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ABSTRACT 

Background. Recent clinical investigations showed impaired episodic future thinking (EFT) abilities in multiple 

sclerosis (MS) patients. On these bases, the aim of the current study was to explore the structural and functional 

correlates of EFT impairment in nondepressed MS patients. Method. Twenty-one nondepressed MS patients and 

20 matched healthy controls were assessed with the adapted Autobiographical Interview (AI), and patients were 

selected on the bases of an EFT impaired score criterion. The 41 participants underwent a functional magnetic 

resonance imaging (fMRI) session, distinguishing the construction and elaboration phases of the experimental 

EFT, and the categorical control tests. Structural images were also acquired. Results. During the EFT fMRI task, 

increased cerebral activations were observed in patients (relative to healthy controls) within the EFT core 

network. These neural changes were particularly important during the construction phase of future events and 

involved mostly the prefrontal region. This was accompanied by an increased neural response mostly in anterior, 

and also posterior, cerebral regions, in association with the amount of detail produced by patients. In parallel, 

structural measures corroborated a main positive association between the prefrontal regions' volume and EFT 

performance. However, no association between the hippocampus and EFT performance was observed in patients, 

at both structural and functional levels. Conclusion. We have documented significant overlaps between the 

structural and functional underpinnings of EFT impairment, with a main role of the prefrontal region in its 

clinical expression in MS patients. 

KEYWORDS: Episodic future thinking; Multiple sclerosis; Functional magnetic resonance imaging; Cognition; 

Voxel based morphometry. 
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Autobiographical memory (AM) is defined as the ability to mentally reexperience personal past events. From a 

theoretical standpoint, it had been proposed that the ability to retrieve past events and the capacity to imagine 

future events—namely, episodic future thinking (EFT)—were sustained by the same neuro-cognitive platform 

(Schacter et al., 2012; Tulving, 1985, 2001). Several studies designed to probe this hypothesis were conducted in 

healthy subjects and confirmed a common core network sustaining AM and EFT, which involves the medial 

frontal and temporal regions, posterior and retrosplenial cortex, and lateral parietal and temporal regions (Addis, 

Wong, & Schacter, 2007; Botzung, Denkova, & Manning, 2008). Not surprisingly, some past and future 

differences have also been described, including greater brain activations during the simulation of future events in 

the hippocampus and the frontopolar regions (Addis & Schacter, 2008; Addis et al., 2007). Schacter and Addis 

(2007) suggested the constructive episodic simulation hypothesis to account for the past/ future commonalities 

and differences. The hypothesis posits that, on the one hand, past and future events rely on similar information 

stored in episodic memory, which are flexibly recombined into a novel coherent event, and that, on the other 

hand, higher constructive processes are necessary to preexperience an event. In parallel, a main role of scene 

construction (Hassabis & Maguire, 2007), personal semantic memory (Irish, Addis, Hodges, & Piguet, 2012a, 

2012b), and executive functions (De Vito et al., 2012) have been put forward as potential mechanisms mediating 

future oriented thought. 

From a clinical standpoint, functional benefits of EFT have been described: its role in (a) coping skills for 

stressful events, with an involvement in emotion regulation and problem solving; (b) goal achievement, for 

which the act of imagining various scenarios helps to reach the target, and (c) the implementation of intentions 

(Szpunar, 2010). Furthermore, D'Argembeau, Lardi, and Van der Linden (2012) suggested that EFT, similarly to 

AM and self-defining EFTs contributes to a person's sense of self and, together with self-defining AMs, gives 

rise to a strong sense of personal continuity over time. Projecting ourselves into the future has thus a strong 

adaptive value since it allows us to mentally "try out" different scenarios (D'Argembeau et al., 2010). 

Research on EFT conducted in clinical populations has reported the co-occurrence of AM and EFT impairment 

in single cases (Klein, Loftus, & Kihlstrom, 2002; Tulving, 1985) and group studies of Alzheimer's disease 

patients (Addis, Sacchetti, Ally, Budson, & Schacter, 2009), schizophrenia (D'Argembeau, Raffard, & Van der 

Linden, 2008), or frontotemporal dementia (Irish, Hodges, & Piguet, 2013). While the neural substrates of AM 

impairment have been documented in a few clinical studies, showing increased activations in some specific AM 

brain regions (Ernst, Noblet, et al., 2014; Maguire, Vargha-Khadem, & Mishkin, 2001; Meulenbroek, Rijpkema, 

Kessels, Olde Rikkert, & Fernandez, 2010; Poettrich et al., 2009), fewer investigations have explored the neural 

substrates of EFT impairment. Using voxel-based morphometry (VBM) analysis, previous studies provided 

some insights into the neural correlates of AM/EFT impairment in patients with Alzheimer's disease, 

frontotemporal dementia or semantic dementia, showing a relationship between this impairment and brain 

atrophy, with a specific neural signature depending on the pathology (Irish et al., 2012a; Irish et al., 2013). 

Regarding functional magnetic resonance imaging (fMRI) studies, to our knowledge, the first study in this 

domain is the one by Mullally, Hassabis, and Maguire (2012) in a single-case amnesic patient, showing 

increased activation in the residual hippocampal tissue. However, an important methodological aspect of this 

work is that the patient was asked to imagine atemporal and fictitious scenes that were not necessarily personally 

relevant or plausible for the patient. Using a case study approach, Viard et al. (2014) documented in four patients 

presenting with semantic dementia that the ability to simulate future events mainly depends on the integrity of 

the medial prefrontal regions and anterior hippocampi, together with the lateral temporal atrophy characteristic 

of this pathology. In addition, these patients also showed signs of hyperactivations in key nodes of the EFT brain 

network. In parallel, Hach, Tippett, and Addis (2014) investigated the neural correlates of personal past and 

future events in depressed persons and reported increased or decreased brain activations, as well as functional 

connectivity changes within the AM/EFT core network, in comparison with healthy subjects. Overall, it appears 

that damage in any core regions of the EFT brain network is likely to affect the ability to mentally preexperience 

future events (Berryhill, Picasso, Arnold, Drowos, & Olson, 2010; Irish et al., 2013). 

Recently, AM and EFT have been shown to be impaired in relapsing remitting multiple sclerosis (RR-MS) 

patients (Ernst, Blanc, et al., 2014). This behavioral study pointed to a main involvement of executive processes 

at the origin of the deficit. The latter suggestion is supported by our recent findings of increased brain activations 

mainly located in the prefrontal regions in RR-MS patients during the recollection of personal memories, relative 

to healthy controls (Ernst, Noblet, et al., 2014). Importantly, in both studies, the patients' other cognitive 

functions—frequently impaired in MS—such as attention, anterograde memory, or executive functions (Rogers 

& Panegyres, 2007), were generally preserved. In this context, the investigation of AM and EFT is of importance 

to broaden the perspectives on cognitive functioning in MS patients, especially considering the complaints 

associated to this deficit in everyday life functioning, ranging from personal identity, and social or goal 

achievement difficulties (see Ernst, Blanc, et al., 2014, for MS patients' comments related to this). In addition, 
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the clinical characteristics of the RR-MS subtype (i.e., an alternation between phases of relapse and 

partial/complete recovery) and the uncertainty relating to the disease course could particularly impact future 

thinking and self-identity. In this vein, Moore, MacLeod, Barnes, and Langdon (2006) showed that depressed 

MS patients anticipated fewer future positive experiences, which were also more centered on the disease, than 

nondepressed MS patients. 

While EFT impairment has been documented at the clinical level in MS patients, to our knowledge, no study to 

date aimed to explore EFT neural correlates in MS patients. However, previous studies investigating the neural 

changes associated to cognitive impairment in MS patients reported increased/decreased cerebral activations in 

brain areas also recruited by healthy controls and/or the recruitment of alternative (frequently contralateral) brain 

areas (Cader, Cifelli, Abu-Omar, Palace, & Matthews, 2006; Genova, Hillary, Wylie, Rypma, & DeLuca, 2009; 

Hulst et al., 2012). These findings have been obtained for working memory (Forn et al., 2012; Morgen et al., 

2007), information processing speed (Genova et al., 2009), or anterograde memory (Hulst et al., 2012; Mainero 

et al., 2004; Morgen et al., 2007). 

Bearing in mind that AM and EFT share common functional underpinnings (Schacter et al., 2012) and that 

cerebral activations changes have already been observed during AM performance in MS patients (Ernst, Noblet, 

et al., 2014), similar results could be expected during the simulation of future events. On these bases, the aim of 

the present study was to explore the structural and functional neural correlates of EFT impairment in RR-MS 

patients and to complete previous clinical findings (Ernst, Blanc, et al., 2014). We hypothesized that prefrontal 

damage would be particularly predictive of EFT impairment. Moreover, we surmised that structural damage 

would also be associated with cerebral activation changes during EFT performance, relative to healthy controls. 

Considering on the one hand the main role of the hippocampus in EFT and its particular responsiveness to the 

quality of future simulations (Addis & Schacter, 2008,2012), and on the other hand the report of frequent 

hippocampal damage in MS patients (Hulst et al., 2012; Koenig et al., 2014), we also predicted a difference in 

the neural response to the difficulty of simulation and the amount of detail between MS patients and healthy 

controls. 

METHOD 

Participants 

Twenty-one RR-MS patients (Polman et al., 2011), who participated in the study of Ernst et al. (Ernst, Blanc, et 

al., 2014; Ernst, Noblet, et al., 2014) were selected with the following inclusion criteria: an Expanded Disability 

Status Scale (EDSS; Kurtzke, 1983) score < 4, an absence of major signs of depression according to the 

Montgomery and Asberg Depression Rating Scale (Montgomery & Asberg, 1979), no recent exacerbation of MS 

symptoms, and right-handedness. Only patients showing impaired EFT performance were selected (see 

Behavioral Assessment section). Importantly, all these patients also demonstrated AM impairment, which was 

dealt with in a previous work (Ernst, Noblet, et al., 2014). Twenty right-handed healthy controls (who also took 

part in the aforementioned studies) were selected to form a matched control group for gender, age, education 

level, and verbal intellectual quotient. Exclusion criteria for all participants were documented psychiatric illness, 

neurological disorder (other than MS for the patients), and poor knowledge of French. Demographic and clinical 

data are summarized in Table 1. The present study was approved by the Committee for Protection of 

Persons/Centre National de la Recherche Scientifique (CPP/CNRS N° 07023), and we complied with the 

Declaration of Helsinki. 

Behavioral assessment 

The behavioral assessment comprised two sessions, which took place before the neuroimaging session. The 

patients underwent first a comprehensive neuropsychological baseline (see Table 2 for a complete description), 

similar to that in Ernst et al. (Ernst, Blanc, et al., 2014; Ernst, Noblet, et al., 2014). 

EFT performance was then assessed using an adapted version of the Autobiographical Interview (AI; Addis, Pan, 

Vu, Laiser, & Schacter, 2009; Levine, Svoboda, Hay, Winocur, & Moscovitch, 2002), which consists in 

imagining personal unique events, temporally and contextually specific, occurring over minutes to hours and to 

generate as much detail as possible about the event. Participants were given cue words to generate five events, 

which could plausibly occur within the next year (Addis, Pan, et al., 2009). Following Levine et al. (2002), 

participants spoke about the event without any interruption from the examiner, continuing until it was evident 

that they had reached a natural ending point. In addition, no time limit was set due to potential decreased 

cognitive processing speed. The AI session was audio-recorded for later verbatim transcription, and it was scored 

following the standardized AI scoring procedure (see Levine et al., 2002, for a complete description of the 
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scoring). 

TABLE 1: Demographical and clinical data 

Participants MS patients 

(n = 21) 

Healthy controls 

(n = 20) 

Statistical analysis 

Age (in years) 41.52(10.02) 39.15 (8.44) t = 0.81,  p = .41 

Education (in years) 13.00 (1.97) 13.40 (2.35) t = -0.59, p= .56 

Sex (Ratio female/male) 17/4 17/3 χ2 = 0.11, p =.73 

EDSS [range] 2.48 (1.37) [0-4] — — 

Duration of MS (in years) 11.79 (7.97) — — 

Number of DMD treatment 1.00 (0.00) — — 

Verbal intelligence 

quotient 

98.38 (12.71) 97.90 (11.49) t = 0.12, p = .90 

Note. MS = multiple sclerosis; EDSS = Expanded Disability Status Scale; DMD = disease-modifying drug. 

Means for the MS patient and the healthy control groups. Standard deviations in parentheses. 

 

TABLE 2 : Neuropsychological baseline examination scores 

Tests and scales MS group score. 

Mean (SD) 

Verbal reasoning 98.38 (12.70) 

   Verbal IQ-short form (Axelrod, Ryan, & Ward, 2011; Wechsler, 1997) 

Nonverbal reasoning 9.00 (1.73) 

  PM12 (Raven, 1958)  

Anterograde memory (verbal) 11.84 (1.34) 

  RAVLT (Rey, 1964) 13.19 (2.01) 

      Total mean number of words  

      Delayed recall  

Anterograde memory (nonverbal) 35.20 (0.92) 

   ROCF (Rey, 1941; Osterrieth, 1944) 24.88 (6.23) 

      Copy 24.50 (6.09) 

      Immediate recall  

      Delayed recall  

Language 97.14 (4.21) 

   Deno 100 (Kremin, 2002)  

Attentional abilities 47.71 (8.90) 

   Stroop (Stroop, 1935) 45.71 (7.59) 

      Colours (score T) 45.28 (12.68) 

      Words (score T) 48.95 (7.72) 

      Interference (score T) 11.57 (5.17) 

      Interference score (score T)  

   Months back (sc; National Hospital)  

Executive functions 8.42 (1.74)a 

   Tower of London (Shallice, 1982) 18.00 (3.57) 

      Score 14.76 (5.26) 

      Time indices 4.19 (2.71)a 

   Brixton (Burgess & Shallice, 1997) 20.55 (4.59) 

   Cognitive Estimation (Shallice & Evans, 1978) 13.04 (2.87) 

   Verbal Fluency (National Hospital)  

      Categorical  

      Phonological  

Information processing speed 53.85 (9.41) 

   AMIBP subtest (Coughlan & Hollows, 1985) 49.57 (10.50) 

      Cognitive 2.67 (2.98) 

      Motor 59.46 (10.84) 

      Error percentage  

      Corrected score  

Visuoperceptual and -spatial abilities 23.28 (4.29) 

   VOSP (Warrington & James, 1991) 9.61 (0.66) 
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      Silhouettes  

      Cubes analyses  

Depression 5.61 (4.49) 

   MADRS (Montgomery & Asberg, 1979)  

Fatigue 44.50 (14.67) 

   EMIF-SEP (total; Debouverie, Pittion-  

   Vouyovitch, Louis & Guillemin, 2007)  
Note. MS = multiple sclerosis; AMIPB = Adult Memory and Information Processing Battery; PM12 = Progressive Matrices 12; RAVLT = 

Rey Auditory Verbal Learning Test; ROCF = Rey-Osterrieth Complex Figure; VOSP = Visual Object and Space Perception; MADRS = 

Montgomery and Asberg Depression Rating Scale; EMIF-SEP = Echelle de Mesure de l'Impact de la Fatigue. Means for the MS patient 
group in comparison with the normative data of each test (mean and standard deviation score, 5th percentile or cutoff depending on the test). 

aScores under the normal range. 

 

Statistical analyses focused on the internal detail (i.e., strictly episodic detail) generated spontaneously by 

participants about the future events. 

Internal details were averaged across the five events for each participant. External details were not analyzed here 

but the preserved performance for this type of detail and of personal semantic knowledge in MS patients has 

already been addressed in previous studies (Ernst, Blanc, De Seze, & Manning, in press; Ernst, et al., 2013). 

Since our aim was to explore the functional underpinnings of EFT impairment, MS patients' AI scores were 

compared to our AI normative database, which includes matched healthy controls (for age, education level, and 

gender; Ernst et al., 2012). MS patients' EFT performance was deemed to be impaired if the mean number of 

internal details was < 19. 

The interrater reliability was verified for 10% of the future events (following Levine et al.'s (2002) 

recommendations), which were scored by a second scorer blind to group membership. Coefficients for the mean 

number of internal details showed high interrater reliability (correlation coefficient = .92). 

Neuroimaging session 

fMRI tasks 

As previously mentioned, the current investigation is part of a broader study that explores the neural substrates 

of AM and EFT impairment in MS patients. Overall, our fMRI paradigm comprises both an AM and an EFT 

condition, as well as a control condition. Since the neural substrate AM impairment data have already been 

discussed (Ernst, Noblet, et al., 2014), as mentioned above, only the data addressing the neural substrates on EFT 

impairment are developed here. 

The EFT condition consisted in the evocation of unique personal future events, following the AI's instructions. 

Thirty-two pairs of arbitrary cue-words were proposed to generate future events (e.g., "family-meal") which 

could plausibly occur within the next year. Based on Addis et al. (2007), two phases of evocation were 

distinguished: (a) the construction, corresponding to the search and initial building up of the event, and (b) the 

elaboration, corresponding to the imagination of detail associated to the event. Participants were instructed to not 

provide the same events as those previously mentioned during the adapted AI, and this was further verified 

through the postscan questionnaire (see below). In the case of repetition, the event was excluded from the 

analysis. 

The control task was a categorical task adapted from Addis et al. (2007), which included 32 pairs of words, with 

which participants had to make a sentence for the construction phase (e.g., "yellow-trousers": "she was wearing 

yellow trousers"). Then, during the elaboration phase, they had to keep the same sentence structure, replacing the 

two given cue-words by words of the same semantic category (e.g., "she was wearing a pink dress"). 

For both tasks, each trial had a fixed duration of 20 s, modulated by the subject's response: The subject had to 

press on the button 1 of the response box to mark the end of the construction phase. The remaining time, during 

which a central fixation-cross was presented, corresponded to the elaboration phase. 

Prior to scanning, the procedure was explained to participants, and they completed a computerized practice trial 

for each task in order to be familiar with the experimental design and timing of presentation. Given the time 
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constraints of the fMRI tasks and the EFT impairment of our patients, particular attention was paid to patients' 

practice trial to optimize the further completion of the tasks. 

The experimental design was organized in four sequences of eight stimuli per condition, beginning 

systematically with the control task and then alternating between future events and control task conditions. In 

both tasks, each trial was followed by short periods of fixation of random duration (mean duration = 1.5 s, range 

= 1 to 2 s). At the beginning of each sequence, the name of the condition was displayed on the screen for 6 s. The 

presentation order of stimuli within each condition was randomized. The programming and response collection 

were done with E-Prime 2 software (Psychology Software Tools, Inc.). Words were displayed on a screen in 

white text with a black background and were viewed using a mirror incorporated in the head-coil. 

Immediately following scanning, a postscan questionnaire was completed for the EFT condition in order to 

verify the adequacy of responses before data analysis. Participants had to indicate the type of event (unique, 

repetitive, extensive, semantic, or absent), and its spatial and temporal context, and to rate on two 10-cm visual-

analog scales the difficulty of imagination and the amount of detail associated with each event. For the spa-

tiotemporal context, participants were asked to write down the most detailed account they were able to about the 

location of the event and when it will occur. Regarding the type of event, while participants initially determined 

the specificity of events, a further control of this aspect was carried out by the experimenter (A.E.), based on the 

spatial-temporal context of events. More precisely, immediately after the completion of the postscan 

questionnaire, in the absence of a specific spatiotemporal context (necessary to consider an event as unique) or in 

the case of doubt regarding the classification, participants were asked to provide additional detail about the event 

to determine its precise nature. 

MRI acquisition 

MRI examinations were performed on a 3T MRI scanner (MAGNETOM Verio, Siemens Healthcare, Erlangen, 

Germany). Structural images were obtained by means of a 3D T1-weighted SPACE (Sampling Perfection with 

Application optimized Contrasts using different flip angle Evolution) sequence (time to repetition, TR = 4000 

ms; inversion time, TI = 380 ms; echo time, TE = 383 ms; flip angle = 120°; field of view, FOV = 256 mm; 

matrix = 512 × 512; 176 sagittal slices of 1 mm). 3D T2 Fast Spin Echo images were also acquired with the 

following parameters: TR = 3200 ms; TE = 409 ms; flip angle = 120°; FOV = 256 mm; matrix = 512 × 512; 176 

sagittal slices of 1 mm. 

Functional images were acquired with a T2*-weighted echo planar imaging sequence (TR = 2500 ms; TE = 30 

ms; matrix = 64 × 64 voxels; FOV = 224 mm; flip angle, FA = 90). The anterior commissure and posterior 

commissure were identified in the midsagittal slice, and 45 contiguous slices (each 4 mm thick) were prescribed 

parallel to the anterior commissure and posterior commissure plane to cover the whole brain. 

Statistical analyses 

Behavioral data 

Although patients were selected with impaired EFT performance, between-group comparisons for the AI score 

were conducted (t test) in order to verify that our group of MS patients did show lower EFT scores than the 

current sample of matched healthy controls included in this study. Between-group comparisons for the postscan 

variables were also tested by means of t test or repeated measures analysis of variance (ANOVA). 

Functional neuroimaging analysis 

Preprocessing and statistical analyses were conducted using SPM5 software (Statistical Parametric Mapping; 

Friston et al., 1995). Time-series were realigned to the first volume to correct for motion artefacts, spatially 

normalized to a standard echo planar imaging (EPI) template based on the Montreal Neurological Institute 

reference brain in Talairach space (Talairach & Tournoux, 1988) and then spatially smoothed using an 8-mm 

full-width at half-maximum isotropic Gaussian kernel. 

For the future events and control tasks, evoked hemodynamic response times locked to the onset of the cue 

presentation (construction phase) were modeled with a canonical hemodynamic response function. 

Hemodynamic activity related to the elaboration phase was modeled with a boxcar function of 10-s duration that 

started immediately after the end of the construction phase by button press. The 10-s-duration interval for the 

elaboration phase was fixed to allow a sufficient time interval to the search of detail, and trials with a 

construction phase longer than 10 s were excluded. Since a great overlap of the cerebral activations for specific 
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and repetitive future events has been previously observed (Addis, Cheng, Roberts, & Schacter, 2011), both 

unique and repetitive events were kept to maximize the number of events included as regressors of interest, 

especially for patients. 

Statistical parametric maps were generated for the comparison between EFT and control conditions, during the 

construction and elaboration phases, for each subject, in a general linear model. Whole brain between-group 

comparisons (patients > healthy controls and patients < healthy controls) were conducted by means of two-

sample t tests for each contrast image (EFT construction vs. control construction; EFT elaboration vs. control 

elaboration). 

Parametric modulation analyses were performed for the difficulty of imagination and amount of detail, with the 

creation of a general linear model for the construction and elaboration phases, using the first-order parametric 

modulation option supplied by SPM5. To that end, to obtain a homogenous distribution of responses, ratings 

from the two visual analog scales were rescheduled empirically as follow: 0 cm to 5 cm = 1 (low score); 5.1 cm 

to 7.5 cm = 2 (medium score); and 7.6 cm to 10 cm = 3 (high score). Two sample t tests were then applied to 

explore the potential between-group differences. 

To provide a good balance between controlling the Types I and II error rates, the significance threshold was set 

at p = .005 (uncorrected for multiple comparisons), with a minimum extent threshold of 10 contiguously 

activated voxels for all the analyses (Lieberman & Cunningham, 2009). Given that the medial temporal lobe 

structures (parahippocampal gyrus and hippocampus) were of a priori interest and that they are particularly small 

brain regions, explorative analyses were also conducted with a minimum extent threshold of five contiguously 

activated voxels. 

Structural neuroimaging analysis 

Focal gray matter (GM) atrophy was investigated using the VBM framework provided in SPM12b (Friston et al., 

1995). 

Anatomical MRI images were spatially prepro-cessed in the following way: All T1 structural images were bias 

corrected and were segmented using an extension of the unified segmentation procedure (Ashburner & Friston, 

2005) that includes six classes of tissue. Spatial normalization was then performed using DARTEL algorithm 

(Ashburner, 2007). First, a study-specific template was created using GM images of all subjects. Second, this 

template was normalized to Montreal Neurological Institute (MNI) space. Third, the individual deformation field 

that permits to normalize each GM image to the template was computed and was applied to each GM image and 

modulated to preserve the total amount of GM volume. A Gaussian kernel (full width at half maximum, FWHM: 

8 mm) was then applied to modulated GM images and was entered in the statistical analysis. 

Group comparison and statistical correlations between local GM volume and EFT performance were then 

investigated using the GLM. Similar to previous studies using the AI and exploring the neural correlates of AM 

and EFT, only the internal details were included in the analysis (Irish et al., 2012a; Irish et al., 2013). Age and 

total amount of GM were included as nuisance covari-ates in all statistical analyses. A statistical threshold of p < 

.001 without multiple comparison correction and with a cluster spatial extend of 50 voxels was considered in all 

analyses. 

RESULTS 

Behavioral results 

Similar to our previous studies, neuropsychological baseline scores obtained by patients were in the normal 

range (i.e., threshold: either z score -1.65 or the 5th percentile, depending on the normative data of each test) for 

all cognitive functions, with two exceptions: planning and cognitive estimations abilities (Table 2). 

Regarding EFT performance, MS patients and healthy controls provided, respectively, a mean number of 8.12 

internal details (SD = 4.65) versus 20.55 (SD = 5.70). As expected, the patients' performance was significantly 

lower than that of healthy controls for the mean number of internal details (t = -7.67, p < .001; Figure 1). 

Turning to the postscan results (Table 3), there was no group difference in the mean reaction time to generate 

future events (t = 0.35, p = .73). A main effect of event type (F = 88.53, p < .001) was observed, and Tukey 

HSD post hoc test revealed a greater number of unique events than of the four other event types (p < .001 in all 

the cases). No significant differences were highlighted for the event type between the MS and healthy control 
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groups, as well as for the difficulty of imagination (t = -1.19; p = .24). However, a significant difference was 

observed for the amount of details, with lower scores for patients than for healthy controls (t = -2.35, p = .02). 

 

Figure 1. Mean number of internal details provided by multiple sclerosis (MS) patients and healthy controls 

during the autobiographical interview (AI). *Significant difference. 

 

 

 

TABLE 3: Mean for the behavioral measures from the fMRI session for the MS patient and the healthy control 

groups 

Measures MS patients Healthy 

controls 

Construction reaction time (in s) 4.80 (1.06) 4.69 (0.91) 

Type of events (number)   

   Unique 17.10 (7.76) 19.5 (6.23) 

   Repetitive 5.29 (5.31) 6.75 (5.86) 

   Extended 0.52 (1.63) 1.55 (1.82) 

   Semantic 1.67 (3.55) 0.6 (1.10) 

   Absent 3.52 (3.49) 1.4 (2.60) 

Difficulty of imagination (parametric) 2.33 (0.54) 2.51 (0.42) 

Amount of detail (parametric) 1.84 (0.46) 2.16 (0.40) 

   
Note. MS = multiple sclerosis; fMRI = functional magnetic resonance imaging. Standard deviations in parentheses. 

 

Neuroimaging results 

EFT construction 

Between-group analysis revealed a distributed cerebral network showing significantly greater activations in 

patients than in healthy controls during the initial generation of future events (Table 4; Figure 2). This enhanced 

brain network encompassed predominantly the bilateral prefrontal regions (superior, inferior, middle, and medial 

gyri), the right temporal regions (superior, middle, and fusiform gyri), the bilateral parahippocampal regions, the 

bilateral, but predominantly right, parietal regions (inferior parietal lobule, postcentral gyrus, and precuneus), the 

bilateral occipital regions (middle and superior gyri), and the bilateral, but predominantly right, limbic areas 

(anterior and posterior cingulate). 

Regarding the reverse contrast (healthy controls > MS patients), no significant results were observed. 
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TABLE 4: Brain regions exhibiting increased activations in MS patients (vs. healthy controls; two-sample f test) 

during the EFT construction (vs. control construction) and EFT elaboration (vs. control elaboration) 

 

Brain region Coordinates 

(x, y, z) 

Z 

EFT construction > control construction   

R Middle frontal gyms (BA 6) (30, -2, 48) 3.83 

R Middle frontal gyms (BA 10) (36, 60, 10) 3.63 

R Middle frontal gyms (BA 46) (48, 50, 8) 3.14 

R Superior frontal gyrus (BA 8) (38, 24, 54) 3.53 

R Superior frontal gyrus (BA 6) (18, -4, 66) 2.64 

L Superior frontal gyrus (BA 9) (-22, 50, 28) 2.98 

L Inferior frontal gyrus (BA 47) (-32, 30, -20) 3.32 

R Inferior frontal gyrus (BA 47) (58, 18, 0) 2.78 

R Medial frontal gyrus (BA 9) (8, 34, 32) 2.90 

L Medial frontal gyrus (BA 10) (-16, 50, 4) 2.99 

L Paracentral lobule (BA 31) (0, -30, 46) 2.73 

R Precuneus (BA 7) (18, -74, 48) 3.33 

L Precuneus (BA 7) (-16, -50, 44) 2.81 

R Inferior parietal lobule (BA 40) (48, -36, 48) 3.39 

L Inferior parietal lobule (BA 40) (-56, -22, 24) 4.15 

L Postcentral gyrus (BA 40) (-56, -30, 18) 4.45 

R Postcentral gyrus (BA 7) (22, -48, 64) 3.05 

R Postcentral gyrus (BA 3) (56, -18, 26) 3.04 

R Postcentral gyrus (BA 5) (4, -44, 64) 2.66 

L Postcentral gyrus (BA 7) (-6, -50, 62) 2.77 

R Superior temporal gyrus (BA 22) (62, -20, 6) 3.25 

R Superior temporal gyrus (BA 41) (46, -32, 12) 3.16 

L Sub-gyral (BA 37) (-44, -42, -10) 4.36 

R Middle temporal gyrus (BA 21) (56, -32, -6) 2.83 

R Middle temporal gyrus (BA 37) (50, -62, 6) 2.89 

R Middle temporal gyrus (BA 39) (52, -68, 20) 2.86 

R Fusiform gyrus (BA 37) (42, -52, -18) 2.90 

R Parahippocampal gyrus (BA 36) (42, -36, -6) 2.86 

L Parahippocampal gyrus (BA 30) (-22, -40, 4) 3.18 

L Anterior cingulate (BA 32) (-12, 30, -10) 3.01 

R Posterior cingulate (BA 31) (28, -58, 14) 3.58 

R Posterior cingulate (BA 30) (26, -66, 12) 3.40 

R Anterior cingulate (BA 32) (8, 18, -10) 3.66 

L Anterior cingulate (BA 25) (4, 0, -2) 3.60 

R Middle occipital gyrus (BA 19) (48, -72, 4) 2.94 

L Superior occipital gyrus (BA 19) (-30, -70, 28) 2.81 

R Caudate (16, 24, -2) 3.16 

L Thalamus (-18, -16, 0) 3.58 

R Cerebellum (26, -50, -24) 3.05 

L Cerebellum (-38, -52, -30) 3.02 

L Putamen (-22, -4, 18) 2.99 

R Claustrum (38, -20, -8) 3.45 

EFT elaboration > control elaboration 
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R Middle frontal gyrus (BA 10) (44, 44, 22) 3.00 

R Superior frontal gyrus (BA 10) (22, 58, -2) 2.85 

L Middle frontal gyrus (BA 46) (-42, 42, 16) 3.43 

L Middle frontal gyrus (BA 9) (-46, 24, 34) 2.90 

R Middle frontal gyrus (BA 9) (38, 32, 28) 3.00 

L Middle temporal gyrus (BA 21) (-38, 2, -30) 3.27 

L Fusiform gyrus(BA 37) (-44, -62, -12) 3.80 

R Cerebellum (8, -72, -14) 3.46 

Note. MS = multiple sclerosis; EFT = episodic future thinking; BA = Brodmann area; L = left; R = right, k = 10 voxels. 

p < .005. 

 

EFT elaboration 

During the elaboration phase, greater cerebral activations, mostly located in the bilateral prefron-tal regions 

(middle and superior gyri) were highlighted in patients (Table 4; Figure 3). These prefrontal activations were 

accompanied by activations in the left temporal regions, more precisely in the middle temporal gyrus and the 

fusiform gyrus. 

The reverse contrast showed increased brain activity in healthy controls in posterior cerebral regions, including 

the left precuneus (Brodmann area, BA 31; xyz = -16 -58 34), the right inferior parietal lobule (BA 40; xyz = 62 -

36 24), the right superior (BA 22; xyz = 54 -56 14) and middle (BA 39; xyz = 44 -68 18) temporal gyri, and the 

left cingulate gyrus (BA 31; xyz = -10 -24 44). 

Parametric analyses 

Difficulty of access. A differential neural response to the difficulty of access was highlighted between patients 

and healthy controls. A greater neural response to the difficulty of access was only observed during the 

construction phase in patients, with increased brain activity in the left parahippocampal gyrus, the right anterior 

and left posterior cingulate gyri, and left sublobar regions (Table 5; Figure 4). 

Regarding healthy controls, an enhanced neural response to the difficulty of access was observed in both phases 

(Table 6). During the construction phase, significant brain activations were highlighted in the left anterior 

cingulate and right sublobar regions, while for the elaboration phase, the neural response encompassed the left 

medial prefrontal regions, the right temporal regions (middle, superior, and fusiform gyri), and the bilateral 

posterior brain regions (precuneus, cingulate, and middle occipital gyri). 

Amount of detail. Concerning the neural response to the amount of detail, increased brain activations were 

observed in patients (Table 5; Figure 4), while the reverse contrast showed no significant result. More precisely, 

during the construction phase, our patients showed extensive bilateral prefrontal activations (middle, superior, 

and inferior gyri), but also activations in the bilateral temporal regions (superior and fusiform gyri), the left 

supramarginal gyrus, the left cingulate gyrus, the right cerebellum, and bilateral sublobar regions. 

Regarding the elaboration phase, the bilateral, but mostly left, prefrontal regions were also recruited (medial, 

inferior, middle, and superior gyri), as well as parietal regions bilaterally (precu-neus, angular, and 

supramarginal gyri, superior and inferior parietal lobules), the left temporal regions (middle and superior gyri), 

and bilaterally, the following structures: parahippocampal gyrus, cuneus, inferior and middle occipital gyrus, 

anterior and posterior cingulate, cerebellum and sublobar regions. 
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Figure 2. Brain regions showing an increased activity in multiple sclerosis (MS) patients (vs. healthy controls) 

during the episodic future thinking (EFT) construction (vs. control task construction); p = .005, k = 10 voxels, 

uncorrected. To view this figure in color, please visit the online issue of the Journal. 

 

 

Figure 3. Brain regions showing an increased activity in multiple sclerosis (MS) patients (vs. healthy controls) 

during the episodic future thinking (EFT) elaboration (vs. control task elaboration); p = .005, k = 10 voxels, 

uncorrected. To view this figure in color, please visit the online issue of the Journal. 

 

 

TABLE 5: Significant brain activations for the parametric response to the difficulty of access and the amount of 

detail for MS patients (vs. healthy controls; two-sample f test) during the EFT construction and elaboration 

Brain region Coordinates 

(x y, z) 

Z 

EFT construction: Difficulty of access   

L Parahippocampal gyrus (BA 30) (-18, -40, 6) 3.29 

R Cingulate gyrus (BA 24) (20, -2, 34) 2.96 

L Posterior cingulate (BA 30) (-14, -50, 16) 3.13 

L Thalamus (-28, -28, 2) 3.32 

L Insula (BA 13) (-28, -26, 26) 2.63 

L Lentiform nucleus (-22, -18, 0) 2.64 

EFT construction - Amount of detail 

L Middle frontal gyrus (BA 10) (-32, 54, 8) 3.08 

L Superior frontal gyrus (BA 10) (-18, 58, 20) 3.42 
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R Middle frontal gyrus (BA 10) (36, 52, 10) 3.50 

R Superior frontal gyrus (BA 10) (16, 62, 20) 3.04 

L Middle frontal gyrus (BA 47) (-46, 36, -2) 3.10 

R Inferior frontal gyrus (BA 47) (44, 18, 2) 3.42 

L Inferior frontal gyrus (BA 47) (-34, 26, -10) 2.86 

R Precentral gyrus (BA 6) (40, 0, 34) 3.19 

L Middle frontal gyrus (BA 9) (-42, 26, 26) 3.43 

R Superior frontal gyrus (BA 9) (4, 58, 22) 2.76 

R Middle frontal gyrus (BA 6) (48, 8, 44) 3.15 

L Middle frontal gyrus (BA 46) (-46, 22, 20) 3.34 

R Superior frontal gyrus (BA 8) (18, 36, 56) 3.44 

L Middle frontal gyrus (BA 8) (-26, 12, 34) 2.98 

L Inferior frontal gyrus (BA 13) (-32, 6, -14) 3.30 

L Superior temporal gyrus (BA 39) (-46, -58, 32) 2.86 

R Fusiform gyrus (BA 20) (60, -8, -24) 2.75 

R Sub-gyral (BA 20) (46, -18, -16) 2.81 

L Supramarginal gyrus (BA 40) (-48, -48, 34) 2.77 

L Cingulate gyrus (BA 24) (-6, -8, 32) 2.97 

L Thalamus (-12, -8, 0) 3.74 

R Thalamus (18, -14, 0) 3.46 

R Insula (BA 13) (40, -4, 22) 3.37 

L Insula (BA 13) (-34, 16, 6) 3.04 

R Cerebellum (24, -54, -24) 3.04 

L Putamen (-30, -10, -6) 2.96 

R Putamen (16, 8, -4) 3.04 

R Caudate (10, 8, 6) 2.70 

R Claustrum (34, -20, 4) 3.03 

L Claustrum (-22, 12, -4) 2.70 

EFT elaboration: Amount of detail 

L Superior frontal gyrus (BA 8) (-28, 30, 54) 3.00 

R Medial frontal gyrus (BA 9) (6, 46, 20) 2.93 

L Medial frontal gyrus (BA 10) (-4, 58, 8) 2.97 

R Middle frontal gyrus (BA 8) (30, 42, 46) 3.41 

L Middle frontal gyrus (BA 8) (-54, 16, 40) 2.80 

L Middle frontal gyrus (BA 6) (-44, 14, 54) 2.88 

L Superior frontal gyrus (BA 10) (-24, 64, 18) 2.90 

L Inferior frontal gyrus (BA 47) (-18, 34, -4) 3.48 

L Precuneus (BA 7) (-6, -82, 46) 3.62 

R Precuneus (BA 7) (12, -50, 38) 3.08 

R Precuneus (BA 31) (10, -48, 30) 2.90 

L Angular gyrus (BA 39) (-52, -66, 38) 3.34 

L Supramarginal gyrus (BA 40) (-60, -54, 28) 3.13 

R Superior parietal lobule (BA 7) (42, -68, 52) 2.90 

R Inferior parietal lobule (BA 40) (46, -54, 36) 2.84 

L Middle temporal gyrus (BA 21) (-52, -14, -12) 2.92 

L Superior temporal gyrus (BA 39) (-34, -56, 28) 3.18 

L Cuneus (BA 18) (-8, -82, 18) 3.10 

R Cuneus (BA 17) (20, -80, 10) 2.80 

R Cuneus (BA 19) (2, -80, 40) 3.55 

R Cuneus (BA 7) (2, -66, 30) 2.99 

L Inferior occipital gyrus (BA 19) (-36, -80, -2) 2.88 

R Middle occipital gyrus (BA 19) (36, -86, 18) 2.83 

R Parahippocampal gyrus (BA 19) (42, -48, 2) 2.83 

L Parahippocampal gyrus (BA 36) (-42, -34, -10) 2.91 

L Cingulate (BA 31) (-22, -50, 28) 3.57 

R Cingulate (BA 31) (20, -44, 38) 2.70 

L Anterior cingulate (BA 32) (-2, 34, -10) 3.41 

L Insula (BA 13) (-36, -20, 22) 3.41 

R Insula (BA 13) (30, -20, 24) 2.75 

R Thalamus (2, -12, 16) 3.25 



Published in: Journal of Clinical and Experimental Neuropsychology (2015), vol. 37, n°10, pp. 1107-1123 

Status: Postprint (Author’s version) 

L Cerebellum (-22, -80, -16) 3.13 

R Cerebellum (12, -82, -12) 2.82 

L Caudate (-20, 16, 20) 3.18 

R Caudate (12, 20, 16) 2.82 

R Lentiform nucleus (12, -4, 0) 3.09 
Note. MS = multiple sclerosis; EFT = episodic future thinking; BA = Brodmann area; L = left; R = right, k = 10 voxels. 
p < .005 uncorrected. 

 

Figure 4. Brain regions showing an increased response (A) to the difficulty of access during the episodic future 

thinking (EFT) construction, and to the amount of details during (B) the EFT construction and (C) the EFT 

elaboration; p = .005, k = 10 voxels, uncorrected. To view this figure in color, please visit the online issue of the 

Journal. 

 

 

VBM analysis 

Compared to healthy controls, patients showed widespread neural atrophy involving the bilateral 

parahippocampal regions, the right cuneus, the bilateral precentral gyrus, the left postcentral gyrus, the thalamus, 

and the cerebellum bilaterally (Table 7). The reverse contrast failed to reveal significant clusters. 

Regarding the structural correlates of EFT performance in patients, a significant positive correlation was mainly 

observed between the left prefrontal regions (middle, inferior, medial, and superior frontal gyri), the right 

superior temporal gyrus, the bilateral inferior parietal lobule, the right precuneus, and the left cuneus volumes 

and EFT score (Table 8). Conversely, in healthy controls, a significant correlation between EFT score and the 

volume of several posterior brain regions (cuneus, precuneus, lingual, and postcentral gyri) was highlighted 

(Table 8). 
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Moreover, the direct comparison between groups revealed a greater correlation between EFT score and the 

volume of the middle, inferior, medial, and superior frontal gyri, the middle and superior temporal gyri, and the 

precuneus in patients than in healthy controls (Table 8). The reverse contrast showed a greater association 

between EFT performance and the volume of posterior brain regions such as the inferior occipital, the lingual, 

the superior temporal gyri, and the inferior parietal lobule (Table 8) in healthy controls than in patients. 

DISCUSSION 

The present study investigated the structural and functional underpinnings of EFT impairment in nondepressed 

RR-MS patients for the first time, to our knowledge. Interestingly, the EFT deficit has been observed in the 

context of a relative preservation of general cognitive functioning in our patients and was accompanied by 

cerebral activation changes in comparison with healthy controls, involving mostly the frontal regions. Similar to 

Hach et al. (2014) in a study involving depressed patients, these brain activation changes have been observed in 

patients who were still able to perform adequately the fMRI EFT task. Despite a difference in the amount of 

details of future events, MS patients and healthy controls had similar reaction times and number of valid trials. 

This allows us to reasonably interpret the patient's cerebral activation pattern as resulting from pathology, rather 

than arising from a too poor completion of the task (Cader et al., 2006). Consistent with the literature dealing 

with the functional changes associated with cognitive impairment in MS patients, we reported both increased and 

decreased cerebral activations in brain areas pertaining to the EFT brain network normally recruited by healthy 

controls, but also the recruitment of contralateral brain areas (Cader et al., 2006; Genova et al., 2009; Hulst et al., 

2012). 

During the EFT construction phase, an enhanced cerebral network was observed, including the anterior, medial, 

and posterior brain regions, bilaterally. Interestingly, the great majority of the enhanced brain activations in MS 

patients were located in the EFT core network described in healthy controls (Addis et al., 2007; Botzung et al., 

2008). Within these increased brain activations, in agreement with our hypothesis, the bilateral prefrontal regions 

seemed particularly involved in MS patients. In the context of EFT, these brain areas are related to the executive 

demands necessary to the extraction and recombination of an infinite assortment of detail into a novel event 

(Weiler, Suchan, Koch, Schwarz, & Daum, 2011). This increased bilateral prefrontal activation observed during 

the construction phase is consistent with the retrieval deficit hypothesis suggested by Ernst, Blanc, et al. (2014), 

which posits that EFT impairment in MS patients is mainly related to executive and, therefore, prefrontal 

dysfunction. In particular, a disruption of the initial strategic processes required to further extract and recombine 

episodic details into a novel future event has been suggested. Such suggestion is also supported by the 

predominant response of the bilateral prefrontal regions to the amount of detail. Additionally, during the 

elaboration phase, this increased neural response could also reflect the greater cognitive demand for the 

integration and maintenance of multimodal information, supported by the frontopolar regions (Addis, Pan, et al., 

2009), with the increasing amount of detail. 

Increased neural activity was also observed in the lateral temporal region, which sustains the reactivation of a 

"semantic scaffolding" to guide future simulations (Irish et al., 2012a; Irish & Piguet, 2013) and could play a 

primary role in the recombination process (Schacter et al., 2012). 

Structures from the anterior part of the cortical midline (i.e., medial frontal and anterior cingulate) were also 

highly engaged in MS patients during the construction phase, denoting the well-known self-referential processes, 

central in EFT (Northoff et al., 2006). The posterior cingulate, the adjacent precuneus, and the bilateral 

parahippocampal gyrus showed increased activation in our patients (likely associated with visual imagery 

processes; Greenberg & Rubin, 2003). Regarding the bilateral parahippocampal gyrus, it also plays a pivotal role 

in the recruitment of the posterior brain regions (Botzung et al., 2008; Viard et al., 2011) to further generate a 

coherent and detailed mental simulation. All in all, the anterior and posterior portions of the cortical midline that 

were increasingly activated in our patients relate to findings amply reported in the literature. These observations 

are useful since they allow us to conclude that MS patients seem to activate areas that are known to be coherent 

with the task in hand, but more intensely. 

Turning to the elaboration phase, an intriguing point was the striking reduction of the extent of brain activations 

in MS patients in comparison with the EFT construction phase. In the elaboration phase, the brain activations 

were mainly located in the bilateral prefrontal regions, which differed from the brain network normally engaged 

in healthy controls, in which less prefrontal recruitment is expected during the elaboration phase. In fact, 

research has shown that additional details are mainly sustained by the posterior brain regions, in relation to 

visual imagery processes (Addis et al., 2007). In this perspective, the enhanced activity observed in healthy 

controls, relative to MS patients, only in the posterior cerebral regions is consistent with Addis et al.'s (2007) 

findings. This anterior/posterior difference in brain activity between MS and healthy subjects would be 
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consistent with the above-mentioned suggestion of an initial executive difficulty to extract and recombine 

episodic details, still present during the elaboration phase. The analysis of patients' neural response to the 

increase of detail also showed increased cerebral activity in the posterior regions (precuneus, cuneus, occipital, 

and posterior parietal areas, posterior cingulate gyrus) and in the parahippocampal gyrus. To account for this 

finding, we suggest that when a certain amount of detail is reached, MS patients' visual imagery processes may 

be recruited (even if the amount of detail produced by patients remains below that one of healthy controls). 

 

TABLE 6: Significant brain activations for the parametric response to the difficulty of access for healthy 

controls (vs. MS patients; two-sample f test) during the EFT construction and elaboration 

Brain region Coordinates 

(x, y, z) 

Z 

EFT construction: Difficulty of access   

L Anterior cingulate (BA 24) (-4, 38, 8) 2.87 

R Insula (BA 13) (34, 14, -4) 3.07 

R Claustmm (26, 26, 6) 3.08 

EFT elaboration: Difficulty of access   

L Medial frontal gyms (BA 25) (-10, 32, -14) 3.41 

R Middle temporal gyms (BA 21) (62, -6, -12) 2.66 

R Fusiform gyrus (BA 20) (60, -8, -24) 3.36 

R Fusiform gyrus (BA 37) (-40, -46, -8) 3.16 

R Superior temporal gyrus (BA 22) (64, -24, 6) 3.00 

R Superior temporal gyrus (BA 41) (42, -38, 12) 2.92 

R Precuneus (BA 31) (32, -70, 16) 2.95 

R Precuneus (BA 7) (8, -56, 32) 2.72 

L Precuneus (BA 31) (-18, -44, 32) 3.15 

L Cingulate gyrus (BA 31) (-20, -52, 26) 3.00 

R Middle occipital gyrus (BA 19) (36, -70, 6) 3.18 
Note. MS = multiple sclerosis; EFT = episodic future thinking; BA = Brodmann area; L = left; R = right, k = 10 voxels. p < .005 
uncorrected. 

 

TABLE 7: VBM results showing brain areas with significant gray matter atrophy in MS patients (vs. healthy 

controls) 

Brain region Coordinates 

(x, y, z) 

Z Cluster 

size 

R Parahippocampal 

gyms (BA 35) 

(20, -20, -13) 4.00 115 

L Parahippocampal 

gyms (BA 35) 

(-18, -20, -13) 3.35 67 

R Cuneus (15, -95, 2) 3.59 116 

R Precentral gyms (BA 4, 6) (48, -8, 30) 4.94 1629 

L Precentral gyms (BA 4, 6) (-47, -12, 33) 4.93 986 

L Postcentral gyms (BA3) (-32, -29, 48) 3.26  

R Thalamus (14, -26, 5) 6.52 5795 

L Thalamus (-6, -32, 8) 5.57  

L Cerebellum (-21, -33, -40) 4.10 83 

R Cerebellum (12, -69, -43) 3.55 394 
Note. MS = multiple sclerosis; VBM = voxel-based morpho-metry; BA = Brodmann area; L = left; R = right, k = 50 voxels. p < .001 

uncorrected. 
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TABLE 8: Positive correlations between gray matter volume and EFT performance (AI) in MS patients and 

healthy controls 

Brain region Coordinates 

(x, y, z) 

Z Cluster 

size 

MS patients 

R Middle frontal gyms (BA 8) (48, 22, 45) 3.72 69 

L Superior frontal gyms (BA 10) (-15, 64, 29) 3.70 71 

L Superior frontal gyrus (BA 6) (-23, 1, 68) 3.66 111 

L Medial frontal gyrus (BA 6) (-17,-11, 45) 3.67 63 

L Inferior frontal gyrus (BA 44) (58, 15, 14) 3.57 218 

R Superior temporal gyrus (BA 22) (62, 6, -1) 4.17 113 

R Superior temporal gyrus (BA 38) (42, 3, -13) 3.88 163 

L Inferior parietal lobule (BA 40) (-44, -51, 51) 3.67 89 

R Inferior parietal lobule (BA 40) (48, -42, 56) 3.63 53 

R Precuneus (BA 7) (26, -75, 41) 3.66 98 

L Cuneus (BA 19) (-17, -84, 35) 3.81 188 

R Insula (BA 13) (40, -12, -3) 3.57  

L Insula (BA 13) (-42, 7, -6) 3.60 52 

Healthy controls 

R Cuneus (BA 19) (9, -90, 33) 3.82 81 

R Lingual gyrus (BA 17) (8, -89, 5) 3.80 121 

R Lingual gyrus (BA 18) (17, -83, -13) 3.41 58 

R Precuneus (BA 19) (32, -72, 35) 3.77 214 

R Precuneus (BA 39) (38, -66, 36) 3.24  

R Precuneus (BA 7) (6, -45, 54) 3.38  

R Postcentral gyrus (BA 7) (2, -51, 68) 3.51 103 

MS patients > Healthy controls 

R Superior temporal gyrus (BA 38) (39, 5, -15) 4.68 483 

R Middle temporal gyrus (BA 21) (62, 6, -12) 3.65  

R Paracentral lobule (BA 6) (8, -33, 65) 3.58 71 

R Middle frontal gyrus (BA 8) (48, 22, 45) 3.84 71 

L Superior frontal gyrus (BA 6) (-15, 9, 57) 3.72 517 

R Inferior frontal gyrus (BA 44) (52, 15, 14) 3.72 266 

R Inferior frontal gyrus (BA 45) (60, 19, 18) 3.68  

R Medial frontal gyrus (BA 9) (18, 36, 18) 3.95 119 

R Precuneus (BA 19) (29, -80, 45) 3.58 143 

R Precuneus (BA 7) (23, -75, 39) 3.56  

L Claustrum (-29, 18, -1) 4.21 339 

L Insula (BA 13) (-41, 12, -3) 3.16  

R Insula (BA 13) (27, 20, -6) 3.76 104 

Healthy controls > MS patients 

L Inferior occipital gyrus (BA 18) (-36, -89, -6) 3.81 120 

L Inferior occipital gyrus (BA 17) (-24, -98, -10) 3.73 98 

R Lingual gyrus (BA 17) (12, -87, 6) 3.57 59 

R Superior temporal gyrus (BA 39) (45, -50, 17) 3.19  

R Inferior parietal lobule (BA 39) (39, -65, 39) 3.43 88 

L Thalamus (0,-9, 11) 3.47 55 
Note. MS = multiple sclerosis; EFT = episodic future thinking; AI = autobiographical interview; BA = Brodmann area; L = left; R = right, k 
= 50 voxels. p < .001 uncorrected. 

 

Regarding healthy controls, an increased neural response was highlighted for the difficulty of imagination during 

the EFT elaboration, mostly in key brain structures sustaining self-referential processes (medial frontal and 

posterior cingulate gyri), personal semantics (lateral temporal structures), or visual imagery (precuneus, posterior 

cingulate, and occipital gyri), all of them being central cognitive processes during EFT elaboration (Addis et al., 

2007). 

Conversely, contrary to our hypothesis, no functional change was observed in the hippocampus during EFT 

construction or elaboration, for both healthy controls and MS patients. The hippocampus plays a critical role in 

the retrieval of details stored in memory, their recombination into a coherent future simulation, and the encoding 
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of the simulation product in memory, and this brain region is also particularly responsive to the amount of detail 

(Addis & Schacter, 2008, 2012). In this context, bearing in mind that the amount of detail of future events was 

self-assessed by patients at a level that turned out to be lower than that of healthy controls, a possibility is that 

the absence of functional change in the hippocampus reflects this discrepancy in the amount of detail. 

Alternatively, it remains an option that the significant brain atrophy observed in the adjacent parahippocampal 

gyrus in patients may have compromised the further involvement of the hippocampus (Hulst et al., 2012). A last 

alternative is related to the spatiotemporal dynamic of brain activations within the EFT brain network. As 

previously mentioned, the prefrontal regions sustain the executive component necessary to the 

extraction/recombination of details (De Vito et al., 2012; Weiler et al., 2011). In the case of MS patients, the 

absence of a differential hippocampal activity between groups could be related to the early negative impact of 

the executive component, which might have affected the extraction/recombination of details at the hippocampal 

level, and the further stream of activations within the neocortex. This is consistent with the reciprocal 

connections shared between the prefrontal regions and the medial temporal lobe, and the neocortex (Maguire, 

Kumaran, Hassabis, & Kopelman, 2010). A neuroanatomical corroboration of the latter is the main association 

found between the volume of prefrontal regions and EFT performance in MS patients, whereas no such 

association was highlighted for the hippocampus. A significant association was also found between EFT scores 

and the lateral temporal region, as well as the posterior brain regions. 

Our results showed some overlaps with Irish et al. (2013), demonstrating that a discrete set of brain regions 

could be involved in EFT impairment (similarly to their patients, our patients' prefrontal regions were a 

contributing structure to EFT deficit). Likewise, similar to Hach et al. (2014) in depressed patients, we found that 

MS patients recruit brain regions pertaining to the EFT core network, but with signs of up- or down-regulation in 

comparison with healthy controls. 

Overall, consistent with our hypothesis, structural correlates of EFT impairment seemed to converge with the 

brain areas that showed significant functional changes during EFT performance in MS patients. This finding is 

consistent with those showing partial overlaps between structural damage (i.e., brain atrophy) and cerebral 

functional changes during cognitive performance in MS patients (Mainero et al., 2004; Morgen et al., 2007). Our 

results reinforce the usefulness of the combination of different neuroi-maging techniques to obtain a 

comprehensive picture of the neural substrates of cognitive impairment in patients. This is especially the case for 

diffuse brain pathologies like MS, in which some brain damage not sufficient to be detected as significant 

atrophies could have proximal and distal deleterious impact within the EFT brain network. In this context, a 

further step would be to introduce a functional connectivity measure that could be particularly relevant 

considering the spatiotemporal dynamic nature of the EFT brain network (Addis, Pan, et al., 2009). While the 

current study presents some limitations, like its focus on a group of patients with impaired EFT abilities, it could 

provide new insights into cognitive impairment in MS patients and complete some recent clinical findings about 

this topic (Ernst, Blanc, et al., 2014). 

CONCLUSIONS 

In conclusion, despite significant brain atrophy, we have documented cerebral activation changes in MS patients 

presenting with EFT impairment, with mainly signs of up-regulation within the EFT network. Overall, these 

findings supported the notion that disruption in any key nodes of the EFT network would impinge on future 

simulation, with some specific neural signature depending on the pathology (Berryhill et al., 2010; Irish et al., 

2013). While no direct comparison has been made between the functional changes reported here and those 

documented in the context of a previous study focusing on AM impairment, in a very similar sample of 

participants (Ernst, Noblet, et al., 2014), it appears that the pre-frontal regions are mainly involved in the 

occurrence of both AM and EFT impairment in MS patients, but not the hippocampus. This finding supports the 

strong relationship between AM and EFT deficit documented at the behavioral level (Ernst, Blanc, et al., 2014). 

On these bases, and from a more clinical standpoint, we hypothesize that EFT functioning could be improved in 

MS patients by means of a cognitive intervention program for which the efficacy has already been showed in MS 

patients presenting with AM impairment (Ernst et al., 2013; Ernst et al., 2012). Bearing in mind the negative 

impact of EFT impairment in MS patients' everyday life (Ernst, Blanc, et al., 2014), future studies addressing 

this last suggestion would be of clinical value to alleviate impairment in a domain that is at the center of 

cognition, social relations, and, ultimately, well-being (Schacter et al., 2012; Szpunar, 2010). 
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