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Steroids, spinal cord and pain sensation
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Abstract

During the whole life, the nervous system is continuously
submitted to the actions of different categories of hormones,
including steroids. Therefore, the interactions between hor-
monal compounds and neural tissues are subjected to intense
investigations. While a majority of studies focus on the brain,
the spinal cord (SC) has received little attention, although
this structure is also an important part of the central nervous
system, controlling motor and sensory functions. To point out
the importance of interactions between hormones and the SC
in the regulation of neurobiological activities, we recapitu-
lated and discussed herein various key data, revealing that
the pivotal role played by the SC in nociception and pain
modulation, directly depends on the SC ability to metabolize
and synthesize steroidal molecules. The paper suggests that
future investigations aiming to develop effective strategies
against chronic pain, must integrate regulatory effects exert-
ed by hormonal steroids on the SC activity, as well as the
actions of endogenous neurosteroids locally synthesized in
spinal neural networks.
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Introduction

Because of their pleiotropic potential and diverse effects on
the central (CNS) and peripheral (PNS) nervous systems,
steroids have early been suspected to modulate pain sensa-
tion. Indeed, since 1927, Cashin and Moravek observed that
intravenous injections of cholesterol were able to suppress
pain sensation by exerting anesthetic effects in mammals [1].
Afterwards, Selye demonstrated that certain pregnane ster-
oids, such as progesterone and deoxycorticosterone, can
induce sedation and anesthesia in rats [2]. Together, these
observations paved the way for the development of various
synthetic analogs of pregnane steroids, which reduced pain
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through allosteric activation of GABA, receptors [3-7].
Nowadays, the therapeutic use of glucocorticosteroids and
their analogs is considered as the most effective strategy
against inflammatory pain, in spite of the occurrence of
diverse side effects (for reviews, [8, 9]). Glucocorticosteroids
reduce inflammatory pain by inducing anti-inflammatory
actions on the damaged peripheral or central tissue which
activates nociceptive mechanisms and generate pain sensa-
tion. The anti-inflammatory effects of glucocorticosteroids
result from their ability to inhibit the expression of collage-
nase (the key enzyme involved in tissue degeneration during
inflammatory mechanisms) and pro-inflammatory cytokines,
or to stimulate the synthesis of lipocortin, which blocks the
production of eicosanoids [10—13]. There is also clinical evi-
dence supporting the use of glucocorticoids in the treatment
of chronic neuropathic pain [14—17]. Experimental investi-
gations in animals suggest that glucocorticoids may inhibit
the initiation of neuropathic pain states, or attenuate this
pain, but the mechanisms of action are unknown [14, 18-21].
It is usually thought that the anti-inflammatory actions of
glucocorticosteroids may contribute to the inhibition of the
neuroinflammatory component of neuropathic pain, but there
is no specific evidence supporting this hypothesis. As an
interesting finding revealed that the endoneurial expression
of pro-inflammatory cytokines may have a role in the genesis
of neuropathic pain, glucocorticosteroids may reduce this
pain through the modulation of neuroimmune interactions
[22]. In support of this idea, a recent study showed that the
glucocorticoid triamcinolone, which reduced the neuropathic
pain seen in the model of post-traumatic peripheral neurop-
athy, also decreased the number of endoneurial mast cells
expressing (in the injured nerve) the pro-inflammatory cyto-
kine tumor necrosis factor-alpha [23]. Altogether, the find-
ings recapitulated above, strongly support the existence of
key actions of endogenous and synthetic steroids in the mod-
ulation of inflammatory and neuropathic pain. The present
paper aims to elucidate the specific contribution of steroid
and SC interactions in the regulation of nociception and pain.

Background for a pivotal role of steroid and
spinal cord interactions in the modulation of
pain

The SC is a target of steroid hormones which are key factors
accounting for the gender differences in pain and analgesia
(for reviews, [24—-28]). Variations in sex steroid levels, recep-
tor expression and mechanisms of action in the nervous sys-
tem, have been correlated with the development of chronic
pain [24, 26]. Androgens, which are higher in males, exert
analgesic effects in humans and experimental models, while
estrogens were found to have both hyperalgesic and anal-
gesic effects depending on the experimental conditions
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[28—31]. Moreover, it has recently been shown that proges-
terone prevents allodynia after SC hemisection-induced inju-
ry [32]. In addition to sex steroid-based dimorphism in pain
sensation or in the risk of developing pathological pain syn-
dromes, the relationship between opioids and steroid hor-
mones in pain control has also been investigated by different
research groups [33-36]. Investigations in humans and ani-
mals of the interactions between opioids and sex hormones
in pain modulation, suggested that chronic opioid adminis-
tration without testosterone supplementation may contribute
to the perpetuation of chronic pain and to continued admin-
istration of unnecessarily high doses of narcotics [33, 34, 37,
38]. Verifications were made with hormonal supplementation
in gonadectomized rats and the results indicated that testos-
terone plays a protective role in pain perception, while estro-
gens and progesterone mainly act on pain inhibition
mechanisms [39, 40]. Studies focused on the rat SC indicated
that sex steroids modulate antinociceptive responses to
opioid drugs through the control of the expression of opioid
kappa and delta receptors in spinal sensory neurons [41-43].
Progesterone-induced attenuation of pain behaviors in spi-
nally-injured rats was correlated with increased opioid kappa
receptor expression and upregulation of NMDA receptor
subunits and protein kinase C gamma [32].

In addition to the effects of hormonal (adrenal and gonad-
al) steroids on the SC, the local production of endogenous
steroids (neurosteroids) has been evidenced in the SC thanks
to various investigations that revealed the presence and bio-
logical activity of several key steroid-synthesizing enzymes
in the rat SC [44-48]. Among these enzymes, are cyto-
chrome P450 side-chain-cleavage (P450scc), cytochrome
P450c17 (P450c17), 3B3-hydroxysteroid dehydrogenase (3(3-
HSD), Sa-reductase (Sa-R) and 3a-hydroxysteroid oxido-
reductase (3a-HSOR). P450scc catalyzes the conversion of
cholesterol (CHOL) to pregnenolone (PREG), the first and
rate-limiting step in the biosynthesis of all classes of steroid
hormones. P450c17, also called 17a-hydroxylase/17,20
lyase, converts PREG successively into 17-hydroxy-PREG
and dehydroepiandrosterone (DHEA). P450cl7 is also
responsible for the transformation of progesterone (PROG)
into 17-hydroxy-PROG and androstenedione, successively.
The enzyme 3B-HSD catalyzes the conversion of A%-33-
hydroxysteroids (PREG, 17-hydroxy-PREG, DHEA) into
A*-3-ketosteroids (PROG, 17-hydroxy-PROG, androstene-
dione). Sa-R is responsible for the transformation of testos-
terone (T), PROG and deoxycorticosterone (DOC) into
dihydrotestosterone (DHT), dihydroprogesterone (DHP) and
dihydrodeoxycorticosterone (DHDOC), respectively.
3a-HSOR, also called 3a-hydroxysteroid dehydrogenase,
converts in a reversible manner DHT, DHP and DHDOC into
the respective neuroactive steroids 3a-androstanediol, allo-
pregnanolone or tetrahydroprogesterone (3c,5a-THP) and
tetrahydrodeoxycorticosterone (THDOC).

The first anatomical and cellular distribution of P450scc
in the adult rat SC was provided by immunohistochemical
studies, using two different antibodies against P450scc. One
of these antisera was raised in rabbits against purified
P450scc from bovine adrenocortical mitochondria [49-53].

Figure 1 Transverse section through the lumbar SC showing
P450scc-immunoreactive elements in the superficial layers of the
SC dorsal horn (DH). Scale bar: 50 pm.

The other antiserum was generated in rabbits against the car-
boxy-terminal aminoacids 509-526 of rat P450scc [54]. The
same anatomical and cellular distribution of P450scc-immu-
noreactivity was observed in the rat SC with both antisera.
The highest density of P450scc-immunolabeling was found
in superficial layers laminae I and II of the dorsal horn (DH)
where sensory neurons are located (Figure 1). Double-label-
ing experiments revealed that most of the P450scc-positive
fibers in the DH also expressed immunoreactivity for micro-
tubule-associated protein-2, a specific marker for neuronal
fibers [55-57]. Motoneurons of the ventral horn (VH) also
expressed immunoreactivity for P450scc, suggesting a pos-
sible role of the enzyme or its steroid products in the control
of motor activity [55, 58]. Moreover, P450scc-immunostain-
ing was detected in ependymal glial cells bordering the cen-
tral canal in the SC, an observation which suggests a possible
release of neurosteroids in the cerebrospinal fluid and their
involvement in volume transmission mechanisms in the CN'S
[55, 59].

Well validated biochemical experiments, which showed
that homogenates from the adult rat SC are capable of con-
verting CHOL into PREG, indicated that P450scc-like
immunoreactivity detected in the spinal tissue corresponds to
an active form of the enzyme [55, 60—-64].

The demonstration of the presence and activity of P450c17
in the CNS has long remained controversial (for reviews,
[65, 66]). Therefore, we combined molecular, immunohis-
tochemical and neurochemical approaches for a solid inves-
tigation of P450c17 existence and biological activity in adult
rodent SC. This multi-technique study allowed the first ana-
tomical and cellular mapping of a biologically active form
of P450c17 in the adult rat SC [67]. Significant amounts of
P450c17 mRNA were detected in all regions of the SC, using
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the real-time polymerase chain reaction approach after
reverse transcription (RT-rtPCR). By taking advantage of the
availability of an antibody against P450c17, we revealed the
presence of a specific protein in total homogenates and
microsomal fractions from the rat SC and testis. The
P450c17 antiserum used in our studies was also efficient in
previous investigations which localized the enzyme in Ley-
dig cells [68, 69]. This antiserum also allowed the anatomical
and cellular localization of P450c17 throughout the white
and gray matters of the SC, using an immunohistochemical
approach combined with confocal laser microscope analysis.
P450c17-immunostaining was found in both neurons and
glial cells. In the white matter, the enzyme was mainly
detected in astrocytes, while in the gray matter, P450c17 was
essentially found in neurons and oligodendrocytes [67]. The
presence of P450c17 in the DH and VH suggested its poten-
tial involvement in the modulation of sensory or motor func-
tions [58, 67, 70, 71]. Pulse-chase experiments, which
revealed that SC slices converted [PH]PREG into [*H]DHEA,
indicated that P450c17-like immunoreactivity detected in the
adult rat SC, corresponds to an active form of the enzyme
[67]. The occurrence of P450c17 enzymatic activity was fur-
ther demonstrated with biochemical experiments using keto-
conazole, a selective inhibitor of the enzyme [72, 73]. A
significant decrease was observed in the conversion of
[PH]PREG to [PH]DHEA by SC slices when the pulse-chase
experiments were performed in the presence of ketoconazole,
a result which unambiguously confirms the existence of
P450c17 activity in the adult rat SC [67].

The first isolation of 33-HSD mRNA in the SC was per-
formed in rats using the RT-PCR approach [74]. However,
the anatomical and cellular distribution of 33-HSD mRNA
in the SC was provided by Coirini et al. [75] utilizing an in
situ hybridization technique. This study revealed that the DH
laminae I-IIT exhibited the highest density of 3B3-HSD
mRNAs which were also detected in layer X around the cen-
tral canal in the VH and in the lateral as well as ventral
funiculi. At the cellular level, 33-HSD mRNAs were found
mainly in sensory neurons of the DH and in motoneurons of
the VH throughout the cervical, thoracic, lumbar and sacral
segments of the SC [75]. Moreover, evidence for the exis-
tence of 3(3-HSD protein and enzymatic activity in the SC
was provided by Western blot analysis and gas chromatog-
raphy/mass spectrometry assays, which revealed that the con-
centrations of PREG and PROG were higher in the SC than
in plasma [75]. Recent studies have also confirmed the pres-
ence and activity of 33-HSD in the rat SC by using real-
time polymerase chain reaction and pulse-chase experiments,
combined with HPLC-Flo/one analysis of steroids newly-
synthesized from a radioactive precursor in spinal tissue [76].

The expression of Sa-R in the brain, but not the SC, has
extensively been studied [77-82]. It has been suggested that
the isoenzyme 5a-R type 1 (5a-R1) essentially plays a cata-
bolic and neuroprotective role, whereas the isoform 2 or
Sa-R2 participates in sexual differentiation of the CNS.
However, the neurophysiological significance of these two
isoenzymes remains a matter of speculation [83-86]. The
first demonstration of Sa-R gene expression in the SC was

provided by a recent study, which revealed that, unlikely to
what is observed in the brain, the quantity of Sa-R2 mRNAs
extracted from the whole adult rat SC is higher than that of
Sa-R1 [87]. This work also indicated that mRNAs encoding
S5a-R2 are expressed by motoneurons of the VH, but did not
provide any information about the presence or absence of the
enzyme in the DH, where sensory networks are located [70,
71, 88]. Therefore, a detailed immunohistochemical study
was performed to determine the regional and cellular distri-
bution of 5a-R1 and 5a-R2 in the adult rat SC [89]. The
study was possible thanks to the availability of highly spe-
cific antisera against Sa-R1 and 5a-R2 which were previ-
ously used with success to localize these enzymes in various
steroidogenic tissues [90, 91]. Immunoreactivities for Sa-R1
and 5a-R2 were detected in the white matter of the SC from
the cervical to sacral regions. However, the intensity of
Sa-R1-immunostaining was low and cell bodies, as well as
fibers containing this isoenzyme, were observed mainly in
the white matter of the cervical and thoracic segments. The
Sa-R2 immunofluorescence, which was moderate in the
white matter, was intense in the DH and VH of the gray
matter [89]. Double-labeling identification with specific
markers for nerve cells revealed that the S5a-R1 immuno-
staining was mainly expressed in oligodendrocytes and astro-
cytes of the white matter, whereas Sa-R2-immunolabeling
colocalized with neurons and glial cells in the gray and white
matters [56, 57, 89, 92, 93]. The observation of a restricted
localization of 5a-R1 to the SC white matter is in agreement
with previous studies indicating that the type 1 isoform of
S5a-R is the most relevant isoenzyme present in myelinated
structures of the female and male rat brain [84, 94-96].
There are four human 3a-HSOR isozymes, but, to date,
only one isoform has been cloned in rats [97—100]. The
enzymatic activity and mRNA encoding 3a-HSOR have
been detected in the brain, but the immunocytochemical
mapping of the protein in the CNS has long remained unex-
plored [82, 101-103]. Taking advantage of the availability
of a specific antiserum against the rat liver 3a-HSOR, we
determined the anatomical and cellular distribution of the
enzyme in the rodent SC (Figure 2). Relative titers, specific-
ity and effectiveness of the 3a-HSOR antibody have been
shown by previous biochemical and histochemical studies
[97-99, 104, 105]. Intense immunoreactivity for 3a-HSOR
was detected in SC white and gray matters. However, the
highest density of 3a-HSOR-immunostaining was found in
sensory areas of the SC [89]. Our study also revealed that
45% of 3a-HSOR-immunofluorescence was localized in oli-
godendrocytes, 35% in neurons and 20% in astrocytes. A
comparative analysis of S5a-R1-, Sa-R2- and 3a-HSOR-pos-
itive elements in the SC, made it possible to observe three
different but interesting situations: 1) cell bodies and fibers
containing both 3a-HSOR and 5a-R were identified, 2) cells
labeled only with the Sa-R1 or S5a-R2 antiserum were local-
ized and 3) positive cell bodies expressing only 3a-HSOR-
immunostaining were found [89]. Consequently, it appears
that certain glial cells and neurons of the SC contain both
S5a-R and 3a-HSOR enzymatic proteins, which could cata-
lyze biochemical reductions required for the biosynthesis of
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Figure 2 Transverse section through the thoracic SC showing 3a-
HSOR-immunoreactive cells and fibers in the white and gray mat-
ters. 45% of 3a-HSOR-immunofluorescence was localized in
oligodendrocytes, 35% in neurons and 20% in astrocytes. Scale bar:
200 pm.

3a,5a-reduced  steroids, such as 3a-androstanediol,
3a,5a-THP and THDOC which control, through allosteric
modulation of GABA, receptors, neurobiological mecha-
nisms including stress, anxiety, analgesia, locomotion and
lordosis [6, 106—109]. The production of neuroactive 3a,5a-
reduced steroids may also involve collaboration among neu-
rons, astrocytes and oligodendrocytes, which contain only
one of the two enzymes, i.e., 3a-HSOR or 5a-R. This col-
laboration may be done within the context of the cross-talk
between glial and neuronal elements in normal physiological
or during pathological situations [110]. These suggestions
could not rule out the possibility that Sa-R1 or Sa-R2 alone
may convert, in the SC, PROG or T from peripheral sources,
into DHP or DHT, respectively, that act via genomic recep-
tors, the existence of which has been demonstrated in spinal
tissues [111—-114]. In a similar manner, 3a-HSOR alone may
also convert, in the SC, peripheral DHP, DHT or DHDOC
into 3a,5a-THP, 3a-androstanediol or THDOC, respectively,
for the modulation of GABA, receptors [6, 109, 115, 116].
The fact that the rat spinal tissue homogenates are capable
of converting [*H]CHOL into various metabolites, including
3a,5a-THP, clearly indicates that 5Sa-R1, 5a-R2 and 3a-
HSOR detected in the SC correspond to active forms of these
enzymes [55, 89].

Role of spinal neurosteroids in pain regulation

Neurosteroids modulate GABA ., NMDA and P2X receptors
which are expressed in the SC and play a crucial role in the

regulation of pain [45, 65, 71, 117]. However, the local syn-
thesis of neurosteroids near their sites of actions in pain neu-
ral centers is a prerequisite to render credible the possible
involvement of endogenous neurosteroids in pain modula-
tion. Therefore, the demonstration that the spinal cord, which
pivotally controls pain transmission [58, 71, 117], also con-
tains the enzymatic machinery to locally synthesize neuro-
steroids (see above) was extremely important to show that
neurosteroids are produced and released near their sites of
actions in the spinal pain circuit. In addition, we observed
that substance P, a major nociceptive neuropeptide secreted
by primary afferents, inhibited in a dose-dependent manner
allopregnanolone (3a,5a-THP) biosynthesis in the DH
[118]. As the neurosteroid 3a,5a-THP is a potent allosteric
stimulator of GABA, receptors, our observation suggested
that substance P, by reducing 3a,5a-THP production, may
indirectly decrease the spinal inhibitory tone and therefore
facilitate noxious signal transmission.

To further investigate the possible role of neurosteroids
endogenously produced in the SC in pain modulation, we
performed a multidisciplinary study using the rat experimen-
tal model of neuropathic pain generated by sciatic nerve lig-
atures [119]. Molecular and biochemical investigations
(quantitative real time polymerase chain reaction after
reverse transcription, Western blot, radioimmunoassay,
pulse-chase experiments, high performance liquid chroma-
tography and continuous flow scintillation detection)
revealed an up-regulation of enzymatic pathways (P450scc
and 3a-HSOR) leading to 3a,5a-THP biosynthesis in the
SC [89, 120, 121]. In contrast, the biosynthetic pathway
(P450c17) producing DHEA was down-regulated in the neu-
ropathic rat SC [67, 122]. Behavioral studies using the plan-
tar test (thermal nociceptive threshold) and the von Frey
filament test (mechanical nociceptive threshold) showed that
intrathecal administration of 3«,5«-THP in the lumbar SC
induced analgesia in neuropathic-pain rats, by suppressing
the thermal hyperalgesia and mechanical allodynia charac-
terizing these animals. Unlike 3a,5a-THP, intrathecal injec-
tion of Provera (3a-HSOR inhibitor) potentiated both
thermal hyperalgesia and mechanical allodynia in neuropath-
ic rats [121]. Moreover, in vivo knockdown of 3a-HSOR
expression in healthy rat lumbar dorsal root ganglia using 6-
carboxyfluorescein-3a-HSOR-siRNA, exacerbated thermal
and mechanical pain perception [123].

Acute DHEA treatment exerted a rapid pro-nociceptive
and a delayed anti-nociceptive action. Inhibition of DHEA
biosynthesis in the DH by intrathecally administered keto-
conazole (a P450c17 inhibitor) induced analgesia in neuro-
pathic rats. Chronic treatment of DHEA increased and
maintained elevated basal pain thresholds in neuropathic and
control rats, suggesting that androgenic metabolites, gener-
ated from daily injected DHEA, exerted analgesic effects
while DHEA itself (before being metabolized) induced a rap-
id pro-nociceptive action [122].

In agreement with our findings showing spinal neuroste-
roid involvement in pain modulation, various other investi-
gations using synthetic analogs of 3a,5a-THP also revealed
antinociceptive properties of neurosteroids in humans and
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animals [124-128]. Furthermore, it has clearly been dem-
onstrated that Sa-reduced neurosteroids induce a potent
peripheral analgesia which is mediated by both T-type cal-
cium and GABA, channels [129].

Conclusion

Pain, the first reason for medical consultation in many dis-
eases, is a complex process involving several molecular, cel-
lular and integrated mechanisms as well as psychosocial
parameters. The data reviewed herein demonstrate that the
interactions between steroids (hormonal steroids and spinal
neurosteroids) crucially regulate diverse processes determin-
ing the sensitivity to pain. The paper suggests that the inves-
tigations aiming to develop effective strategies against
chronic pain may particularly integrate the pivotal role
played by spinal endogenous neurosteroids in the control of
nociceptive transmission.
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