘‘remembered’’ after cell division and keep gene
expression in an OFF or ON state. Recent genome-wide
analyses call for additional targets of PcG proteins, but the
role of these chromatin factors in dynamic transcriptional
states and/or in specific cell fates is difficult to apprehend,
mostly because very sensitive readouts are required. This
in vivo study performed at the single-cell level shows that
PcG proteins affect the levels and the kinetics of the
transiently expressed Drosophila glial determinant and
transcription factor Gcm/Glide. Thus, PcG proteins also
finely tune gene expression, and this is independent of
memory mechanisms, suggesting that ‘‘transient’’ promot-
ers may have a different affinity to PcG proteins compared
to ‘‘stable’’ promoters. PcG proteins negatively affect Gcm/
Glide autoregulation, thereby promoting neurogenesis at
the expense of gliogenesis. Thus, PcG genes act in the fate
choice between two types of differentiated cells, implying
that distinct cell populations have specific requirements
for general chromatin modifiers.

Pc Represses the Gcm Cascade and Fly Gliogenesis
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function [12] act as suppressors of the gcmPyx phenotype, whereas

TrxG members found in chromatin remodeling complexes that

are involved in more general transcriptional regulation act as

enhancers. We therefore tested members of the two PcG

complexes, PRC1 (Pc) (three null alleles) and PRC2 ((esc), E(z)),

as well as the PcG protein recruiter pipsqueak (psq). Mutations in all

Figure 1. Genetic screen for gcmPyx modifiers and interactions with TrxG and PcG proteins. (A) Drawing of an adult notum. Small and
large dots represent microchaetae and macrochaetae, respectively. Macrochaete symbols to the right. (B–E) Adult nota from wt (WT; B), gcmPyx/+ (C),
gcmPyx/suppressor deficiency (D), gcmPyx/enhancer deficiency (E) flies. Dfs = Deficiencies. Scale bar = 200 mm. Histograms present the average number
of bristles per heminotum (y-axis) in different genotypes (x-axis). In all figures, average values are indicated +/2 SEM (bars); P-values from t-test are
indicated in the following way: *** (P#1023), ** (P#1022), * (P#561022). Pyx stands for gcmPyx. (F) Deficiencies deleting brm, (Df(3L)brm11 and
Df(3L)th102), as well as the brm mutation. P-values vs. gcmPyx/+: gcmPyx/+; Df(3L)brm11/+ (8,961026); gcmPyx/+; Df(3L)th102/+ (0,02); gcmPyx/+; brm/+
(4,261027). (G) gcmPyx interaction with trxG genes. P-values vs. gcmPyx/+: gcmPyx/+; brm/+ (4,261027); gcmPyx/+; osa/+ (0,002); gcmPyx/UAS-osa; hsGal4/
+ (0,0007); gcmPyx/+; brm/osa (3,461028); gcmPyx/+; trx/+ (0,009); gcmPyx/+; ash1/+ (0,01); nej/+; gcmPyx/+ (6,961027); gcmPyx/+; E(bx)/+ (1,361025). (H)
gcmPyx interaction with PcG genes. Color code indicates members of the same complex (dark gray: PRC1, pale gray: PRC2, black: PRC recruiter). P-
values vs. gcmPyx/+: gcmPyx/+; Pc1/+ (6,261026); gcmPyx/+; Pc3/+ (0,0022); gcmPyx/+; Pc15/+ (1,5610211); gcmPyx/+; E(z)/+ (0,001); gcmPyx/esc (2,661028);
gcmPyx/psq (0,03). (I) Summary of the tested TrxG and PcG mutations. From left to right: the biochemical complex, the genes within the complex, the
mutant phenotype over gcmPyx (No – no effect; S – suppressor; E – enhancer) and the large deficiency phenotype (nt – gene region not covered by
the kit).
doi:10.1371/journal.pgen.1003159.g001

Pc Represses the Gcm Cascade and Fly Gliogenesis
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Table 1. Small deficiencies tested in the secondary screen.

Large Df name Small Df name Cytology
Phenotype over
gcmPyx

Tested candidate gene
name and phenotype over
gcmPyx

Chromosome arm X

Df(1)JF5 Df(1)ED418 5C7;5E4 No

Df(1)RK4 Df(1)ED7265 12F4;13A5 No

Chromosome arm 2L

Df(2L)C144 Df(2L)N6 23A6;23B1 Weak S

Df(2L)JS17 23C1-C2;23E1-E2 S lilli(S)

Df(2L)cl-h3, Df(2L)E110 Df(2L)cl7 25D7;26A7 S mid(S)

Df(2L)E110 Df(2L)Exel6016 26C1;26D1 No

Df(2L)J39 Df(2L)J2 31B1;32A1-32A2 S pim(S)

Df(2L)J3 31D;31F2-F5 No pim(S)

Df(2L)J1 31B1;31D8-D11 No pim(S)

Df(2L)ED746 31F4;32A5 No

Df(2L)Exel8026 31F5;32B3 No UbcD2(No)

Df(2L)Exel7049 32B1;32C1 No

Df(2L)Exel6027 32D2;32D5 Lethal l(2)gd1(S)

Df(2L)Prl Df(2L)esc-P2-0 33A1;33B1-33B2 S crol(S)

Df(2L)TE35BC-24 Df(2L)el80f1 34E3;35D2-D5 S

Df(2L)r10 35D1;36A6-A7 S esg(S), wor(No), sna(S)

Df(2L)ED3 35B2;35D1 S Su(H) (S), esg* (S)

Df(2L)ED1050 35B8;35D4 S esg(S), wor(No), sna(S)

Df(2L)Exel8034 35C5;35D2 No esg(S), wor(No)

Df(2L)Exel7063 35D2;35D4 S wor(No), sna(S)

Df(2L)TW50 Df(2L)E71 36F2-F6;37C6-D1 S brat(S)

Df(2L)Sd77 37C6-D1;38C1-C2 Weak S

Df(2L)ED1231 37C5;37E3 No

Df(2L)ED1303 37E5;38C6 S

Df(2L)TW84 Df(2L)ED1305 38B4;38C6 No

Df(2L)ED1315 38B4;38F5 S

Df(2L)Exel6046 38C2;38C7 S

Df(2L)DS6 38E2;39E7 S E2f2(S)

Chromosome arm 2R

Df(2R)M41A4 Df(2R)rl10a h38R-h41;h41-41A3 Weak E

Df(2R)E3363 Df(2R)ED2076 47A10-47C1 S lola(S)

Df(2R)Exel6059 47C5;47D6 S

Df(2R)CX1 Df(2R)Exel6062 49E6;49F1 No

Df(2R)Exel7128 50C5;50C9 S Ago1(S)

Chromosome arm 3L

Df(3L)emc-E12 Df(3L)ED4079 61A5;61B1 Weak E

Df(3L)Exel6083 61A6;61B2 S

Df(3L)Exel6084 61B2-61C1 No E(bx)(E)

Df(3L)ED4177 61C1;61E2 E

Df(3L)Exel6085 61C3;61C9 S

Df(3L)pbl-X1 Df(3L)RM5-2 65E;66A17 E

Df(3L)fz-M21 Df(3L)ED4543 70C6;70F4 No

Df(3L)Exel6122 70D4;70D7 S

Df(3L)Exel6123 70D7;70E4 No

Df(3L)Brd12 70E;71A2 weak S

Df(3L)ED217 70F4;71E1 S

Pc Represses the Gcm Cascade and Fly Gliogenesis
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four genes enhance the gcmPyx phenotype (Figure 1H, 1I). Thus,

PcG mutations act in the same way as mutations in the TrxG genes

brm and osa, but have opposing effects compared to mutations in

the TrxG genes Ash1, trx and nej. This suggests that a balanced

action of these chromatin modifiers regulate gcm function.

In sum, the screen allowed the identification of several

chromatin factors as gcm genetic interactors.

The Pc protein binds to the gcm promoter region
gcm was identified as a putative Pc target in genome-wide

chromatin immunoprecipitation (ChIP) studies on Drosophila

embryos and different cell lines [32–34], we therefore focused

on this chromatin factor. As seen in Figure 2B, a Polycomb

Response Element (PRE) is present around the transcription start

sites (TSS) of gcm and gcm2, which are organized head to head in a

30 kb region [35]. PRC1 binding at the TSS is accompanied by

the H3K27 methylation mark (H3K27me3), the profile of which is

much broader, extending throughout the gcm-gcm2 59 regulatory

region. As expected, the profile of H3K4methylation complements

that of H3K27me3 (Figure 2B). Pc binding was further validated

and quantified by qChIP analysis on specific regions including the

TSS region for each gene (gcm, gcm2), or an adjacent region

(GlacAT) and a negative control (Rp49) (Figure 2A, 2B).

We then asked whether the upstream region of the gcm gene

bound by PcG proteins is able to recruit PcG proteins in

transgenic assays. For this, we examined PcG binding to a

transgene containing the upstream region of the gcm locus on

salivary gland chromosomes by Immuno-FISH experiments.

Similar to the endogenous gcm locus, which associates with both

Pc and Ph proteins (Figure 2E–2F90), a transgene carrying a gcm

construct including 9 kb from the promoter region (9 kb gcm)

induces the recruitment of PcG proteins to an ectopic site

(Figure 2B, 2G–2Hb90). Interestingly, a transgene carrying a

shorter construct (2 kb gcm) is not able to efficiently recruit PcG

proteins (Figure 2B, Figure S3). Importantly, this shorter construct

triggers very limited rescue when reintroduced in gcm mutant

embryos, whereas the 9 kb gcm construct rescues the embryonic

mutant phenotype almost completely [8], suggesting a correlation

between Pc binding and transgene activity. Of note, the transgenes

do not contain gcm2, excluding the requirement of a gene complex

for Pc binding. Moreover, gcm2 plays a minor role in gliogenesis

and its mutation is viable [35] allowing us to focus on gcm.

Finally, we tested the 9 kb construct for pairing sensitive

silencing (PSS), as transgenes carrying PREs/TREs in Drosophila

have been shown to share this property ([36,37]). Transgenic flies

carrying the mini-white gene typically have eye colors ranging from

yellow to orange in a white mutant background. Normally, flies that

are homozygous for such a transgene have a darker eye color than

heterozygotes, as the genetic dose of mini-white is doubled.

However, with transgenes carrying PRE/TREs, the eye color is

similar in homozygotes and heterozygotes or even darker in the

latter. This is what we also observed in our transgenic lines

(Figure 2C–2D).

Altogether, these data indicate that the gcm promoter region

contains a PRE and suggest that PcG proteins directly regulate gcm

expression.

Reducing the dose of Pc rescues the gcm fate conversion
phenotype

We next scored for Pc gcm interaction in a physiological asset,

i.e., in loss of function conditions for both genes. The gcm-Gal4 line,

an insertion in the gcm locus, is a hypomorphic semiviable allele in

homozygous conditions and can be used to follow gcm activation

and glial cells using a UAS-green fluorescent protein (GFP) line [38–40].

We analyzed the expression of GFP as well as that of an

independent glial marker (Repo) and a neuronal marker (Elav) in

homozygous gcm-Gal4,UAS-GFP (referred to as gcm-Gal4) animals

and in homozygous gcm-Gal4 animals that are also heterozygous

for Pc. As a control, we used heterozygous gcm-Gal4 animals.

Table 1. Cont.

Large Df name Small Df name Cytology
Phenotype over
gcmPyx

Tested candidate gene
name and phenotype over
gcmPyx

Df(3L)Brd15 71A1-A2;71C1-C2 weak S

Df(3L)Exel6125 71A3;71B3, 5 S

Df(3L)brm11 Df(3L)th102 72A2;72D10 E brahma (E)

Chromosome arm 3R

Df(3R)2-2 Df(3R)ED5021 81F6;82A5 No hkb(weakS)

Df(3R)XM3 82A3-A6;82B S hkb(weakS)

Df(3R)Z1 82A5-A6;82E4 weakE

Df(3R)ED5066 82C5;82E4 E

Df(3R)Cha7 Df(3R)DG2 89E-F;91B1-B2 E repo(weakE)

Df(3R)Exel6178 90F4;91A5 E repo(weakE)

Df(3R)ED2 91A5;91F1 E fru(weakE)

Df(3R)Exel6179 91A5;91B5 E fru(weakE)

Df(3R)3450 Df(3R)Exel6210 98E1;98F5 No

Df(3R)Exel6211 98F5;98F6 No

Df(3R)awd-KRB Df(3R)E40 100C5;100F1-F5 E ttk (E)

*only upstream region.
From the primary screen to the genes. From left to right, columns indicate the name of the large deficiencies identified in the primary quantitative screen, the name of
the small deficiencies in that region, their cytology, the phenotype observed over gcmPyx (No – no effect; S – suppressor; E – enhancer), the name and phenotype of
putative interactors genes analyzed over gcmPyx.
doi:10.1371/journal.pgen.1003159.t001
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Figure 2. Pc binds to the gcm promoter region. (A–B) Association of the gcm and gcm2 loci with PcG proteins. (A) Levels of Polycomb (Pc)
binding and H3K27me3 at the gcm or gcm2 gene locus and control regions (GlacAT and Rp49) in Drosophila embryos were determined by
quantitative ChIP (qChIP) experiments. Results are represented as percentage of input chromatin precipitated. The standard deviation was calculated
from two independent experiments. (B) Organization of the gcm-gcm2 loci, extent of the used transgenic constructs (blue lines) and ChIP-on-chip
binding profiles of indicated PcG proteins and histone marks in Drosophila embryos. Data were extracted from [33]. The plots show the ratios (fold
change) of specific IP versus mock IP assays. Significantly enriched fragments (P-value,161024) are shown in red. Black bars indicate the location of
primers used for qChIP analysis. (C,D) Eyes from flies carrying an empty mini-w+ transgenic vector (C) or a mini-w+ vector including a 9 kb gcm
transgene (D). Flies heterozygous for the transgene are on the left, homozygous ones on the right. (E–H) Polytene chromosome immuno-FISH

Pc Represses the Gcm Cascade and Fly Gliogenesis
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The Drosophila wing contains two major nerves, L1 and L3,

covered by glia that depend on gcm [41] (Figure 3A, 3B). Because

of their simple organization, we focused on the L3 glia, which arise

from three SOPs called L3-3, L3-1 and L3-v. Each SOP produces

a sensory neuron and a glial precursor (GP) that proliferates and

produces four to eight glia that are GFP+ (Figure 3C–3H).

gcm-Gal4 homozygous flies show the glia to neuron transforma-

tion observed in gcm null clones [41], albeit at much lower

penetrance (Figure 3I–3M). To analyze the phenotype at single

cell level, we followed glia from a specific lineage, the L3-v, at the

time the GP is generated. At this stage, control L3-v lineages

contain a GFP+ cell that expresses Repo and a neuron that

expresses Elav (Figure 3S, 3T–3T0). In gcm-Gal4 homozygous

animals, the GFP+ cell expresses Elav rather than Repo (9%

penetrance) (Figure 3S, 3U–3U0). By 24 hr after puparium

formation (APF), the number of GFP+ and Repo+ cells present

in the control animals increases, whereas only one GFP+ cell is

present in the transformed lineage, due to lack of proliferation, and

this cell is a neuron (Figure 3C–3M). The penetrance of ectopic

neurons does not decrease during development (16 and 18% by 20

and 24 hr APF, respectively, Figure 3S), indicating that low Gcm

levels trigger a stable fate conversion; a similar phenotype was

observed on L1 glia (Kumar and Giangrande, unpublished data).

Based on the genetic data, we then asked whether Pc

downregulation rescues the phenotype of homozygous gcm-Gal4

wings. Indeed, no evidence of stable glia to neuron transformation

was found in homozygous gcm-Gal4 wings that carry only one Pc

functional allele (Figure 3N–3S). The phenotype was verified at

early and at late stages of wing development, to exclude the

possibility of unstable rescue. These data strongly suggest that Pc

affects gcm expression in the gcm-Gal4 line.

Pc is required for gliogenesis
In order to extend the above findings, we analyzed late

gliogenesis upon lowering the dose of Pc. Differentiated gcm-Gal4

homozygous wings carry fewer glia than wt wings in which the

three glial precursors have divided more than once in most of the

cases (Figure S4A, 24 hr APF wings). Given the low penetrance of

the fate transformation phenotype, this suggests an additional,

later, effect on the glial cell number. To clarify the nature of the

phenotype we counted the Repo+ cells just after the first division

of the three L3 GPs in gcm-Gal4 homozygous wings that showed no

fate transformation. We could confirm a decreased number of cells

(Figure 4B, 4E, S4B, 20 hr APF wings), complementing the

finding that sustained gcm expression induces glial overproliferation

(embryo: [11]; wing: Kumar and Giangrande, unpublished data).

Of note, the gcm-Gal4/+ wings already show a minor but consistent

defect as there are cases in which the three GPs have not

proliferated yet, which does not occur in wild type wings of the

same stage (Figure 4A and 4E, Figure S4B). Moreover, hetero-

zygous wings show a high variance in the number of Repo+ cells.

Finally, homozygous gcm-Gal4 wings expressing a single Pc show a

higher number of glia compared to those found in homozygous

gcm-Gal4 wings (Figure 4D and 4E, Figure S4B), confirming that

Pc negatively controls Gcm. This was confirmed by the significant

P values obtained with different robust non-parametric tests

comparing the homozygous wings with the homozygous wings that

carry one dose of Pc (Mann Whitney test P = 0,0127; Wilcoxon

test P = 0,0122). Moreover, one-way Anova comparison of the

three genotypes (gcm-Gal4/+, gcm-Gal4 and gcm-Gal4; Pc/+) also

produces a significant value (0,0028). These data indicate a partial

rescue of the gcm-Gal4 proliferation phenotype by Pc, the moderate

difference likely depending on the fact that only one dose of Pc is

deleted.

To understand the role of Pc in gliogenesis, we also analyzed Pc

mutant animals in an otherwise wt background and asked whether

the mutation affects the number of glia (Figure 4F–4H, Figure

S4C 24 hr APF wings) and the frequency of glial dividing cells

(Figure 4I). Since removing Pc completely leads to pleiotropic

defects, we used heterozygous Pc animals and counted the number

of Repo+ cells on the L1 nerve, which shows massive gliogenesis,

compared to the sparse glial cells present on the L3 nerve [41].

While the number of Repo+ cells increases very moderately in Pc/

+ compared to wt wings (P = 0,03), a stronger, significant, increase

is observed in E(z)/+ wings (P = 0,0007), which have a compro-

mised PRC2, and an even stronger phenotype is observed in

double heterozygous Pc/E(z) animals (P = 3,961026), which

display compromised PRC2 and PRC1 (Figure 4F–4H, Figure

S4C). Finally, we labeled wings with Repo and phospho-histone

H3 (PH3) as a mitotic marker. By 24 hr APF, the Repo/PH3+
cells are very rare in wt wings (1 Repo-PH3+ cell in 1/11 wings)

(Figure 4I). E(z)/+ or Pc/E(z) double heterozygous animals, which

show the most significant increase in glial cell number, show a

significant increase in the number of wings with proliferating glia,

whereas Pc/+ animals, in which the increase in glial cell number

very small, do not. Thus, PcG proteins likely synergize and affect

both glial differentiation and proliferation.

Pc represses the maintenance of gcm expression
We next analyzed the role of Pc on the gcm expression profile.

Positional cues first trigger initiation of transcription, then Gcm

positively autoregulates [7] and, as the glial fate is established, gcm

expression progressively decreases so that its transcripts are no

longer present in mature glia [42]. We analyzed the initiation of

gcm transcription in gcm-Gal4/+; Pc/+ wings. Previous analyses

showed that the gcm RNA becomes detectable by 8–9 hr APF (Van

de Bor and Giangrande, unpublished data). We therefore analyzed

7–8 hr APF wings and found that the GFP appears at the same

time as in wt animals (data not shown). Since the binary Gal4

system may not faithfully reproduce the temporal pattern, we

analyzed wings carrying one dose of Pc and the P-mediated

insertional gcmrA87 allele expressing the LacZ reporter and

confirmed that the b-Gal labeling starts as in wt animals (Figure

S5). The finding that Pc does not affect initiation of gcm expression

is in line with the wt number of GFP+ cells observed in

homozygous gcm-Gal4 wings at early stages, even in cases in which

glial cells convert into neurons.

We also performed in situ hybridization with a gcm-specific

probe in Pc/+ wings. We took advantage of the supernumerary

glia phenotype to see whether Pc helps repressing the maintenance

of gcm expression. gcm transcripts are well visible on both wt and

Pc/+ wings by 19 hr APF, a stage at which the glial precursors

have differentiated (Figure 5A, 5D). By 24 hr APF, however, they

are absent in wt, but still present in Pc/+ wings (Figure 5B, 5E),

experiments performed on the gcm locus and PcG proteins. Immuno-FISH staining in wt (w1118) flies (E,F) or flies carrying a transgene including a 9 kb
region upstream of the gcm TSS (G,H), with anti-Pc (E,G) or anti-Ph (F,H) antibodies. Nuclear DAPI labeling in blue. Right panels show higher
magnifications of the inserts. Double labeling (E,F) with a gcm probe (E0,F0) and anti-Pc antibody (E90) or anti-Ph antibodies (F90) detects colocalization
(arrow) at one Pc or Ph binding site in wt; transgenic animals (G–H) show a second site of colocalization. (G0–G90, H-Hb90). Colocalization of gcm and
Ph (arrow) in wt (D) and in the transgenic line (F).
doi:10.1371/journal.pgen.1003159.g002
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Figure 3. The Pc mutation rescues the gcm LOF phenotype. (A,B) Schematic drawings showing the pupal wing at (A) 29 and (B) 16 hr APF (in
all panels, anterior the top, distal to the right. Inset in (A) indicates the region shown in (C–F,I,N). L3-v, L3-1 and L3-3 indicate the sensory neurons. (C–
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which correlates with the slight increase in glial number observed

in Pc/+ animals. Interestingly, Pc/+ wings do not show gcm

expression at ectopic positions, suggesting that the absence of Pc

induces a failure in repressing gcm maintenance rather than a

global loss of silencing in whole tissues.

We extended the data by analyzing other stages and tissues. In

the brain, gcm is expressed in several cell populations: GPC and its

glial progeny, lamina neurons, central brain neurons and medulla

glia [39,40,43,44]. We focused on gcm expression at the position of

lamina glial precursors (GPCs), which produce numerous cells that

migrate and form the glia of the lamina visual ganglion (Figure 5K)

[39,40,43]. For the sake of simplicity, we analyzed the optic lobes at

a stage at which gcm is detectable in the GPC area but just starts

being expressed in the other regions. In wt animals, gcm expression

fades away as glia differentiate and migrate (Figure 5G, 5K, 5L),

whereas in Pc/+ animals gcm is expressed in an expanded area

(Figure 5H, 5L). Moreover, gcm is overexpressed in brm/+ brains and

this phenotype is suppressed in brm,trx/+ animals. This shows that

brm acts similar to Pc on gcm expression, and both act antagonis-

tically to trx, in line with the genetic data (Figure 5H–5J, 5L). All the

phenotypes were quantified by comparing the intensity and the area

of the gcm signal (see Text S1, Figure S4E). In the double mutant, the

area of labeling resembles that observed in wt animals and the

intensity of the signal is even lower than that observed in wt animals.

Future analyses will determine whether the increase of gcm

expression in the mutant backgrounds reflects longer perdurance

in migrating glia, production of more glia or production of more

glial progenitor cells in the larval lamina. In some preparations,

labeling in other regions is also observed, depending on sample

orientation. Even though we cannot formally exclude the possibility

that this represents ectopic labeling, these regions correspond to the

other positions at which gcm accumulates at slightly later stages in

wild type animals, suggesting that in those regions as well Pc

negatively controls gcm expression.

Finally, we analyzed gcm transcripts in Pc embryos. In wt animals,

gcm is expressed at early stages of glial development and transcripts

subsequently fade away, first in the ventral cord and then in the

brain [42]. The most frequent phenotype of Pc mutant embryos is a

persisting gcm expression in the brain, but we also found extreme

cases of late gcm expression in the ventral cord (Figure 5C, 5F). The

embryonic and the postembryonic brains contain too compact and

numerous glia and the perdurance in the ventral cord is a rare

event, likely due to the Pc maternal component.

Although these tissues/stages do not allow quantitative analyses

of glial cells, the expression data and the wing phenotype strongly

suggest that Pc represses gcm maintenance. Altogether, our

observations highlight the importance of Pc in tightly regulating

Gcm levels.

Pc represses gcm positive autoregulation and a
downstream gcm target

To assess whether Pc directly represses gcm, we used in vivo and

in vitro assays. Gcm directly and positively autoregulates and

alteration of this feedback loop severely affects its gliogenic

potential, providing further evidence for the importance of Gcm

maintenance at a precise developmental time [7,9]. In vivo

autoregulation can be documented in gain of function experiments

by using the gcmrA87 allele. We asked whether Pc negatively

controls Gcm autoregulation by comparing animals that simulta-

neously overexpress Gcm and Pc to control animals that only

overexpress Gcm. Compared to controls, Pc and Gcm cooverex-

pressing embryos show a drastic reduction in the number of b-

Gal+ cells as well in the intensity of b-Gal labeling (Figure 6A, 6C).

Accordingly, co-overexpression reduces the number of ectopic glia

as assessed by the Repo marker (Figure 6D, 6F, 6G, 6I). Moreover,

and in line with these results, overexpressing Gcm in Pc loss of

function embryos triggers a significant increase in the number of

autoregulating cells compared to that observed in control animals

(Figure 6A, 6B). Accordingly, these animals show an increased

number of ectopic Repo+ cells (Figure 6D, 6E, 6G, 6H). These

data were quantified upon counting the number of b-Gal+ and

Repo+ cells (Figure 6J). Loss and gain of function of Pc do not, on

their own, alter the expression of the Repo marker (Figure S6).

To evaluate whether the inhibitory effects of Pc in the Gcm

pathway are direct, we used transactivation assays in which we

transfected S2 cells with a Gcm expression vector and a reporter of

its activity in presence or in absence of a Pc expression vector.

We first analyzed the repo promoter, a major direct Gcm target

that contains several Glide Binding Sites (GBSs) [45] (Figure S7D).

This promoter is inactive in S2 cells, but Gcm expression is

sufficient to activate it. Upon cotransfection with Gcm and Pc

expression vectors, however, the transactivation induced by Gcm

decreases significantly (Figure S7C, S7D). We repeated the same

type of assay using a second, transiently expressed, promoter

depending on gcm. The gcm2 2 kb proximal promoter contains four

GBSs and was previously shown to be activated by Gcm in

transfection assays [35] (Figure 6K, 6L), more robustly than the

gcm 2 kb promoter itself, which only contains one GBS. As for repo,

the cotransfection with Gcm and Pc reduces the activation of the

gcm2 promoter. Thus, Pc represses the expression of Gcm stably

and transiently expressed targets.

In sum, the above data support the hypothesis that Pc represses

gcm autoregulation and Gcm downstream targets, thereby

inhibiting glial development.

Discussion

Cell fate determination and maintenance require pathways that

finely modulate gene expression and hence ensure the proper

balance of cell types in metazoa. The pleiotropic and genome-wide

effects of such pathways still hamper clear understanding of their

impact and mode of action at single cell level. Our screen and

genetic analyses in the Drosophila model unveil the role of the

Polycomb chromatin modifier in the generation of glial cells upon

fine modulation of the transiently expressed fate determinant

gcm.

R) Immunolabeling of 24 hr APF wings: gcm-Gal4:UAS-GFP/+ (gcm-Gal4/+), considered as wt (C–H), gcm-Gal4 (I–M) and gcm-Gal4;Pc/+ (N–R). Anti-GFP
labeling (green) reflects gcm expression, anti-Repo (red) marks glia and anti-Elav (blue) marks neurons. (C–H) Bracket in (E) indicates the glial cells
produced by the L3-v sensory organ precursor; bracket in (F) indicates the three proximal neurons (L3-v, ACV, E1). White arrowhead indicates the L3-v
neuron. Insets indicate the regions shown at higher magnification (C,I,N). (G,H) The L3-v GP produces several GFP+/Repo+ cells (arrows). In mutant
wings (I–M), the L3-v lineage produces only one GFP+ cell (J,M), which does not express Repo (K), but Elav (L,M asterisk indicates the ectopic neuron).
In double gcm and Pc LOF wings (N–R), several GFP+ cells (O,R) express Repo (P) and no ectopic neurons were observed (Q). (S) Quantitative data on
the fate transformation phenotype at different stages. (T–V) Immunolabeling in 9 hr APF wings: gcm-Gal4/+ (T–T0); gcm-Gal4 (U–U0) and gcm-Gal4;Pc/
+ (V–V0). In all genotypes, one GFP+ cell produced by the L3-v lineage is visible (T,U,V). In the heterozygous wing, this cell expresses Repo (T9) and not
Elav (T0). In gcm-Gal4 (U), the GFP+ cell does not express Repo (U9), but expresses Elav (U0). In the double gcm and Pc LOF wing, the GFP+ cell (V,
empty arrowhead) expresses Repo (V9) and Elav (V9). Scale bars: C–F,I,N = 100 mm; G,H,J–M,O–R,U–W0 = 10 mm.
doi:10.1371/journal.pgen.1003159.g003
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Figure 4. PcG genes control glia proliferation. (A–E) Quantitative analysis of glia at L3 vein position. Graphs comparing animals of different
genotypes for the number of glia present on the L3 vein by 20 hr APF. The Y-axis indicates the percentage of wings showing a given number of glia;
the X-axis, the number of glia expressing the Repo protein. Color-code is used to distinguish the compared genotypes: (A) wt vs. gcm-Gal4/+, (B) wt
vs. gcm-Gal4, (C) gcm-Gal/+ vs. gcm-Gal4, (D) gcm-Gal4 vs. gcm-Gal4; Pc/+. (A) In wild type wings, the number oscillates between 5 and 7, whereas in
gcm-Gal4/+ wings it oscillates between 3 and 9 cells. (B,C) gcm-Gal4 homozygous animals carry fewer Repo labeled cells and less variation (from 3 to
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A genetic screen that identifies novel gcm interactors
The genetic screen over a sensitized background proved to be

an extremely sensitive tool, as it allowed us to identify several genes

that in heterozygous conditions are able to modify the strong

dominant gcmPyx phenotype. The screen also provided hints onto

the function of the interactors, suppressors or enhancers of a given

phenotype. For example, sna and esg act as gcmPyx suppressors, in

line with the fact that gcmPyx triggers the expression of NB-specific

genes [20]. Identifying an interactor provided an entry point to

find members of the same pathway that were initially underscored

because located in deficiencies with moderate phenotypes (perhaps

due to the presence of genes with opposite effects) or in regions

that were not covered by the deficiencies. In the first case is Pc, in

the second are osa and Ash1 (Figure S2). The screen also identified

6) than heterozygous animals (from 3 to 9). This is also reflected by the presence of one peak value for homozygous animals and two for
heterozygous animals. (D) Note that gcm-Gal4; Pc/+ animals show an increase of glial cell number compared to that observed in gcm-Gal4 animals. (E)
The graph shows the distribution around the average of the number of Repo+ cells in the different genotypes as indicated by the color code. (F–H)
Quantitative analysis of glia at L1 vein position. Graphs comparing animals of different genotypes for the number of glia present on the L1 vein by
24 hr APF. The Y-axis indicates the percentage of wings showing a given number of glia; the X-axis, the quantitative range of Repo expressing cells.
Color-code is used to distinguish the compared genotypes: (F) wt vs. Pc/+ or vs. E(z)/+, (G) Pc/+ vs. E(z)/+ or vs. Pc/E(z). (F) Most wild type animals show
from 50 to 60 glia. (G) Note that most Pc/E(z) double heterozygous animals show higher number of glia (from 70 to 80 Repo+ cells) when compared
to single heterozygous animals. This is confirmed by more than 20% of wings showing over one hundred Repo+ cells on L1 vein. (H) The graph shows
the distribution around the average of the number of Repo+ glia at the L1 vein position in the different genotypes as indicated by the color-code. (I)
Quantitative analysis of pupal wings showing a double Repo/PH3+ cell indicating glia proliferation.
doi:10.1371/journal.pgen.1003159.g004

Figure 5. gcm is overexpressed in Pc mutants. (A–J) In situ hybridization with a gcm-specific probe. (A,B,D,E) 19 hr APF wings: gcm is expressed
at the L1 nerve position (L1) and in the so-called twin sensilla of the margin (TSM) in wt (A) as well as in Pc/+ animals (D); by 24 hr APF, gcm is no more
expressed in wt (B), but persists in Pc/+ wings (E) (asterisk indicates a non-specific signal). (C,F) gcm expression in the embryonic brain (arrowhead)
and in the ventral cord (brackets) fades by stage 14 in wt (C), but persists in Pc mutants (F) (lateral views, anterior to the left). (G–J) optic lobe partial
projection (anterior to the top; scale bar = 100 mm): in wt (G), gcm is expressed at the position of the lamina glial cell precursor (GPC) area (arrows);
gcm expression in Pc/+ (H), in brm/+ (I) and in brm, trx/+ double mutants (J). Note that we focused on early third instar larvae, when the first burst of
expression takes place in the GPC region. At that time, gcm is just starting being expressed in the other territories that have been previously
described as gcm positive [39,40,43]. (K) Schematic representation of optic globe gcm-dependent lamina glial lineages. In blue, the GPCs. In green,
differentiating and migrating glial cells (direction shown by the arrows). (L) Schematic representation of the areas of gcm expression (red) in the GPC
region, based on the above in situ analyses.
doi:10.1371/journal.pgen.1003159.g005
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members of other signaling pathways (Table 1, Figure S2). One of

them depends on Notch (N), which controls gcm expression [20].

While the used Deficiency kit does not cover N itself, we identified

Suppressor of Hairless (Su(H)), which regulates the transcription of

the N targets, and Lethal (2) giant disc 1, which negatively

regulates N receptor trafficking ([46] and references therein). We

also tested and validated the genetic interaction with other

members of the cascade, including N, its ligand Delta, one of its

targets, Enhancer of split, and Groucho, a transcriptional

repressor and a partner of Su(H). Future studies will dissect the

role of this and of the other pathways on the Gcm cascade.

gcm genetically interacts with TrxG proteins
Several TrxG proteins act as genetic modifiers of the gcmPyx

phenotype. TrxG proteins were initially identified as positive regulators

of HOX genes and considered as PcG counteractors. In recent years,

however, it has become evident that they have a much wider role in

gene regulation and it is unclear whether they mainly antagonize PcG

functions or whether they globally control gene expression [12].

Interestingly, the three TrxG proteins that behave as positive regula-

tors, Trx, Ash1 and dCBP, are found in TAC and ASH1 complexes

that contain a histone acetylation activity. The dCBP histone ace-

tyltransferase present in these complexes acetylates H3K27, a

Figure 6. Pc inhibits gcm autoregulation and glial differentiation. (A–I) Immunolabeling of gcm GOF embryos carrying rA87, a lacZ insertion
that detects endogenous gcm expression, UAS-gcm and the scabrous-Gal4 driver, active in the whole embryonic ventral cord (white brackets) (A,D,G);
gcm GOF, Pc LOF embryo (B,E,H); gcm GOF, Pc GOF embryo (C,F,I). Ventral views. gcm GOF causes endogenous gcm overexpression (A), and ectopic
glial cell production (D,G). In a Pc LOF embryo, the number of ß-Gal+ cells increases (B), as well as the number of Repo+ (E,H); in a Pc GOF embryo, the
number of ß-Gal+ (C) and Repo+ (F) cells decreases. (J) Histograms present the average number of ß-Gal+ (red) and Repo+ (green) cells in embryonic
thoracic segments (y-axis) from different genotypes (x-axis). P-values of t- test vs. gcm GOF: gcm GOF Pc LOF (ß-Gal 1,761025; Repo 1,561025); gcm
GOF Pc GOF (ß-Gal 0,003; Repo 0,0001). Scale bar = 100 mm. The graph (K) shows the activation of a 2 kb gcm2 promoter reporter construct displaying
four GBSs (L). The ratio between reporter activity upon Gcm/Pc coexpression vs. that observed upon Gcm expression alone indicates that the gcm2
promoter is activated when Gcm is expressed in S2 cells and repressed upon Gcm and Pc coexpression.
doi:10.1371/journal.pgen.1003159.g006
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modification that is associated with PcG target genes when they are

active [34]. This modification is incompatible with Pc dependent

H3K27me3, as these modifications occur on the same amino acid.

Thus, Trx- and Ash1-associated dCBP might be a key player in

counteracting PcG-dependent silencing of the gcm gene [31]. Future

studies will address the role of dCBP onto the Gcm cascade.

osa and brm act as negative regulators of gcm. TrxG proteins can

form different complexes that have distinct properties and in some

instances repress gene expression. For example, Trx and Brm, which

belong to different molecular complexes [30], act positively on the

HOX genes and influence a homeotic transformation phenotype in

the same way [47], however, Brm-containing complexes mediate

transcriptional repression of genes other than the HOX genes [48].

The emerging view is that the SWI/SNF TrxG proteins act as

transcriptional activators or repressors depending on the temporal

and spatial context [49]. Further studies will determine whether the

TrxG proteins acting as negative regulators of gcm directly repress its

expression or induce a gcm repressor.

Pc modulates the transient expression of the fate
determinant gcm

PcG proteins repress homeotic genes to ensure the maintenance

of transcriptional states and provide a cellular memory that is

transmitted upon cell division, in contrast, their mode of action in

the control of more dynamic processes remains elusive. We show

in vivo that members of the PcG negatively regulate the gcm

pathway during glial fate establishment and proliferation. At least

in the first step, a process based on cell memory can be excluded,

as Pc acts prior to the division of the GP, the cell in which gcm

starts being expressed [41].

The qChIP assay as well as the expression, the S2 cell

transfection and the autoregulation data strongly suggest that Pc

directly represses gcm transcription maintenance. In addition, the

phenotypes observed upon changing the relative gene dosage

indicate that Pc and gcm need to be present in appropriate

amounts. The importance of an adequate balance between

positive (Gcm) and negative (Pc) factors in the establishment of

the glial fate is also provided by a rare phenotype observed in a

gcm-Gal4; Pc/+ background (1/17 wings) in which the GFP+ cell

expresses Repo and Elav, indicating an intermediate glial/

neuronal state (Figure 3V–3V0). Thus, Pc acts by finely tuning a

transiently expressed fate determinant.

We speculate that the role and the mode of action of chromatin

factors depend on the target. HOX promoters, which require to

stay in an ON or OFF state, may involve strong binding/high

accumulation of chromatin regulators and several studies have

Figure 7. Schematic models for Pc mode of action. (A–C) Possible mode of action of Pc on HOX genes and on a developmental gene that is
transiently expressed. See the different expression profiles on the schematic graph (D). (A) promoters that are constantly active (HOX) are devoid of
Pc binding. (B) Transient activator(s) may compete with PcG proteins for binding thereby modulating the levels of expression of dynamically
expressed promoters. (C) Active, dynamically expressed, promoters may be constantly occupied by PcG proteins and their expression levels depend
on the amount of transient activator(s) available and bound to the promoter. Color code legend is included.
doi:10.1371/journal.pgen.1003159.g007
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already shown that HOX activators drastically reduce K27me3

and also PcG protein binding (Figure 7A) [34,50,51]. More

dynamically expressed genes may involve less strong binding, a

configuration that allows modulation of gene expression. From a

mechanistic point of view, as the activator of the transiently

expressed genes disappears, PcG proteins may gradually bind and

turn these genes OFF (Figure 7B) although we cannot formally

exclude that PcG proteins may simply provide a constant

repressive background as a threshold for activation (Figure 7C).

In line with these hypotheses, HOX and Gcm display different

behaviors. A fragment of 219bp from Fab7, the classical PRE

described on a HOX promoter, is sufficient to recruit PcG

proteins on salivary glands [52], whereas a 2 kb gcm carrying the

PRE seems very inefficient. In addition, the intensity of Pc, Ph and

‘recruiters’ peaks onto the gcm promoter is very low, definitely

weaker compared to those found on the classical HOX PRE

(Figure S8). Finally, the heterozygous Pc/+ mutation only

temporarily prolongs gcm expression (Figure S5I), whereas it

produces a long lasting HOX-dependent phenotype [53,54].

Understanding the precise molecular events will require the

development of new tools and the in vivo analysis of chromatin

organization at the level of specific cell types or in single cells. Our

data nevertheless clearly show that Gcm and Pc compete with

each other: PcG proteins bind gcm genes as well as repo (Figure 2,

Figure S7, Figure S8) [33] and counteract Gcm activity. We

therefore speculate that Gcm displaces Pc from its target

promoters, including itself, which would explain how a general

chromatin regulator impinges onto a cell-specific transcriptional

program. In mammals as well it has been suggested that cell fate

transcription factors play a role in PcG recruitment and

displacement and some of them were shown to be PcG targets

([55] and reference therein). Finally, 63 genes are common Pc and

Gcm targets, as revealed by analyzing the Pc binding sites in

embryos and in cell lines (from [33] and [34]) and the genes

positively regulated by Gcm identified by microarray (from [23]).

Clearly, genome-wide screens for direct Gcm targets will be

necessary to support the hypothesis of Pc displacement. These

studies will also assess whether the impact of the PRCs on glial

proliferation is direct or mediated by Gcm.

Pc represses gliogenesis
The rescue of the gcm-dependent phenotype upon Pc downreg-

ulation indicates a role for this chromatin factor in glial repression.

Interestingly, upregulating or downregulating Pc does not per se

produce the opposite fate transformation (Figure S4D), whereas it

does modify the number of glia, showing that distinct protein levels

are required in different processes. In vertebrates, the PRC2 is also

involved in the production of glial cells, which differentiate after a

wave of neurogenesis. However, different results were obtained

depending on the experimental asset. Livesey and collaborators

([56]) deleted Ezh2 constitutively, thereby altering the balance

between self-renewal and differentiation, and found precocious

astrocyte differentiation. In contrast, Gotoh and collaborators [57]

used a conditional Ezh2 knockout and documented a decrease in

astrocyte differentiation. In the first case, the authors speculated

that the altered timing of neurogenesis and accelerated onset of

gliogenesis are secondary to the primary function of PRC2 in

cortical progenitor cells. In the second report, it was shown that

Ezh2 represses Neurogenin1, which controls timing during

corticogenesis and therefore the relative production of neurons

and glia. While these studies indicate the importance of chromatin

modifiers in the nervous system, they do not clarify the role of

PRCs in gliogenesis. In our study, the combined use of sensitive

tools demonstrates that the Pc chromatin factor directly inhibits

gliogenesis and identifies gcm as a major target in the pathway.

First, we used sensitized backgrounds rather than total knockouts,

which makes it possible to score for subtle phenotypes. Second, we

analyzed the mutants at the single cell resolution and therefore

scored for direct, cell autonomous, effects of the Pc mutation.

Third, we analyzed a gene that plays an instructive role rather

than simply being permissive for gliogenesis. Fourth, gcm carries a

functional PRE and competes with Pc on its targets. Altogether,

these findings reinforce the view that distinct chromatin states

characterize specific cell fates, as also illustrated by the low levels of

histone acetylation observed in both fly and vertebrate glia [6,58].

Materials and Methods

Drosophila stocks and crosses
Flies were grown on standard cornmeal/molasses medium at

25uC. The deficiency kit was obtained from the Bloomington

Stock Center (Bloomington, IN), see Supplementary Material and

Methods.

Bristle phenotype analysis
For the qualitative screen: for each cross (180 deficiencies),

double heterozygous females carrying the gcmPyx allele and a

deficiency were scored for the supernumerary bristle phenotype

and compared to sibling females carrying the gcmPyx allele and the

balancer from the deficiency stock. This allowed us to classify each

deficiency as gcmPyx modifier or not modifier (Figure S1Aa). 75

deficiencies covering 42 genomic regions were selected for

quantitative analyses (Figure S1Ab); for each genotype we counted

the bristles from 10–80 heminota. The flow chart in Figure S1A

shows the details of the screen. Average values +/2 SEM were

calculated and, for genotype comparisons, the statistical signifi-

cance was estimated by t-test.

To overexpress esg or osa, respectively, w; EP(2)0684/CyO or w;

P{w[+mC] = UAS-osa}s2/CyO females were crossed with w; gcmPyx/

Sp; hs-Gal4/Sb males. A 30 minute heat-shock pulse on 2nd instar

larvae was performed at 37uC.

qChIP
qChIP was performed as in [33]. Primers are listed in Figure

S3A.

Immunolabeling and in situ hybridization
these assays were performed as in [41] and [44]. For the

antibody list as well as for the protocol of wing and embryo

mounting and analysis by confocal microscopy, see Text S1. Repo

and b-Gal positive cells from embryonic VC were subjected to

quantification in 3D image using Imaris 7.2 software. Masks were

generated as a region of interest for three thoracic segments along

the z-stack, then volume image was visualized and the ‘‘crop 3D’’

function was applied to isolate the region of interest. Voxels

(volume picture element) corresponding to cells were identified

based on size and intensity. Then automatic voxel (cell) counting

was performed in the region of interest. t-test was used to quantify

the difference between genotypes. For immuno-FISH staining on

polytene chromosomes [59], three consequent probes covering

around 3 kb around gcm TSS were used, see Figure S3. Unless

specified, all quantitative analyses used the t-test.

Cell transfection and reporter activation assay
The gcm2 promoter construct is pBLCAT6-1.96 from [35]. The

4,3 kb of the repo promoter [45] was cloned into the pRed H-

Stinger vector (Berzsenyi and Giangrande, unpublished data).

pPAC-gcm is described in [7]. UAS-gcm is described in [42]. pPAC-Pc
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and UAS-Pc were obtained by cloning the entire Pc cDNA in

backbone vectors. pPAC-lacZ was a gift from T. Cook. Transient

transfection of Drosophila S2 cells [60] was performed using

Effectene (Qiagen) according to the manufacturer’s instructions

using 3 mg of total DNA. For CAT assay to evaluate the activation

of the 2 kb gcm2 reporter construct (pBLCAT6-1.96), cells were

harvested 48 hr after transfection and normalized for ß-Gal

activity. CAT levels were determined using the CAT ELISA kit

(Roche). For repoRFP, images of cells were acquired 48 hr after

transfection, and the green (UAS-GFP)/red (repoRFP) cells, were

quantified automatically using the ImageJ software.

Supporting Information

Figure S1 Genetic screen for gcmPyx modifiers and validation of

candidate genes. (A) Flow-chart of the screen: gcmPyx/CyO, twist-

LacZ flies were crossed to Bloomington Deficiency kit strains. The

bristle phenotype was compared between sibs: control (gcmPyx/

Balancer) and experimental females (gcmPyx/Df). The screen was

performed in three steps (primary qualitative, primary quantita-

tive, secondary) and followed by gene validation. The number of

analyzed deficiencies and the quantitative data are presented.

Bal = balancer, Dfs = Deficiencies. (B) Primary quantitative screen

deficiencies summary. Top: chromosome arms, names and

cytology of deficiencies selected as strong modifiers of the bristle

phenotype: suppressors (S) and enhancers (E). Bottom: total

number of modifier deficiencies on each chromosome arm,

number of suppressor and enhancer deficiencies. (C) Histograms

present the average number of bristles per heminotum (y-axis) in

different genotypes (x-axis). Large (Df(2L)TE35BC-24) and small

Df(2L)ED1050) deficiencies cover esg, wor and sna genes. Pyx/esg

GOF stands for gcmPyx/EP(2)0684; hs-Gal4. Phenotype observed

upon heat shocking gcmPyx animals that carry the hs-Gal4 driver

and the EP(2)0684 insertion expressing esg in response to Gal4

induction. Note that both deficiencies eliminate wor, esg and sna,

but only the large one covers the Su(H) mutation, which acts as

suppressor. This may explain why the large deficiency seems to act

as a stronger suppressor. (C) Deficiencies deleting pim and crol

genes as well as their single mutations. In each graph, average

values are indicated +/2 SEM (bars); P-values from t-test are

indicated in the following way: *** (P#1023), ** (P#1022), *

(P#561022). P-values vs. gcmPyx/+: gcmPyx/Df(2L)TE35BC-24

(9,361027); gcmPyx/Df(2L)ED1050 (4,761028); gcmPyx/esg

(5,461026); gcmPyx/sna (1,3610218); Pyx/esg GOF (0,005). gcmPyx/

Df(2L)J2 (4,761028); gcmPyx/pim (561025); gcmPyx/Df(2L)esc-P2-0

(6,861025); gcmPyx/crol (8,361027).

(TIF)

Figure S2 Summary of the genes analyzed over gcmPyx. From left

to right, columns indicate the name of the gene, the cytology, the

heterozygous phenotype over gcmPyx (No – no effect; S –

suppressor; E – enhancer), the phenotype of the large deficiency

over gcmPyx (nt – the gene region is not covered by the tested

deficiencies), the function of the gene, previous identification as a

Gcm target/regulator, references. TF = transcription factor, TrxG =

Trithorax group, PcG = Polycomb group; JAK-STAT = Janus

kinase/Signal Transducer and Activator of Transcription.

(PDF)

Figure S3 The Pc binding region and the polytene chromo-

somes of the 2 kb transgenic line. (A) List of primers used for

immuno-FISH and qCHIP. (B) Immuno-FISH staining (anti-Pc,

gcm) on polytene chromosomes carrying a transgene including a

2 kb region upstream of the gcm transcription start site.

(TIF)

Figure S4 Mutant phenotypes in wings and brains. (A)

Percentage of 24 hr APF wings of the described genotypes

carrying different numbers of Repo+ cells on the L3 vein. (B,C)

Summary tables showing the number of Repo+ cells observed on

the L3 (B) and L1 veins (C) in each pupal wing analyzed. The

observed minimum and maximum value in samples of the

different genotypes are respectively highlighted in pale-blue and

red. (D) Number of wings scored for the fate transformation

phenotype in heterozygous Pc/+ wings or in Pc overexpressing

wings, using two different Gal4 drivers. (E) Quantitative analysis of

gcm expression in the optic lobe (see Figure 5J–5H): histograms

present the average signal intensity (y-axis) in the different

genotypes (x-axis). P values of t-test vs. wt: Pc/+ (1,761026);

brm/+(0,0009); brm,trx/+(0,0008).

(TIF)

Figure S5 Initiation and extinction of gcm expression in Pc/+
wings. (A–G) Immunolabeling of 7 hr APF wings from the P-

mediated insertional gcmrA87 allele expressing the LacZ reporter,

anterior to the top, distal to the right. By this stage, the b-Gal

labeling is still not present onto the L1 vein in most of the wings

(11/12); in one wing (A–D), one b-Gal labeled cell is visible at the

distal tip (b-Gal in red, neuronal labeling (Elav) in green). This cell

(arrow) is close to a neuron (arrowhead), (D) shows a magnification

from the boxed region. L1 and L3 indicate the position of the L1

and L3 veins, respectively. In wings heterozygous for Pc (n = 13)

(E–G), no precocious b-Gal labeling was observed on the L1 vein.

(H,I) In situ hybridization with a gcm-specific probe on 29 h APF

wings from wt (H) and from Pc/+ (I) animals. Note that, in both

backgrounds, gcm is no more expressed.

(TIF)

Figure S6 Repo expression in wild type, Pc LOF and GOF.

Immunolabeling to show Repo protein in st. 14 embryos.

Ventrolateral view in wild type (A), Pc/Pc (B), scabrous-Gal4/UAS-

Pc animals (C).

(TIF)

Figure S7 Pc binds to and acts on the repo promoter. (A) Levels of

Pc binding and H3K27me3 at the repo locus in Drosophila embryos

were determined by quantitative ChIP (qChIP) experiments, the bxd

locus was used as a positive control. Results are represented as

percentage of input chromatin precipitated. The standard deviation

was calculated from two independent experiments. (B) ChIP-on-

chip binding profiles of indicated PcG proteins and histone marks in

Drosophila embryos at the repo regulatory region obtained as reported

by [33]. The plots show the ratios (fold change) of specific IP versus

mock IP assays. Significantly enriched fragments (P-value,161024)

are shown in red. Black bars indicate the location of primers used for

qChIP analysis. The graph (C) shows the activation of a reporter

construct carrying 4 kb from the repo upstream regulatory sequence

displaying eleven GBSs (D). The ratio between reporter activity

upon Gcm/Pc coexpression and that observed when only Gcm is

expressed indicates that the repo promoter is activated when Gcm is

expressed in S2 cells and repressed upon Gcm and Pc coexpression.

(TIF)

Figure S8 Comparison between gcm/gcm2 and bx/bxd PREs.

ChIP-on-chip binding profiles of indicated PcG proteins and

histone marks in Drosophila S2 cells from (Schwartz et al., 2006) or

Drosophila embryos from (Schuettengruber et al., 2009). Nomen-

clature as in Figure 2.

(TIF)

Text S1 Supplementary materials and methods.

(DOC)
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