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Controlling the angular momentum of spins with very short external perturbations is a key issue in modern
magnetism. For example it allows manipulating the magnetization for recording purposes or for inducing
high frequency spin torque oscillations. Towards that purpose it is essential to modify and control the
angular momentum of the magnetization which precesses around the resultant effective magnetic field.
That can be achieved with very short external magnetic field pulses or using intrinsically coupled magnetic
structures, resulting in a transfer of spin torque. Here we show that using picosecond acoustic pulses is a
versatile and efficient way of controlling the spin angular momentum in ferromagnets. Two or three
acoustic pulses, generated by femtosecond laser pulses, allow suppressing or enhancing the magnetic
precession at any arbitrary time by precisely controlling the delays and amplitudes of the optical pulses. A
formal analogy with a two dimensional pendulum allows us explaining the complex trajectory of the
magnetic vector perturbed by the acoustic pulses.

S
ince its discovery1, the ultrafast demagnetization and precession of the magnetization induced by femto-
second laser pulses has received intensive attention2–14. How fast and how efficiently spins can be controlled
are crucial matters in the field of ultrafast magnetism. In that regards, a coherent control of the magnet-

ization requires to impulse a sudden change of the spins angular momentum which results in a motion of
precession of the magnetic vector around the effective field. This is generally achieved via a change of the material
anisotropy of the considered magnetic system using femtosecond laser pulses as demonstrated in various con-
figurations of pump and probe pulses designed for manipulating the spins in magnetic semiconductors15–18,
dielectrics19–20 or metals21. The laser source can advantageously be a terahertz pulse16, a photo- or an optomagnetic
pulse20. Recently we reported that magneto-acoustic pulses can also be used for modifying the magnetization
vector in ferromagnetic materials21. Alternatively one can induce a spin torque transfer between magnetically
coupled layers, for example in multilayered material structures, a process that is usually achieved with currents
but which can also be optically manipulated22,23. Inducing a motion of precession is important for generating spin
torque oscillations and being able to control them allows for example to selectively picking up single frequency
modes in superimposed temporal oscillations24,25.

An important goal in controlling the angular momentum is not only to induce a torque at ultrashort times but
also to be able to amplify or suppress the torque oscillations. It is the purpose of this work to show how to induce
and manipulate at will the precession of the magnetization using a sequence of two or three acoustic pulses which
are generated by femtosecond optical pulses. The ferromagnetic material is a nickel film but it can be any
ferromagnetic or ferrimagnetic structure as long as the material has a large magnetostriction. Importantly, we
study the precise conditions for such control by choosing the appropriate amplitudes and time delays between the
pulses. The effect of the shapes of the acoustic pulses are also considered as, either unipolar or bipolar pulse can be
generated via the lattice compression and expansion propagating in the magnetic material. To explain the effect of
each particular sequence of acoustic pulses and the corresponding control of angular momentum, we make a
formal analogy between the controlled motion of precession and a two dimensional pendulum subject to
momentum kicks provided by the acoustic pulses. The trajectory of the magnetic vector results from both the
change of the frequency of the corresponding pendulum and the amplitude of the torque. The model considers
either unipolar and bipolar Crenel function pulses or realistic strain pulses. We first describe the control of the
magnetization by two pulses and its pendulum analogy. Then we describe the case of three pulses, the pendulum
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analogy being further discussed in the supplementary information
(SI). Finally we briefly discuss the effect of the pulse shapes which is
also detailed in the (SI).

Results and Discussion
Experimental configuration and sample description. The experi-
ment was performed by exciting the front side of Ni films using
sequences of femtosecond pump pulses with controlled time delays
and detecting the reflectivity and magnetization dynamics on the
back side through a substrate using probe pulses, by means of the
time-resolved pump-probe technique. Figure 1a is a sketch of the
experimental configuration. The femtosecond pump pulses (60 fs,
400 nm) give rise to a thermal expansion of the lattice, which
produces acoustic pulses in the front side of Ni. While propagating
through the film, they bring about a modification of the magneto-
crystalline anisotropy via a magnetostriction which takes place
during the acoustic pulse, therefore initiating a precession of the
magnetization vector. The probe pulses (40 fs, 800 nm) have an
incident angle of 10u and measure both the transient differential
reflectivity DR(t) and the differential magneto-optical polar Kerr
rotation DhK(t) on the back side as a function of the time delay t
between a pump and probe. The signals are measured with a
synchronous detection scheme9. We used a poly-crystalline 350-
nm-thick Ni film deposited on a sapphire substrate by magnetron
sputtering, which has the good acoustic impedance match for the
purpose of the experiment (,10% of an acoustic pulse is reflected).
The external magnetic field was chosen to be Hext 5 0.36 T with an
angle of 44u with respect to the normal to the sample plane. In Fig. 1a

T12 (respectively T23) represent the delays between pulses 1 and 2
(respectively 2 and 3). As shown hereafter, it is convenient to

define the temporal quantities T (n)
12 ~T12{(nTprec=2) and T (n)

23 ~

T23{(nTprec=2), Tprec being the period of the precession (74 ps in
the following). It allows referring to a particular number of full
rotations labeled by (n). We also define the total energy density Ei

of the i-th pump pulse as well as their ratio bij 5 Ei/Ej(i, j 5 1, 2, 3).
Figure 1b sets the definition of spherical coordinates (h, w) and their
corresponding small variations(dh, dw) for the motion of precession
as used hereafter, ~M (~Heff ) being respectively the magnetization
vector and the effective field. The sample is assumed to be in the
(xOy) plane and the magnetization initially points along (h0 < p/2, w
5 0) in the (xOz) plane.

Control of the magnetization dynamics with a sequence of two
acoustic pulses: amplification or suppression of the precession.
Experimental data. Let us first focus on a sequence of two
independent acoustic pulses. The excitation pulse which is
centered at t 5 0 ps initiates the precession of the magnetization
via magnetostriction and the control pulse, which arrives after at
T12, modifies the trajectory of the precession which projection on
the normal to the sample is observed via the rotation DhK(t). The
change of reflectivity DR(t) normalized to its static value RS is
represented in Fig. 2a in the case of excitation by the pulse 1 only
(upper curve), therefore showing the effect of the acoustic strain as
detailed in Ref. 21. An example of a detailed sequence of two pump
pulses is also shown both for DR(t) and DhK(t). In Fig. 2b the DhK(t)

curves correspond to various delays T12 (T (1)
12 ~{4, 0, 12, 36 ps). The

dashed line, which corresponds to the case of only one pump pulse,
serves as a temporal reference. Clearly the oscillations of the

precession are suppressed for T (1)
12 <0 and are nearly doubled for

T (1)
12 <Tprec=2~37 ps. In Fig. 2c the DhK(t) curves correspond to

various amplitudes b12 (b12 5 0, 0.7, 1, 1.3) in the case of a fixed
T12 5 7Tprec/2 5 259 ps (note the broken scale in the temporal axis).

A detailed view of the effect of varying T(1)
12 for b12 5 1 is provided in

Fig. 2d by a two-dimensional mapping of the contrast of the

oscillations as a function of time t and T (1)
12 =Tprec (still with Tprec 5

74 ps). Interestingly, the phase of the oscillations displays an abrupt

change of p in the vicinity of T (1)
12 ~0 as seen by the opposite contrasts

of colors for a fixed time t when T (1)
12 increases. As seen in Fig. 2c this

abrupt change of p in the phase of the precession also occurs when
b12 is varied across the value 1. For long delays like T12 5 7Tprec/2

(T (7)
12 ~0) the precession is already significantly damped. Therefore,

the value b12 5 1 has to be changed so that the motion of precession

is exactly suppressed for T (7)
12 ~0. Summarizing the results, for a

sequence of two pump pulses, the torque can be controlled such

that the precession is suppressed for T (2nz1)
12 ~0, n[N and

amplified for T (2m)
12 ~0, m[N, b12 being finely adjusted near 1 to

compensate for the damping.

Theoretical analysis. Before considering a sequence of three pulses,
let us analyze the preceding controlled behavior of the motion of
precession in terms of amplitude and phase variations of the mag-
netic angular momentum. Towards that purpose we use the repres-
entation displayed in Fig. 3 where the precession of magnetization
sketched in Fig. 1b is projected onto the (yOz) plane. As derived in
section 1 of the (SI), the equations of motion for small angle devia-
tions (dh, dw) around the equilibrium (h0, 0) are:

d€hzv2(t)dh~(m0c)2HxHz; d€wzv2(t)dw~m0c _K(t)dh(t)

with :

v(t)~m0c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hx(MszHx{K(t))

p ð1Þ

Figure 1 | Time resolved magneto-acoustic experimental configuration.
(a) Sketch of pump-probe magneto-acoustic set-up with backward

probing. (b) Definition of Cartesian and spherical coordinates for the

magnetization precession dynamics.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 5 : 8511 | DOI: 10.1038/srep08511 2



K(t) 5 Kaz(t) 1 Ksz(t) is an effective anisotropy corresponding to
the magneto-crystalline Kaz(t) and strain Ksz(t) anisotropies per-
turbed by the acoustic pulses, Ms, Hx, Hz and c are the magnetization
at saturation, the x and z components of the external field and the
gyromagnetic factor. Figure 3a shows the trajectory in the (dh, dw)
plane (equivalently (yOz)) due to a sequence of two delta-function
pulses, starting from the equilibrium (center at t 5 0). Because the
first acoustic pulse modifies the anisotropy along Oz, angular
momentum is acquired in dwand the precession results on the
circle C1, as indicated by the arrow, at a frequency v0~

m0c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hx(MszHx{K0)

p
. The radius of this circle corresponds to

the amplitude of the precession about the static effective field ~Heff ,

i.e. in equilibrium. For a given time delay T12, the second pulse
abruptly modifies the trajectory of ~M(t) which continues its motion
of precession with a smaller amplitude on the inner circle C2 and with
a different phase. If the second acoustic pulse arrives at a later time
T ’12, the trajectory evolves on the outer circle C’2 corresponding to a
larger amplitude of the precession. As discussed in section 1 of the
(SI), the real trajectories are more elliptical as the angular
momentum goes to dw. In addition it slightly deviates from an ellipse
because the tip of the magnetization evolves along the edges of a
saddle shape. Two sequences of times are of particular interest as
shown in Fig. 3b: the cases T12 5 Tprec/2 (or T(1)

12 ~0) and T12 5 Tprec

(or T(1)
12 ~Tprec=2) lead respectively to the suppression and to the

Figure 2 | Control of magnetization dynamics with two acoustic pump pulses. (a) Differential reflectivity DR/Rs with one and two pulses (top two

curves) and differential Kerr signal DhK for two pulses (lower curve) showing the timing sequence. (b) DhK for various delays T (1)
12 between pulses 1 and 2

with equal energy (b12 5 1). Dotted curve: reference signal obtained with one acoustic pump pulse. For T(1)
12 ~0 (T(1)

12 ~Tprec=2): suppression

(amplification) of precession. (c) DhK for various b12 for the fixed delay T (7)
12 ~0. For b12 5 1: suppression of precession. (d) Two dimensional mapping of

DhK versus time t and T(1)
12 =Tprec. The suppression (or amplification) of precession occur for T(1)

12 =Tprec~0 (or 1/2). The increment in T (1)
12 is 4 ps.

Figure 3 | Schematic representation of controlled magnetization trajectory by two acoustic pulses, based on the pendulum analogy. (a) Trajectory

corresponding to a decrease (full curve and circle C2) or an increase (dotted curve and circle C2’) of the precession amplitude. (b) Trajectory

corresponding to a full suppression (T12 5 Tprec/2) and maximum amplification (T12 5 Tprec) of the precession amplitude. (c) Trajectory showing the

effect of pulse duration tp.
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maximum amplification of the motion of precession. Experi-
mentally, they correspond to T(1)

12 ~0 ps and T (1)
12 ~36 ps in Fig. 2b.

They also show up in the experimental mapping displayed in Fig. 2d
in the vicinity of T (1)

12 ~0 ps where the contrast changes abruptly and
near T (1)

12 ~Tprec=2 where the contrast is enhanced for a given time
delay.

The preceding graphical representation can be easily carried on
when the acoustic pulses have a finite duration tp. As shown in Fig. 3c
the trajectories also evolve along the C1 and C2 circles which are
reached after an elapse of time. By making the analogy between
equation (1) and the motion of a pendulum we show in section 1
of the (SI) that:

during the acoustic pulse :

dh(t)~ dh0{
F

v2
1

� �
cos v1tz

F
v2

1
; dw(t)~m0cdh0

DK
v1

sin v1t
ð2Þ

af ter the acoustic pulse :

dw(t)~Awm sin v1(t{twm)

with :

Awm~m0cdh0
DK
v1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 v1tpz

v1

v0

� �2

cos v1tp{
dh(tp)

dh0

� �2
s

dh(t)~Ahm sin v1(t{thm)

with :

Ahm~
F

V2
10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1

v0

� �2

sin2 v1tpz cos v1tp{1
� �2

s

tgv0 tp{twm

� �
~

v0 sin v1tp

v1 cos v1tp{1
� � ;

tgv0 tp{twm

� �
~

v1 sin v1tp

v0 cos v1tp{1
� �[twm^thm^

T0

4
z

tp

2

with :

v0,1~m0c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Hx(MszHx{K0,1)

p
;

1

V2
10

~
1

v2
1
{

1
v2

0
; F~(m0c)2HxHz;DK~K1{K0

dh(tp)

dh0
~

v2
0

v2
1
{

v2
0

V2
10

cos v1tp

� �
~1; v0~

2p
T0

~
2p

Tprec

ð3Þ

This solution is obtained for an anisotropy K(t) which has a Crenel

temporal shape of duration tpwith an amplitude K(t)~
K1 for t[ 0,tp½ �
K0 for t=[ 0,tp½ �

�
.

As discussed in detail in section 1 of the (SI), the elapse time is equal
to tp, the particular precession amplitudes (dh 5 Ahm

1 F/v0, dw 5 0)
occur for T12 5 (Tprec/4) 1 (tp/2) and more importantly, with a
second identical pulse the suppression of the motion of precession
occurs for:

T12~(mz1=2)Tprecztp; m[N or equivalently : dT(2mz1)
12 ~0 ð4Þ

The equality is obtained for delta-function pulses.
In the preceding analysis we have excluded any thermal effects

since for thick metallic films, as the one used here (350 nm), the heat
diffusion on the backside of the film leads to a slow exponential
increase of the temperature in the time scale larger than 300 ps that
is much larger than the precession period. Precisely this exponential
temperature raise has been quantified to be ,10 K after ,400 ps in
the case of 200 nm thick Ni film.

Control of the magnetization dynamics with a sequence of three
acoustic pulses: arbitrary choice of the timing for the precession
control. Experimental data. So far, we have employed two sequential
acoustic pulses to control coherently the magnetization ~M(t). The
constraint imposed by equation (4) is however restrictive as
ultimately one would like to manipulate (stop or amplify) the
precession at any time. In addition, in some cases acoustic pulses
can have different shapes such as when generated from different
generator transducers26 or pump lasers with different photon
energies27. Also, other acoustic modes with different shapes can be
produced with one pump pulse28,29. Moreover, the acoustic pulse can
modify its shape during propagation as a result of phonon dispersion
and nonlinearity30,31. Therefore, it is important to find the condi-
tions for a complete control of the magnetization precession,
independently of the pulse shape and independently of the
particular precession frequency 2p/Tprec of the ferromagnetic
medium as imposed by equation (4). We achieved such control
with a sequence of three pulses. In the following, three pulses are
considered with respective time delays T12 and T23 which can be
varied independently as well as the ratios bij(i, j 5 1, 2, 3). In
Fig. 4a, the DhK(t) curves correspond to various delays T12 and
T23. The temporal sequence is chosen such that the motion of
precession is well contrasted and distinct from the excitation pulse.
For that purpose the delays T12 are varied near 3Tprec/2, i.e. after one
full revolution in the (dh, dw) plane (equivalently (yOz)) has occurred.
Therefore it is convenient to use the relative delays T (3)

12 and T (3)
23

which is varied in a broad range (T (3)
23 ~{24, {12, 12, 24 ps) that

covers more than half of a precession period (37 ps). Cor-
respondingly, we search for the values T(3)

12 for which the pre-
cession is suppressed. In Fig. 4a, pulses 2 and 3 have the same
amplitudes (b23 5 1), and the arrival time of the second pulse is
indicated by the arrows. Clearly the constraint imposed by
equation (4) is released. Instead, we can determine a relationship
between the delays T (3)

12 and T (3)
23 to control the precession. This is

represented in Fig. 4b where we find that:

T (3)
12 ~{T(3)

23 =2: ð5Þ

Theoretical analysis. The linear variation with slope 21/2 given by
equation (5) allows setting the timing for the second and third acous-
tic pulses to suppress the precession of the magnetization at any time.
It can also be deduced from the motion of a pendulum as derived in
section 2 of the (SI). The jump corresponds to a phase shift which can
be controlled to be negative (retarded phase lower curve) or positive
(advanced phase in upper curve) by choosing appropriately the delay
T23 between the pump pulses 2 and 3.

The constraint b23 5 1 is not necessary. The most general config-
uration that can be envisaged is represented in Fig. 4c. A sequence of
pulses with different amplitudes and time delays is displayed so that
at the end of pulse 3, the precession is suppressed (follow the traject-
ory). Considering the triangle OAB, the cosine and sine rules lead to:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
21zb2

31z2b21b31 cos v0T23

q
~1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
12zb2

32z2b12b32 cos v0(T12zT23)

q
~1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2
13zb2

23z2b13b23 cos v0T12

q
~1;

sin v0T12~{b32 sin v0(T12zT23)~b31 sin v0T23

ð6Þ

Therefore one may arbitrarily choose a sequence of pulses and
amplitudes to stop the precession providing that equation (6) is
fulfilled. Two particular cases are interesting and summarized in
equations (7): 1) the suppression of precession occurs after an
advanced or a retarded phase shift (first column in equation (7));

www.nature.com/scientificreports
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2) the amplification of precession occurs after an advanced or a
retarded phase shift (second column in equation (7)). E2 5 E3 (or
b23 5 1) (the case of our experiment):

b23~1 cancel precession amplify precession

retarded phase T12~{T23=2zp=v T12~{T23=2z3p=2v

advanced phase T12~{T23=2z2p=v T12~{T23=2z3p=2v

0
B@

1
CA ð7Þ

Let us now study the influence on the temporal delays T12 and T23

of additional effects like the presence of acoustic echoes reflected
back and forth in the ferromagnetic film, as well as the damping of
the precession. In particular, let us focus on the slight discrepancy at

the origin in Fig. 4b (T(3)
12 ~2:4ps for T (3)

23 ~0). For that purpose, we
performed simulations of the magnetization dynamics using the
Landau-Lifshitz-Gilbert equation taking into consideration the mag-
netoelastic energy term: Eme 5 23/2lssscos2h where ls is the mag-
netostriction coefficient of a polycrystalline Ni film, ss 5 3Bg(1 2 n)/
(1 1 n) the stress, B the Bulk modulus, n the Poisson’s ratio and g the
strain profile. The modelling is further detailed in section 3 of the
(SI). In the inset of Fig. 4b, the strain pulse g(t) (dashed line), defined
as an effective quantity as reported in Ref. 21, is shown. It is obtained
after fitting the transient reflectivity (solid line) from the experi-
mental results DR(t)/Rs (closed circle). The curve with squares in
Fig. 4b is obtained for a Gilbert damping a 5 0.037 obtained by
fitting the experimental results. The acoustic echoes have been
included with rac 5 0.1. For the triangles, the acoustic echoes are
excluded (a 5 0.037; rac 5 0) and for the closed circles the acoustic
echo and the Gilbert damping are both ignored (a 5 0; rac 5 0). From
these graphs, it is clear that the offset can be partly attributed to the
Gilbert damping which results in an offset of ,1.3 ps.

The preceding study shows that the control of the magnetization

dynamics with acoustic pulses depends on the two delays T (n)
12 and

T (m)
23 which values allow determining for example the cancellation of

the precession as shown in Fig. 4b or its amplification. Let us stress

Figure 4 | Control of magnetization dynamics with three acoustic pump
pulses. (a) DhK for various delays T12 and T23 (for b23 5 1). Fixing T23

arbitrarily T12 is adjusted to always suppress the precession. (b) Relation

between T (3)
12 and T (3)

23 (for b23 5 1) for suppressing the precession and

controlling the phase (advanced: upper curves; retarded: lower curves).

Open circle: experimental results; rectangle, circle, and triangle: theoretical

results for different conditions of Gilbert damping a and acoustic

reflection coefficient rac. Rectangles: (a 5 0.037; rac 5 0.1); triangles: (a 5

0.037; rac 5 0); circles: (a 5 0; rac 5 0; dashed lines: equation (6). Inset:

effective strain pulse g(t) (dashed line), differential reflectivity (closed

circles: measured; full line: calculated). (c) Schematic representation of

controlled magnetization trajectory by three acoustic pulses leading to

equation (6). The trajectory (full curve) is chosen to suppress the

precession.

Figure 5 | Control of magnetization precession with unipolar and bipolar
pulses. (a) Modelling of the precession of magnetization induced by

unipolar (full curve) and bipolar (dashed curve) pulses separated by the

delay dT. (b) Coherent control of the magnetization precession with

sequences of: two unipolar pulses (top full curve) and unipolar 1 bipolar

pulses (lower dashed curve). Only the delays and amplitudes are important

for the control (not the shape).

www.nature.com/scientificreports
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that the particular individual shape of the acoustic pulses is not
relevant as long as they are shorter than Tprec. Only their relative
delays and amplitudes can serve the purpose of controlling the mag-
netization vector via the change of the magneto-elastic anisotropy.
To precise this concept, which is of major importance for applica-
tions, we have studied the effect of unipolar and bipolar shaped
acoustic pulses on the magnetization trajectory. Figure 5a shows
curves simulating the precession dynamics of magnetization induced
by differently shaped acoustic pulses. The solid line corresponds to
the precession of magnetization triggered by a 10 ps-long unipolar
square pulse and the dashed line by a 20 ps-long bipolar squared one.
The temporal delay dT between the two pulses is adjusted such that
the two motions of precession are equal. When two pulses are used
(dashed lines in Fig. 5b) clearly only the delay dT is important for the
coherent control of the magnetization and not the detailed pulse
shape as highlighted in the grey square. The first curve (full line)
results from two unipolar pulses. The second curve (dashed one)
corresponds to a unipolar excitation and bipolar control pulse.
Only the delay dT determines when the suppression of the precession
occurs. Overall, the conditions of coherent control can be deter-
mined by choosing the delay such that: T 5 mTprec 1 dT for the
amplification and T 5 (m 1 1/2)Tprec 1 dT for the suppression of the
precession of magnetization.

Conclusion
We show that a sequence of two or three acoustic pulses is well
adapted for controlling the spin torques in ferromagnetic materials,
resulting either in the suppression or the amplification of the mag-
netization precession. When using two acoustic pulses, the control is
somehow more restrictive because the occurrence of suppression

or amplification is directly related to integers of half (T (2mz1)
12 ~

0; m[N) or full precession periods (T (2m)
12 ~0; m[N), quantities that

strongly depend on the intrinsic material properties. However, in the
case of three acoustic pulses, arbitrary delays T12, T23 and amplitudes
Ei(i 5 1,2,3) can be used providing that equation (6) is satisfied. The
second and third pulses then act as a single pulse which shape can be
modified at will. A simple graphical representation of the mag-
netization trajectory follows. This picture is validated in the
framework of the motion of a two dimensional pendulum subject
to external pulsed perturbations. A full Landau-Lifshitz-Gilbert
modelling of the dynamics, including the time dependent aniso-
tropy resulting from the magneto-elastic changes induced by the
acoustic strain, also provides the detailed influence of the material
properties such as the precession damping. The consequences of
this work are important whenever a precise control of the mag-
netization dynamics is desired. This is the case for example in
spintronics for controlling spin torques but it can also be used
for fundamental studies related to the lattice dynamics of materi-
als particular when several individual modes co-exist. Let us finely
emphasize that even though the duration of acoustic pulses is in
the terahertz range, the control of the magnetization dynamics can
be performed with an extreme precision as it is related to the time
delays of the acoustic pulses, themselves generated by femto-
second optical pulses.
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