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7Genetic Department, Hôpital Necker-Enfants Malades, Paris, France
8Institut de G�en�etique et de Biologie Mol�eculaire et Cellulaire, Illkirch, France
9Centre National de la Recherche Scientifique, Illkirch, France
10Institut National de la Sant�e et de la Recherche M�edicale, Illkirch, France
11Universit�e de Strasbourg, Strasbourg, France
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TO THE EDITOR:

Classic lissencephaly is a severe disorder of neocortical neuronal

migration. The lissencephaly spectrum varies from complete or

nearly diffuse agyria to subcortical band heterotopia. The most

commonly mutated gene in patients with classic lissencephaly is

LIS1 (OMIM 601545) [Uyanik et al., 2007; Saillour et al., 2009].

More than 100 LIS1 mutations have are known, with most being

heterozygous large or small exonic deletions or duplications or

truncatingmutations,whereasmissensemutations are less frequent

[Sakamoto et al., 1998; Fogli et al., 1999; Cardoso et al., 2000, 2002;
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Sicca et al., 2003; Torres et al., 2004; Uyanik et al., 2007; Mei et al.,

2008]. Ten splice site mutations in LIS1 have been reported, but in

most the effects of these mutations at the RNA level have not been

demonstrated.

Here, we describe two unrelated patients with classic lissence-

phaly in whom a recurrent de novomutation at the acceptor splice

site of intron six was identified by targeted-gene sequencing. The

first patient is the first boy of a non-consanguineous couple. Hewas

born after an uneventful pregnancy, with a birth weight of 3240 g

(19th centile), a birth length of 49 cm (12th centile), and anOFC of

33 cm (4th centile). Head control was achieved at 2months but the

ability of sitting independently and standing was delayed at 12 and

15 months, respectively. He walked at the age of 2 years.

Seizures started at 4 years controlled with topiramate and val-

proate. At age of 8 years, his growth parameters were weight 50.1 kg

(>97th centile), height 1.32m (75th centile), and OFC

55 cm . He had normal visual interaction and used approximately

50 words. Hewalked unaided with bilateral genu flessum and varus

deformity. Neurological examination was normal. Brain MRI

showed posterior pachygyria sparing the fronto-temporal

lobes (Fig. 1A–C). The second patient is the first boy of a

non-consanguineous couple. He was born at full term, with a birth

weight of 3670 g (57th centile). Intermittent right nystagmus and

convergent strabismus were noted from the age of 2 months. He
FIG. 1. Representative MRI images of patient 1 at the age of 5 years and

T1 weighted (A and B) and T2 (C and D) images at the level of the basal

and the occipital lobes (A and D), sparing the frontal lobes (A and C), an

weighted images (C and F) show normal corpus callosum, brain stem, an
was brought tomedical attention at 3.5months because of repeated

brief tonic clonic seizures. He was seizure-free from the age of

4 years. At last evaluation at the age of 5.5 years, his growth

parameters were weight 21.3 kg (75th centile), length 113 cm

(50th centile), and OFC 50 cm (10th centile). He had visual

interaction and uttered articulate sounds with his parents. He

could crawl and enjoyed walking a few steps. Neurological exami-

nation showed axial hypotonia and peripheral hypertonia. Brain

MRI showed posterior pachygyria sparing the fronto-temporal

lobes (Fig. 1D–F). In both patients, array CGH was normal. To

identify the underlying cause of the classic lissencephaly in both

patients, we performed targeted-gene sequencing on DNA

extracted from a blood sample, using an NGS panel of 54 genes

involved in cortical malformations. We identified a recurrent

apparently de novo heterozygous mutation at the acceptor splice

site of LIS1 (NM_000430) intron 7: c.569-10T>C (g.2575939T

>C), not reported in public databases, nor in the ExAC database.

All prediction tools (Alamut software using MaxENtSplice splice

score (9.28> 7.49), NNsplice (0.84> 0.69), and ESE finder

(6.31> 5.88), except HSF predicted that this variant reduces the

strength of the consensus acceptor splice site of intron 6. To assess

the functional consequence of the mutation, an RNA study was

performed after extraction and reverse transcription using fibro-

blast cell lines derived from skin biopsies of both patients.
5 months (A–C), and patient 2 at the age of 4 months (D–F). Axial

ganglia show pachygyria (thickened cortex) affecting the parietal

d both temporal lobes in coronal section (B and E). Sagittal T1

d cerebellar vermis.
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Compared to control samples for which a unique 600 bp RT-PCR

fragment was observed, an additional shorter PCR product (497

bp) was detected from the patient samples, of which sequencing

showed skipping of exon 7. Skipping induction was quantified and

showed an approximately half decrease of wildtype mRNA abun-

dance compared to control cells. Together, these results support the

view that themutation c.569-10T>Calters the consensus acceptor

splice site of intron 6 Leading to exon seven skipping. Furthermore,

the loss of exon 7 predicted (p.Gly190Alafs�3) (Supplemental

Online Fig. S1).

The fraction of cis splicing mutations causing disease is esti-

mated at 15% andmainly comprises mutations known to affect the

canonical splice sites [Krawczak et al., 1992]. However, this pro-

portion is likely to be underestimated and most cis-acting splicing

mutations are likely undiagnosed. It has been proposed that 60%of

mutations that cause disease do so by disrupting splicing [L�opez-
Bigas et al., 2005]. This wide range for the predicted frequency of

splicing mutations reflects our incomplete knowledge of the splic-

ing code and the fact that mRNAs from mutant alleles are rarely

assayed for splicing abnormalities. In fact, one of the limitations of

the systematic analysis of the impact of abnormal splicing as a cause

of disease is the availability of RNA from disease relevant tissues

[Wang and Cooper, 2007]. In classic lissencephaly related to LIS1

mutations, more than 2/3 mutations are nonsense, frameshift

mutations, or deletions. By contrast, splice mutations represent

10/137 mutations reported in HGMD, at least as uncommon as

missense mutations. Although nonsense-mediated mRNA decay

(NMD) is proposed as a key mechanism in the processing of the

LIS1 transcript bearing premature stop codons [Uyanik et al.,

2007], the documentation of this effect in human cells is scarce.

Remarkably, the mutation c.569-10T>C described here was pre-

viously reported in six unrelated patients [Cardoso et al., 2002;

Uyanik et al., 2007] ClinVar (RCV000020304.3) as pathogenic, and

was referenced in dbSNP (rs113994202), without validation. Here,

our data clearly demonstrate that themutation alters the consensus

acceptor splice site of intron 6 Leading to an alternatively spliced

LIS1 mRNA, and the skipping of exon 7 with the formation of a

premature stop codon in exon 8 (p.Gly190Alafs�3).
Although previous reports have stressed the clustering of LIS1

mutations in exon 6, only a fewmutations are recurrent, reported in

most cases twice (HGMD).The recurrenceof this intronicmutation

is of importance for clinical practice, although its predictive value

fordisease severity is not demonstrated. For instance, fourout of the

six patients previously reported with the c.569-10T>C mutation

had severe neurological impairment being unable to sit or to

interact, as is the case for the majority of patients with LIS1

Lissencephaly [Cardoso et al., 2002;Uyanik et al., 2007]. In contrast,

both patients reported here, were less severely affected since they are

both able to walk unaided, their seizures were controlled, and their

MRI pattern showed pachygyria sparing the fronto-temporal lobes.

These observations argue for the heterogeneity of the clinical

consequences of the same mutation in LIS1, which has not been

noted previously. Of note, we and others attempted to draw

correlations with the type and the location of mutations [Pilz

et al., 1998; Cardoso et al., 2002; Caspi et al., 2003; Uyanik et al.,

2007; Saillour et al., 2009]. In all reports, themain limitationof such

correlations is the reduced variability among patients with LIS1
mutations who exhibit in most cases, mixed agyria–pachygyria,

tetraplegia, and refractory epilepsy. The patients reported here

further demonstrate that the phenotypic variability in patients

with LIS1 related lissencephaly may not be only explained by the

type or the location of the mutation. In conclusion, our data

demonstrate that the recurrent LIS1 intronic mutation disrupt

LIS1 transcript splicing and is responsible for classic lissencephaly

of variable severity. These observations further support that the type

and the location of LIS1mutations is not predictive for the severity

of the disorder.
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