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Abstract

Background: Binding of the viral envelope protein (Env), and particularly of its gp120 subunit, to the cellular CD4
receptor is the first essential step of the HIV-1 entry process. The CD4 binding site (CD4bs) of gp120, and especially
a recessed cavity occupied by the CD4 Phe43 residue, are known to be highly conserved among the different
circulating subtypes and therefore constitute particularly interesting targets for vaccine and drug design. The
miniCD4 proteins are a promising class of CD4bs inhibitors. Studying virus evolution under pressure of CD4bs
inhibitors could provide insight on the gp120-CD4 interaction and viral entry.

Results: The present study reports on the resistance induction of two subtype B HIV-1 against the most active
miniCD4, M48U1, and its ancestor, M48, and how these mutated positions affect CD4bs recognition, entry efficiency,
and sensitivity to other CD4bs inhibitors. Resistance against M48U1 was always associated with S375R/N substitution
in both BaL and SF162; M48 resistance was associated with D474N substitution in SF162 and with H105Y
substitution in BaL. In addition, some other mutations at position V255 and G471 were of importance for SF162
resistant viruses. Except for 474, all of these mutated positions are conserved, and introducing them into an SF162
Env expressing infectious molecular clone (pBRNL4.3 SF162) resulted in decreased entry efficiency. Furthermore,
resistant mutants showed at least some cross-resistance towards other CD4bs inhibitors, the V3 monoclonal
antibody 447-52D and some even against the monoclonal antibody 17b, of which the epitope overlaps the
co-receptor binding site.

Conclusions: The mutations H105Y, V255M, S375R/N, G471R/E, and D474N are found to be involved in resistance
towards M48 and M48U1. All mutated positions are part of, or in close proximity to, the CD4bs; most are highly
conserved, and all have an impact on the entry efficiency, suggesting their importance for optimal virus infectivity.
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Background
The entry process of the Human Immunodeficiency
Virus type 1 (HIV-1) into host cells is an important tar-
get for the development of preventive vaccines and
microbicides. HIV-1 entry is a multi-step process that is
mediated by the envelope surface glycoprotein gp120
and the transmembrane glycoprotein gp41 [1,2]. These
two subunits constitute a functional heterotrimeric
* Correspondence: karien@itg.be
1Virology Unit, Department of Biomedical Sciences, Institute of Tropical
Medicine of Antwerp, Antwerp, Belgium
Full list of author information is available at the end of the article

© 2012 Grupping et al.; licensee BioMed Centr
Commons Attribution License (http://creativec
reproduction in any medium, provided the or
molecule that enables the virus to interact with its pri-
mary receptor, CD4 [3–10]. The gp120-CD4 interaction
triggers a conformational change that allows binding of
gp120 to its co-receptor, most frequently CCR5 or
CXCR4, and induces refolding of gp41, finally resulting
in fusion with the target cell membrane [11,12].
Three distinct gp120 core structures were revealed: (1)

a heavily glycosylated outer domain that is exposed to
the surface of the trimer, (2) an inner domain that inter-
acts with the gp41 subunit, and (3) a four-stranded anti-
parallel β-sheet (i.e. the bridging sheet) connecting the
outer and inner domains. The CD4bs is formed at the
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interface of these three domains and buries a large sur-
face of approximately 800 Å2. However, the area of ac-
tual contact between gp120 and CD4 is much smaller
because of cavities formed at the interface. One of these
cavities is plugged by the aromatic ring of phenylalanine
43 of the CD4 receptor and, as a consequence, named
the Phe43-cavity [11]. This important region, at the
interface of the outer and inner domains and the bridg-
ing sheet, is well-conserved among the different HIV-1
subtypes and is crucial in the lifecycle of the virus [13].
Because of its high genetic and functional conserva-

tion, the CD4bs, and in particular the Phe43-cavity, is
considered an extremely interesting target for the devel-
opment of HIV-1 entry inhibitors [11,13–16].
Several potent CD4bs inhibitors such as soluble CD4

(sCD4), BMS-378806, NBD-556, some llama heavy-chain
antibodies (A12, D7, and C8), and various CD4bs anti-
bodies have already been described in literature [17-24].
The best known broad neutralizing monoclonal antibody
(mAb) is IgG1b12, which can neutralize 75% of all clade
B primary viruses and 40% of all known HIV-1 isolates
in vitro. It has also been shown to protect macaques
from infection [25–29]. Furthermore, recent discoveries
have led to some new potent CD4bs mAbs such as HJ16,
VRC01, VRC02, VRC03, NIH45-46, 8ANC131, and
12A12 [30–32].
CD4 mimetic compounds, also called miniCD4s, con-

stitute a very promising class of CD4bs inhibitors, e.g.
M48 and M48U1 [23,33–38]. Upon binding with HIV-1
and similarly to the cellular CD4 receptor, M48 and
M48U1 induce conformational changes in the gp120
architecture thereby exposing masked epitopes on the
envelope protein. Furthermore, they were shown to have
antiretroviral activities in the nanomolar range [33,35].
Besides their potent antiviral activity, these CD4 mimetic
miniproteins also have very interesting physico-chemical
characteristics such as their small size (27 amino acids),
stable conformation in denaturing conditions such as
acidic pH and high temperatures, and relative resistance
towards proteolytic degradation [33]. Considering the va-
ginal environment, it is clear that these characteristics
are extremely relevant for microbicide candidates [39].
The most potent miniCD4, M48U1, derived from its an-
cestor M48, was created by adding a flexible cyclohexyl-
methoxy group in the para-position of the phenylalanine
at position 23 of M48, a residue mimicking Phe43 of
CD4. This results in a miniCD4 with high affinity for the
conserved and vulnerable Phe43-cavity.
In this study, we investigated the evolution of HIV-1

under miniCD4 pressure to get a better understanding of
the miniCD4-virus interaction. To this end, resistance
induction in two subtype B viruses was performed; and
the genotype, as well as the phenotype, of these viruses
was characterized.
Results
In vitro resistance induction and genotyping
Resistance was induced against M48 and M48U1 by ex-
posing the CCR5-tropic subtype B HIV-1 viruses BaL
and SF162 to increasing concentrations of the miniCD4
mimetic proteins M48 or M48U1 in PHA/IL-2 stimu-
lated donor peripheral blood mononuclear cells
(PBMCs). In addition, resistance was also induced
against an equipotent combination of M48 and M48U1.
In general, resistance was rapidly acquired (see

Table 1), which reflects the flexible nature of the en-
velope glycoprotein and confirms the low genetic
barrier for development of resistance towards most
entry inhibitors.
Resistance induction was repeated in two independent

experiments (referred to as viruses ‘a and b’). Gp120 se-
quencing was done at the time when the resistance level
was at least 100x above the IC50 of M48 or M48U1 and
for most virus cultures also at intermediate time points
(Table 1). Sequencing indicated that the serine at pos-
ition 375, part of the constant region 3 of gp120 (C3)
and situated in the outer domain, was altered in all
M48U1 resistant viruses. An arginine was found in both
M48U1 resistant BaL viruses and in one of the M48U1
resistant SF162 viruses (rM48U1SF162_a), whereas an
asparagine was observed in the second M48U1SF162 re-
sistant virus (rM48U1SF162_b) (Table 1).
In addition to the S375R/N mutation, both

rM48U1SF162 viruses displayed mutations at other
amino acid positions. Both G335 and G471 were
mutated into an arginine in rM48U1SF162_a after the
S375R mutation was induced, whereas V255M and
L494V mutations were observed in rM48U1SF162_b
prior to the appearance of S375N. The valine at position
255 is, similar to S375, a highly conserved residue lining
the Phe43-cavity. Both V255 and G471 are part of C2
and C5, respectively, and contribute to the outer domain,
which makes up the largest part of the CD4bs [11,40].
Interestingly, virus rM48U1SF162_b had, besides the
S375N and V255M amino acid changes, an additional
mutation close to the gp120-gp41 cleavage site; i.e.
L494V.
In contrast to the M48U1 resistant viruses, which have

most of their mutations in the outer domain, we found
that the viruses resistant to M48 and the combination
of M48U1/M48 have mutations in the inner domain
(Figure 1 and Table 1). Whereas the wild type BaL virus
has a histidine at position 105, the rM48BaL virus car-
ries a tyrosine at this position (C1). The SF162 viruses,
resistant against M48 (rM48SF162_a and rM48SF162_b)
and against the combination of M48U1 and M48
(rCombiSF162_a), displayed the same mutational pattern
where the aspartic acid at position 474 (in C5) is altered
into an asparagine (D474N). The second SF162 virus



Table 1 Resistance development in virus isolates exposed
to increasing amounts of miniCD4

Virus miniCD4 day of
harvest

mutations
found

resistant virus

BaL M48 14 none found

21 H105H/Y mix

28 nd

42 H105Y rM48BaL_a

BaL M48U1 14 none found

21 nd

28 nd

36 S375R

45 S375R rM48U1BaL_a

BaL M48U1 14 nd

20 S375S/N mix

27 nd

35 nd

48 S375R rM48U1BaL_b

SF162 M48 14 D474D/N mix

21 D474D/N mix

28 D474N

57 D474N rM48SF162_a

SF162 M48 13 nd

25 nd

58 D474N rM48SF162_b

SF162 M48U1 14 S375S/R mix

22 S375R

28 nd

59 G335R, S375R,
G471R

rM48U1SF162_a

SF162 M48U1 14 V255M, L494L/V mix

21 V255M, L494V

28 V255M, S375N, L494V

57 V255M, S375N, L494V rM48U1SF162_b

SF162 M48+
M48U1

14 D474N

21 D474N

29 nd

50 D474N rCombiSF162_a

SF162 M48+
M48U1

13 nd

25 nd

34 D474N, L494L/V

58 G471E, D474N, L494V rCombiSF162_b

Numbering used is according to the HxB2 sequence. nd: not done.
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resistant to the combination of both miniproteins
(rCombiSF162_b) revealed two additional mutations in
the outer domain, namely G471E and L494V.
In summary, all mutated positions except two, i.e.

G335R and L494V are part of or in very close proximity
to the CD4bs and particularly near to the Phe43-cavity
(Figure 1). The resistance-associated mutations appear
often as early as day 14 after the start of drug exposure
(Table 1).
Comparative sequence analysis of 3045 HIV-1/SIV Env

sequences from the Los Alamos HIV Sequence database
(accessed September 2011) showed that most of the
mutated positions that we identified are conserved across
the most common clades (Table 2). At least 79% of the
clade A, B, C and CRF02_AG sequences checked show a
histidine at position 105, a valine at position 255, a serine
at position 375, a glycine at position 471, and a leucine at
position 494. Histidine at position 105 and serine at pos-
ition 375 are less common in CRF01_AE Env sequences;
however, the amino acids found in the M48 and M48U1
resistant viruses at these positions (i.e. Y and R, respect-
ively) were not found in CRF01_AE isolates. In general,
only 7 (out of 3045 HIV-1/SIV sequences, Table 2) natur-
ally occurring sequences were found carrying the H105Y,
V255M, or S375R mutations, suggesting that these muta-
tions are extremely rare. Furthermore, asparagine, glu-
tamic acid, and valine at positions 375, 471, and 494,
respectively, were only observed in few cases (between 0%
to 8% of sequences, Table 2). In contrast, a glycine to ar-
ginine substitution at position 335 and an aspartic acid to
asparagine substitution at position 474 appear quite com-
mon among the different subtypes (Table 2).

Binding experiments with SF162 gp120 mutants
To explore the contribution of the different amino acid
mutations in the interaction between gp120 and the
miniCD4 proteins M48 and M48U1, site-directed
mutants of SF162 env were generated carrying one of the
RAMs: H105Y, V255M, G335R, S375R, S375N, G471R,
D474N or L494V (see Table 3 for an overview of SDMs).
These gp120 mutants were tested in binding assays to as-
sess the interaction with the M48 and M48U1 miniCD4
proteins using fluorescence polarization. Figure 2 shows
the fold increase in Kd for the different mutants in com-
parison with the native SF162 gp120.
Mutations G335R, S375N, D474N and L494V displayed

Kd values comparable to SF162 wild type (WT) gp120
and therefore did not have a significant impact on the af-
finity of HIV-1 Env for both M48 and M48U1, as
reflected in a fold Kd close to 1 (Figure 2A). Residues
G335 and L494 are located away from the CD4bs
(Figure 1) and are accompanied by either S375R/N and/
or V255M. Therefore, it is not surprising that they do not
influence the affinity for miniCD4 protein binding. We
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Figure 1 Locations of gp120 mutations associated with resistance towards miniCD4 proteins M48 and M48U1. Overall view of gp120
(grey), and M48 (blue). Based on the previously published structures of YU2 core gp120 and Fab 17b in complex with sCD4 or with M48 miniCD4,
all the native residues (His105, Val255, Gly335, Ser375, Gly471, Asp474 and Leu494) that are present in BaL or SF162 envelope and were mutated
during the resistance induced by M48 and/or M48U1 are represented in yellow and in ball formats. The Phenylalanine at position 23 of M48 is
highlighted in red and in stick representation. This drawing was made using PyMOL with coordinates that can be found at pdb accession codes
[PDB:2I60] and [PDB:3JWD].
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identified D474N as single resistance-associated mutation
in the viruses rM48SF162_a, rM48SF162_b, and rCom-
biSF162_a. D474N is situated at the edge of the inner do-
main, close to the CD4bs and known to be a direct CD4
and miniCD4 contact residue [36,41]. Nevertheless, loss
of the aspartic negative charge does not affect the binding
affinity of M48, M48U1 or sCD4 to gp120. This is
expected because Asp474 faces the hydrophobic part of
miniCD4 D-Pro21 and the side chain of CD4 Gln25, and
is located too far away for a hydrogen bond.
On the contrary, the mutations H105Y, V255M, S375R,

and G471R, all located close to or in the CD4bs (Figure 1),
have a clear impact on the Kd values. Envelopes carrying
these mutations lost affinity for the M48 miniCD4 protein,
whereas only the arginine on position 375 resulted in an
extreme reduction in affinity for M48U1, the most potent
miniCD4 protein specifically targeting the Phe43-cavity
(Figure 2A). Of note, the S375N mutation did not signifi-
cantly impact the binding affinity.
To further validate these observations, the H105Y,

V255M, S375R/N, G471R and D474N mutant SF162
envelopes were also evaluated in the context of replica-
tion competent pBRNL4.3 molecular clones (Figure 2B).
With the exception of H105Y, results correlated with
binding affinity studies and confirmed the importance of
V255M and S375R/N in resistance towards M48 and
M48U1. Whereas binding of M48 to H105Y mutant
monomer gp120 was affected (approx. 40-fold increase
in Kd), the impact of this mutation was less apparent in
the context of the pBRNL4.3 molecular clone, where
gp120 is in its natural trimeric conformation. Similarly,
the G471R mutation resulted in small increases in Kd,
but had no apparent effect in the context of replication
competent HIV. Because the infectivity of the V255M
substitution was dramatically reduced, no IC50 could be
calculated.
Furthermore, S375R and D474N mutations were intro-

duced in different gp120 backgrounds (a primary subtype
C strain VI829 and a primary CRF02_AG strain VI1090;
Figure 2C), again confirming the pivotal role of the 375
residue in the interaction of M48U1 with envelope. All
mutant S375R pseudoviruses had a dramatic increase in
IC50 for the miniCD4 M48U1 compared to wild type
pseudovirus IC50 values (Figure 2C).
Of note, although D474N was found as resistance-

associated mutation in 4 out of 5 viruses made resistant
against M48, this residue did not significantly affect the
binding (Figure 2A), nor the sensitivity to inhibition by
M48 or M48U1 (Figure 2B and 2C).

Impact of M48 and M48U1 resistance associated mutants
on entry efficiency
The observed impact of some mutations on the binding
affinities, together with the conserved nature of most



Table 2 Prevalence of observed mutations in HIV-1 sequences

HIV-1 subtype CRF

Amino Acid Position All A B C 01_AE 02_AG

105 H wt 83 90 87 97 6 98

Y mutant ~ 0a 0 0 ~ 0 0 0

255 V wt 96 92 97 98 98 96

M mutant 0 0 0 0 0 0

335 G wt 21 10 14 13 81 11

R mutant 32 55 46 17 6 39

375 S wt 78 91 79 92 1 93

R mutant ~ 0 ~ 0 ~ 0 ~ 0 0 0

N mutant 2 0 3 8 0 0

471 G wt 78 87 80 80 84 91

R mutant ~ 0 0 ~ 0 0 1 0

E mutant 4 3 3 6 8 5

474 D wt 62 78 68 55 8 95

N mutant 36 22 31 44 92 5

494 L wt 92 92 93 99 99 83

V mutant 1 1 2 ~ 0 0 1

Prevalence (in percentage) of certain amino acids for the most prevalent HIV-1 subtypes at positions mutated in the resistant viruses is given. All: 3045 HIV-1/SIV
Env sequences (Los Alamos National Lab data bank 2011); A, B and C correspond to HIV-1 subtypes. Number of Env sequences: subtype A= 186; subtype B= 1001;
subtype C= 756; CRF01_AE = 186; CRF02_AG= 100. a ~ 0 means less than 0.3%.
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mutated residues, raises the question whether these
mutations influence the entry efficiency. To answer this
question, mutations H105Y, V255M, S375R, S375N,
G471R, and D474N were introduced in the SF162 WT
env gene using site-directed mutagenesis (Table 3).
About 30% of all sequences have an Arg residue at pos-

ition G335; and given that the G355R mutant does not im-
pact on the miniCD4’s affinity, this mutant was excluded
from further analysis. Also the L494V mutant, although
more conserved, but located away from the miniCD4 inter-
action site and not affecting CD4 binding, was excluded. Al-
though a third of the known gp120 sequences share an
Asn474 residue, it was the only mutation found to be
Table 3 Summary of site-directed mutants

SF162 gp120 Pseudovirus clones

Monomer
gp120
for binding
studies

pBRNL4.3
clones

SF162 BaL VI829 VI1090

H105Y H105Y

V255M V255M

G335R

S375R S375R S375R S375R S375R

S375N S375N

G471R G471R

D474N D474N D474N D474N
associated with M48 resistance in SF162, and therefore it
was tested alongside the H105Y, V255M, S375R/N and
G471R mutants.
Briefly, mutant envelopes were cloned in a delta-Env

pBRNL4.3 molecular clone. Reverse transcriptase (RT)
activity of each mutant virus was determined, and equal
amounts (40 pg of RT) were used to infect TZM-bl cells.
The entry efficiency of each mutant was measured rela-
tive to the pBRNL4.3 clone bearing the WT SF162
envelope.
Two mutations, H105Y and V255M, had a dramatic

negative effect on entry efficiency, resulting in respectively
1% and 2% of infection relative to WT virus (Figure 3A). As
mentioned before, these two residues are highly conserved
among the most prevalent subtypes (Tyr105 in only 3 out
of 3045 sequences and no Met255), are in close proximity
to the CD4bs, and substantially affect the binding affinities
for M48 (Figure 2A). Nevertheless, the H105Y mutation
was only observed in the BaL virus and not in SF162, sug-
gesting that this mutation may be BaL-specific. The mo-
lecular clone with an arginine instead of a serine at position
375 had an entry efficiency of only 33% relative to WTvirus.
The other mutated positions, S375N, G471R, and D474N
affected entry efficiency to a lesser extent, with mean per-
centages of infection relative to the WT clone ranging from
50 to 68%. However, an alanine at position 474 was
described previously to make a BaL pseudovirus completely
non-infectious, where the same mutation introduced in a
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Figure 2 (A) Binding affinities of fluorescently labelled M48 and
M48U1 towards gp120SF162 mutants. Fluorescently labeled M48
and M48U1 were tested for their affinity towards single site-directed
mutants of the SF162 gp120 protein by fluorescence polarization
analysis. The fold increase in Kd is plotted relative to the WT SF162
gp120. The H105Y mutation, found in the rM48BaL virus, was also
introduced in the SF162 gp120 background. (B) Sensitivity of Env-
mutant pBRNL4.3 molecular clones towards miniCD4 proteins.
pBRNL4.3 replication competent molecular clones, carrying the
H105Y, S375R, S375N, G471R, and D474N mutations were tested for
their sensitivity towards the miniCD4 in a TZM-bl based assay. Fold
increase in IC50 values is given and is calculated as follows: IC50
values from the mutant pBRNL4.3 viruses divided by the IC50 value
from the control wild-type SF162 pBRNL4.3 virus. >; IC50 could not
be exactly quantified because maximal nontoxic levels of miniCD4
were reached. (C) Sensitivity of mutant pseudoviruses for miniCD4
proteins. The S375R mutation was introduced in the envelopes of
the subtype B BaL virus, the primary subtype C VI829 virus, and the
primary CRF02_AG VI1090 strain and used to produce mutant
pseudoviruses. D474N was introduced in the BaL and SF162
background. Sensitivity towards the miniCD4 was evaluated in a
TZM-bl based assay, and results are depicted as fold increase in IC50
values, which was calculated as described above. >; IC50 could not
be exactly quantified because maximal nontoxic levels of miniCD4
were reached.
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YU-2 pseudovirus did not have any effect on the infectivity
[42].
Together, these observations suggest that (1) position 474

could be of importance for optimal virus infectivity, and (2)
the introduced mutations are context-dependent, i.e. the
envelop environment is of importance for the phenotype.

Viral growth kinetics on CD4 negative HOS cells and
primary monocyte-derived macrophages (MDM)
Viruses adapted to replicate in CD4 negative cells and in
cells expressing low levels of CD4 have been described in
literature [43]. Blockage of the CD4 receptor using e.g. CD4
mimetics could skew viruses towards a phenotype of less
CD4-dependency, which would theoretically offer the virus
the opportunity to replicate in a very diverse subset of cells.
To address this, we investigated the viral growth kinetics on
a CD4 negative HOS cell line and on primary monocyte-
derived macrophages (MDM). MDM express low levels of
surface CD4 and represent an in vivo target cell population
for HIV replication.
All WT and resistant viruses were able to grow in HOS

CD4+ CCR5+ cells, whereas none of the viruses replicated
in HOS CD4- CCR5+ cells (data not shown). Because
MDM are a more representative model, we determined the
viral growth in this cell type. MDM were infected with WT
and resistant viruses at a multiplicity of infection (MOI) of
10-3 and cultures were maintained for 15 days. Viral replica-
tion was monitored at different time points using Gag p24
production as a measure of viral growth. Figure 3B shows
the results from two independent blood donors. Overall,
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Figure 3 Evaluation of the effect of the different resistance-associated mutations on HIV-1 entry efficiency and viral growth kinetics. (A)
Mutations H105Y, V255M, S375R/N, G471R and D474N were introduced in the SF162 envelope by site-directed mutagenesis and subsequently
cloned into a full –length pBRNL4.3 plasmid, generating replication competent virus. TZM-bl cells were infected with the different viruses using
equal amounts of RT activity (40 pg RT). The entry efficiency is expressed as a percentage relative to the pBRNL4.3 bearing the wild type envelope
sequence of SF162. The H105Y mutation is related to the rM48BaL virus; however for these experiments this mutation was also introduced in the
SF162 envelope. (B) Viral replication of the original resistant SF162 and BaL viruses and their respective control wild type viruses in monocyte-
derived macrophages (MDM). Results of two independent experiments are shown. Viral titers were first determined on PHA/IL-2 stimulated PBMCs
from each of the two donors. Next, monocytes from the same donor were differentiated into MDM and infected at a multiplicity of infection of
10-3. Cultures were incubated for 15 days, and viral growth was determined on different time points by measuring the p24 amount in the
supernatants.

Grupping et al. Retrovirology 2012, 9:36 Page 7 of 16
http://www.retrovirology.com/content/9/1/36



Grupping et al. Retrovirology 2012, 9:36 Page 8 of 16
http://www.retrovirology.com/content/9/1/36
the WT viruses replicated more efficiently in MDM than
the resistant viruses (Figure 3B).
The mutant virus carrying H105Y showed a clear reduc-

tion in infectivity (approximately 1 log) in MDM, confirm-
ing the low entry efficiency observed in TZM-bl cells. More
dramatic effects were seen with virus carrying V255M,
S375N and L494V and the virus carrying D474N, with ex-
tremely poor replication in MDM.
Together with the observations done in the HOS cells,

this finding suggests that resistance induction towards
the miniCD4 M48 and M48U1 is not substantially driv-
ing the viruses to a CD4 independent phenotype.

Mapping the sensitivity towards HIV-1 inhibitors and
antibodies
To identify the phenotype of the different resistant viruses,
we examined potential cross-resistance against various entry
inhibitors, including the CD4bs inhibitors s(oluble)CD4, the
mAb IgG1b12 and the llama nanobody A12 (Figure 4A),
the CD4-induced (CD4i) mAb 17b, and the V3-directed
mAb 447-52D (Figure 4B), and the non-gp120 binders
4E10, 2F5 (directed against gp41 MPER) and dapivirine
(TMC120; a non-nucleoside reverse transcriptase inhibitor)
(Figure 4C) in a TZM-bl assay. The non-gp120 binding
agents were included as controls, since they are not
expected to be influenced by miniCD4 protein resistance.
We used “fold change in resistance” as a measure of cross-
resistance, defined as the IC50 (50% inhibitory concentra-
tion) of the resistant viruses divided by the IC50 of the con-
trol viruses BaL and SF162, which were cultured in parallel
with each resistance induction. As expected, there was no
substantial difference in sensitivity of M48 and M48U1 re-
sistant versus wild type viruses (fold change between 0.36
and 4.6) towards the control compounds 4E10, 2F5 and
TMC120, confirming that the M48 and M48U1 RAMs in
gp120 have no effect on the accessibility of the MPER in
gp41, nor on RT function (Figure 4C).
However, cross-resistance towards several CD4bs inhibi-

tors was demonstrated. The virus rM48BaL (H105Y) was
not only resistant to M48, but also to M48U1 and sCD4.
The other M48 resistant viruses, rM48SF162_a and
rM48SF162_b (D474N), showed a different cross-resistance
profile. Besides resistance against the two miniproteins and
sCD4, a high level of resistance towards the nanobody A12
was seen. Not surprisingly, the two viruses rCombiSF162,
possessing the D474N mutation show a similar resistance
profile as both rM48SF162 viruses, i.e. resistant towards
M48, M48U1, sCD4, and A12.
Both rM48U1BaL viruses (S375R) showed extensive

cross-resistance to A12, no cross-resistance to M48; and
further they were the only mutant viruses which remained
completely sensitive to sCD4. The two M48U1 resistant
SF162 viruses were cross-resistant to A12, but in contrast
to the BaL mutants, displayed also resistance against M48
and sCD4. Finally, SF162 viruses with an asparagine on
position 474 presented the highest loss in sensitivity to the
mAb b12. Since side chain interactions on this position
are involved in b12 binding, this result was not surprising
[44].
We also tested whether miniCD4 protein induced re-

sistance affected the sensitivity towards the CD4-induced
(CD4i) monoclonal antibody 17b and confirmed that
mutant viruses carrying D474N or S375R/N or V255M
were resistant to inhibition by 17b (Figure 4B). This anti-
body recognizes an epitope overlapping the conserved
co-receptor binding site, indicating that the changes in
the gp120 region documented here for M48 and M48U1
resistance have an impact on the accessibility of the co-
receptor binding surface. Furthermore, SF162 viruses re-
sistant towards M48 and the combination of M48 and
M48U1, all carrying the D474N mutation, showed sub-
stantial cross-resistance to the V3 mAb 447-52D,
whereas the viruses resistant towards M48U1 only
showed marginal cross-resistance to this mAb
(Figure 4B).
Overall, we can conclude that all our mutant viruses

showed some cross-resistance to different CD4bs inhibi-
tors, to the CD4i mAb 17b, and to some extent towards
the V3-directed mAb 447-52D.

Discussion
Since many years the CD4bs is considered a very inter-
esting target to block HIV-1 infection. This vulnerable
and conserved site on the otherwise genetically diverse
envelope protein is essential for the viral entry process.
Many studies are being carried out to precisely define
the binding surface of CD4 and to pinpoint critical
amino acids involved in the gp120-CD4 interaction. So
far it is defined as a discontinuous epitope with several
distinct regions of gp120 involved [11,45–51]. More than
half of the gp120-CD4 interaction surface is formed by
the gp120 residues 365–371 and 425–430 as well as the
amino acids lining the Phe43-cavity (Trp112, Val255,
Thr257, Glu370, Phe382, Tyr384, Trp427, Met475 and
the main chains of 256 and 375–377). Although these
lining residues contribute little to the direct interaction
with CD4, they can certainly have an effect on the
gp120-CD4 interaction or on the binding of CD4bs anti-
bodies [11,50]. Most of the interactions between CD4
and the envelop protein are dedicated to the outer do-
main with the CD4 binding loop as central focus. This
loop, formed by ten continuous amino acids (364–373),
is essential for the CD4-gp120 binding. Several CD4bs
binders, neutralizing and non-neutralizing, have been
described to date [26,30-32,47,52,53]. In general, shared
regions involved in binding of CD4 and most CD4bs
mAbs are the amino acids 257, 368–370, 421–427, and
457. Changes in amino acids Asp368 and Glu370 disrupt
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B. V3 and CD4i inhibitors

Figure 4 Mapping the sensitivity of the resistant viruses towards other HIV inhibitors. The sensitivity against (A) the CD4bs inhibitors M48,
M48U1, sCD4, mAb b12, llama nanobody A12, (B) the CD4i mAb 17b, and the V3 mAb 447-52D and against (C) the anti-gp41 mAbs 4E10 and 2F5,
and the NNRTI TMC120, were tested in a TZM-bl assay. Fold change in IC50 values was calculated as follows: IC50 values from the resistant viruses
divided by the IC50 value from the control wild-type virus. Control viruses are cultured without compound in parallel with the resistance
inductions; i.e. each resistant virus has its control wild-type virus which was used as a reference to determine ‘wild-type’ IC50 values. Technical cut-
off (TCO) values were used to define the susceptibility of each virus to a given inhibitor. TCOs were defined as the means and standard deviations
(SD) of the IC50 values obtained for the control wild-type viruses according to the following formula: TCO= 1+ 2 SD/mean. >; IC50 could not be
exactly quantified because maximal nontoxic levels of miniCD4 were reached.
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the binding of CD4 in CD4bs mAbs and are therefore
critical for the CD4bs epitope [11,45–51]
Here, we describe mutations found in viruses resistant

to the miniCD4 proteins M48 and M48U1, two highly ac-
tive CD4bs inhibitors. Resistance was induced to evaluate
the evolution of the virus under miniCD4 pressure. Over-
all, most mutations found are situated in the outer do-
main, which makes up the major part of the CD4bs. Two
mutated residues, V255 and S375, both highly conserved,
contact the Phe43-cavity and are known to influence the
interaction of CD4 or CD4bs antibodies with the
envelope protein [11,54–57]. A methionine at position
255, found in one of the SF162 M48U1 resistant viruses,
together with a S375N and L494V substitution presum-
ably destabilizes and/or occluded the Phe43-cavity
(Figure 5A). A decrease in affinity of M48 towards the
SF162 gp120 V255M mutant suggests that the CD4bs
region changed to some extent. Previously, a V255E sub-
stitution was shown to be responsible for in vitro selected
sCD4 resistant viruses [54]. The polar amino acid serine
at position 375 is mutated in all M48U1 resistant viruses.
The arginine side chain at this position is predicted to fill
the gp120 Phe43-cavity, the main target of M48U1,
Ser375

Val255

A.

B.

WT

Figure 5 Close-up views of both V255M and S375R mutants in interac
and of the mutant Met255 residue in space fill (right) showing a steric clash
phenylalanine 23 of M48U1 in red stick representation. (B) Close-up of the
space fill (right) showing a steric clash with the cyclohexylmethoxy moiety
representation. This drawing was made using PyMOL with coordinates that
implying a steric hindrance to the approach of the cyclo-
hexylmethoxy moiety harbored by the modified Phe23 of
M48U1 (Figure 5B). As the ancestor miniCD4 protein
M48 is lacking this extra moiety, it does not penetrate as
deep into the Phe43-cavity, and therefore attachment of
this miniCD4 protein is still possible in the presence of
Arg375 (Figure 5B). In concordance, our binding studies
revealed a significant decrease in affinity of M48U1, com-
pared to the wild type gp120 affinities, towards the SF162
gp120 S375R mutant, but the same was not observed for
M48. In addition, we showed that an asparagine instead
of a serine on 375, which does not obstruct the Phe43-
cavity, had no dramatic effect on the interaction between
both M48U1 and M48 and the mutant gp120. Previously,
other groups have reported on the importance of position
375 in interactions of gp120 with CD4 and with CD4bs
inhibitors. McKeating et al. described a virus where a sin-
gle S375N substitution conferred the virus resistant to a
neutralizing human serum containing CD4bs antibodies
and another group reported on this substitution in
viruses resistant towards sCD4 and NBD-556, a small
molecule that mimics CD4 [54,55]. Next, a tryptophan
substitution on 375 fills the Phe43-cavity and forces
Met255

Mutant

Arg375

tion with M48U1. (A) Close-up of the Val255 residue in space fill (left)
with the cyclohexylmethoxy moiety at the para position of

Ser375 residue in space fill (left) and of the mutant Arg375 residue in
at the para position of phenylalanine 23 of M48U1 in red stick
can be found at pdb accession codes [PDB:2I60] and [PDB:3JWD].
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gp120 into a CD4-bound conformation, which seems to
contradict with the observed cross-resistance against 17b
in this study [57]. This mutation was also involved in re-
sistance towards some CD4bs compounds from the BMS
family of entry inhibitors (BMS-806, #155, and BMS-
488043) [54,56,58].
The histidine at position 105, highly conserved and

part of the inner domain, was only found mutated in the
M48 BaL resistant virus; but nevertheless H105Y con-
ferred resistance, not only to M48, but also to M48U1
and sCD4. However, since this mutation was only found
in BaL, it may be strain-specific.
Somewhat controversial data were collected for the

D474N substitution. The SF162 viruses resistant towards
M48 and one of the SF162 viruses resistant against the
combination of M48 and M48U1 (rCombiSF162_a) all
selected for this D474N substitution as a single mutation.
This mutation was shown to decrease the entry efficiency
into TZM-bl cells by 39%, but no significant differences
were found in binding affinities for M48 and M48U1 to-
wards the D474N mutant SF162 gp120 protein. Further-
more, the pBRNL4.3 replication competent clone and
the mutant pseudoviruses carrying D474N failed to re-
produce the resistance observed with the SF162 resistant
strains. Moreover, this mutation appears quite common
in naturally occurring viruses (Table 2). A previous study
reported a D474A mutant with nearly wild type affinity
for CD4-Ig, but with a marked decrease in neutralization
sensitivity [59]. This mutant was also shown to impair
viral fusion and fitness, especially for the BaL strain [42].
However, as observed in gp120 three-dimensional struc-
tures, Asp474 makes a strong hydrogen bond with
Arg476, which is impossible with an alanine residue at
this position. Notably, the D474A mutation was also not
detected in naturally occurring viruses (Los Alamos
HIV-sequences database). Taken together, we do not
have a valuable mechanistic explanation for this D474N
resistant mutant to date.
It is important to take into consideration the drawbacks

of the different techniques used. First, in silico modeling
and fluorescence polarization binding studies using mono-
meric gp120 proteins are not fully representative for the
native gp120 and gp41 structure; nor do they model the
gp120-gp41 interaction, the interaction of the variable
loops, and the interaction between the three units that
make up a functional spike completely correct. Secondly,
there is considerable evidence suggesting that the genetic
environment is of importance for optimal envelope inter-
actions and functioning [60–62]. Expressing Env in a non-
isogenic backbone could affect the quaternary structure of
the envelope protein and hence its function.
By analyzing 3045 sequences of the Los Alamos Data-

base, we found that most mutated amino acid residues
are strongly conserved across HIV-1 clades. This
conserved nature of the mutated positions strongly sug-
gests that they are critical for the survival of the virus.
So, the next question we wanted to address was if the
different mutations had an impact on entry efficiency.
Therefore, we infected TZM-bl cells with different
pBRNL4.3 viruses containing the envelope from wild
type or mutant SF162. We showed that all gp120
mutants tested entered target cells less efficiently com-
pared to WT virus. Two mutations resulted in a severe
reduction in entry efficiency, with almost no infection
observed for H105Y and V255M. The S375R substitution
was responsible for a 67% reduction in entry efficiency.
Finally, the effect on entry was less pronounced for the
viruses bearing the S375N, G471R, and D474N substitu-
tions. Surprisingly, a D474A substitution was previously
shown to have a severe effect on viral infectivity in a BaL
pseudovirus, but the same was not true for a YU-2 pseu-
dovirus [42]. Again, these results show the importance of
the envelope environment for the phenotype.
Skewing viruses towards a CD4 independent pheno-

type can be a concern when using CD4 mimics. There-
fore, we evaluated the viral growth on CD4 negative
HOS cells and on CD4low MDM. There was no viral
growth observed on CD4 negative HOS cells, whereas all
viruses were able to grow on HOS CD4+ CCR5+ cells.
Evaluation of the growth kinetics in MDM revealed that
WT viruses were more efficiently replicating in MDMs
than the resistant ones. Taken together, there is no evi-
dence that the mutations we have identified as key to the
development of resistance against the miniCD4 proteins
M48 and M48U1 are rendering the virus less dependent
on CD4 for entry.
Finally, we wanted to know if the observed mutations

had an impact on the inhibitory potential of other CD4bs
inhibitors. Therefore, we tested the resistant viruses to-
wards some other CD4bs inhibitors, the mAbs 4E10,
2F5, 17b, 447-52D and the NNRTI TMC120. Taken to-
gether, we observed cross-resistance towards all other
CD4bs inhibitors to some extent. All viruses except one
(rM48BaL) became cross-resistant towards the nanobody
A12. The exact recognition site is not yet revealed, but
A12 is considered to target a region within or close to
the CD4bs since it competes with CD4 and b12 for
gp120 binding [22]. Our results indeed support this pre-
diction. Furthermore, only the BaL viruses resistant to-
wards M48U1 showed wild type levels of sensitivity
towards sCD4, consistent with data published about the
S375W mutation, while the other viruses showed some
cross-resistance. Residues lining the Phe43-cavity, such
as V255 and the main chain of S375, are known to pos-
sibly impact the binding of CD4 or CD4bs antibodies
[11,44,54]. Because glycine at position 471 and aspartic
acid at 474 have been described to interact with CD4,
b12, and VRC01 [11,44,59], the observed cross-resistance
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of some viruses was not surprising. Some low level
cross-resistance against the mAb b12 was observed for
the M48 SF162 resistant viruses and for the viruses re-
sistant towards the combination. All these viruses had
the exact same position (Asp474) mutated which could
account for the observed resistance.
All SF162 resistant viruses were cross-resistant towards

the mAb 17b, which targets a CD4-induced region, over-
lapping the conserved co-receptor binding site. Also
some cross-resistance towards the V3 mAb 447-52D was
observed for all SF162 resistant viruses carrying the
D474N mutation. These results, together with the
decreased affinity for 17b, suggest a more occluded co-
receptor region in the resistant viruses.
CD4 mimetics are interesting antiretrovirals, mainly

because they target a highly conserved site of the HIV
envelope protein and confer broad and extremely potent
neutralizing capacity. A point of concern, as with many
antivirals targeting the envelope, is the relative ease of
resistance acquisition against these molecules. However,
changes in the highly conserved CD4bs often come at a
cost for the virus. Combining miniCD4s with other entry
inhibitors or physically linking CD4 miniproteins with
molecules targeting e.g. the CD4i site, may increase the
barrier for resistance. These and other strategies are cur-
rently under investigation.

Conclusions
The mutations H105Y, V255M, S375R/N, G471R/E, and
D474N are found to be of importance for resistance to-
wards the miniCD4 proteins, M48 and M48U1, in sub-
type B viruses. All mutated positions are part of or in
close proximity to the CD4bs and most are highly con-
served. Introduction of these mutations into a pBRNL4.3
chimeric virus carrying the SF162 Env had an effect on
the entry efficiency, suggesting that these positions are of
importance for optimal virus infectivity. Mutant viruses
were not able to replicate in CD4-negative HOS cells but
did replicate in MDM, a cellular model of low surface
CD4 expression. Finally, cross-resistance towards other
CD4bs inhibitors, the mAb 17b, and the mAb 447-52D
was observed to varying extents.

Methods
Antiretroviral compounds and antibodies
Both CD4 mimetic miniproteins, M48 and M48U1,
were designed, synthesized and purified at the Com-
missariat à l’ Energie Atomique (CEA), Institute of
Biology and Technologies of Saclay, Gif sur Yvette,
France. The non-nucleoside reverse transcriptase in-
hibitor (NNRTI) dapivirine (TMC120) was kindly
donated by Tibotec BVBA, Mechelen, Belgium; the
mAb 17b by Dr James Robinson, Tulane University
Medical Center and the llama nanobody A12 by Dr.
Theo Verrips, the University of Utrecht, Utrecht, the
Netherlands. The mAbs b12, 4E10, and 2F5 were
purchased from Polymun Scientific, Vienna, Austria
while soluble CD4 (sCD4) was purchased from Pro-
genics Pharmaceuticals, New York, USA. The mAb
447-52D was provided by the NIBSC, Hertfordshire,
UK.

Primary cells and cell lines
The Antwerp Blood Transfusion Centre kindly provided
buffy coats from healthy donors. Human peripheral
blood mononuclear cells (PBMCs) were isolated using
Ficoll density gradient centrifugation. PBMCs were cul-
tured and stimulated for 48 hours in RPMI-1640
medium enriched with 1%L-glutamine, 50 μg/mL genta-
micin, 10% heat-inactivated fetal bovine serum (FBS)
(Lonza, Verviers, Belgium), and 2 μg/mL phytohem-
agglutinin (PHA) (Remel, Kent, United Kingdom). After
48 hours, cells were centrifuged and subsequently main-
tained in RPMI-1640 medium containing 15% FBS, 1%L-
glutamine, 50 μg/mL gentamicin, 1 ng/mL IL-2 (Gen-
taur, Brussel, Belgium), 2 μg/mL polybrene (Sigma-
Aldrich, Bornem, Belgium) and 5 μg/mL hydrocortisone
(Calbiochem, Leuven, Belgium).
To identify the phenotype of the resistant viruses

and their respective control viruses, the adherent
CD4 and CCR5 expressing TZM-bl cell line, with a
firefly reporter gene under HIV LTR control, was
used (NIH AIDS Research and Reference Reagent
Program, Germantown, USA). Cells were cultured in
Dulbecco’s Minimum Essential Medium (DMEM)
(Lonza) containing 1% L-glutamine, 10% heat-inacti-
vated FBS, and 50 μg/mL gentamicin and were incu-
bated by 37°C and 5% CO2.
293 T cells, used to produce replicate competent

mutants, were cultured in DMEM medium (Sigma-
Aldrich) containing 1%L-glutamine, 10% heat-inactivated
FBS, and 50 μg/mL gentamicin and were incubated by
37°C and 5% CO2.
HOS CD4 R5 and HOS R5 cells (NIBSC, Hertford-

shire, UK), used to evaluate CD4-independency, were
cultured in DMEM (Lonza) containing 1%L-glutamine,
10% heat-inactivated FBS, 0.1% gentamycine, and 1 μg/
ml puromycine dihydrochloride (Sigma-Aldrich).
Monocytes were isolated from PBMC by magnetic iso-

lation using CD14 microbeads (Miltenyi Biotec, Bergisch
Gladbach, Germany) according to the manufacturer’s
instructions, aliquoted and preserved in CellBanker cryo-
genic medium (Nippon zeyahu Kogyo, Koriyama, Japan).
To differentiate monocytes into monocyte-derived macro-
phages (MDM), monocytes were incubated for seven days
in 10% FCS medium containing 50 ng/mL human macro-
phage colony-stimulating factor (MCSF) (PeproTech,
London, UK), medium was refreshed at day 4.
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In vitro resistance induction
Resistance was induced by the serial passage of two
CCR5-tropic reference subtype B HIV-1 viruses, BaL
and SF162. Four million PHA/IL-2 stimulated PBMCs
were infected with the viruses at a multiplicity of infec-
tion of 10-3 in the presence of 50% inhibitory concen-
tration (IC50) of M48 and/or M48U1. As a negative
control, similarly infected PBMCs from the same donor
were cultured in parallel without compound. Once a
week, viral replication was evaluated using an in-house
p24 antigen capture ELISA [63] and cultures were
refreshed as described by Oliviera et al. [64]. Once the
preferred resistance level was reached, titration of the
resistant viruses and their control viruses was performed
on TZM-bl cells. Briefly, 100 μl of TZM-bl cells (1x105

cells/mL) supplemented with 30 μg/mL DEAE dextran
and 100 μl of a serial dilution of virus were incubated
together for 48 hours in a 96-well tissue culture plate at
37°C and 5% CO2. Subsequently, 120μL of supernatants
were removed and 75 μl of Steadylite HTS (Perkin
Elmer, Life Sciences, Zaventem, Belgium) were added.
Next, the luciferase activity (a measure for the amount
of infectious virus particles) was measured using a TriS-
tar LB941 luminometer (Berthold Technologies GmbH
& Co. KG., Bad Wildbad, Germany) and expressed as
relative light units (RLU). Finally, the method of Reed
and Muench was used to calculate the tissue culture
dose for 50% infectivity (TCID50) [65].

Genotyping of resistant and control viruses
Mutations in the envelope gene associated with re-
sistance to miniCD4 were determined by population
sequencing. Viral RNA was extracted from culture
supernatant using the QIAamp viral RNA kit (QIAGEN,
Venlo, the Netherlands). The one step Expand High
Fidelity PCR system (Roche Applied Science, Lewes,
UK) was used to reverse transcribe and amplify the
HIV-1 env sequence. To transcribe viral RNA into cDNA
primer Wou29 (5′-TGTAAGTCATTGGTCTTAAAGG-
TACCTG-3′) was used. First round PCR was performed
using Wou 26 (5′-GCATCTCCTATGGCAGGAA-
GAAG-3′) and Wou29. Nested PCR was performed with
primers Wou28_NotI (5′-CCGGCGGCCGCTTTGAC-
CACTTGCCACCCAT-3′) and JFES (5′-CGCTGAATT-
CAGAGCAGAAGACAGTGGCAATG-3′) as described
[66]. Purification of the PCR products was done using
the WizardW SV Gel and PCR Clean-Up Kit (Promega,
Leiden, the Netherlands). Next, samples were sent for nu-
cleotide sequencing to the VIB Genetic Service Facility
(Wilrijk, Belgium). Primers JFES, ED5 (5′-ATGGGATCA-
AAGCCTAAAGCCATGTG-3′), MSD_S (5′-AATTGG-
CTGTGGTATATAAAATTATTCATAAT-3′), Henv6154
(5′-AGAGTGGGGTTAATTTTACACATGG-3′), H1E100
(5′-CGGAATTCAGIACAGTACAATGTACACATGG-3′)
and gp41R1 (5′-AACGACAAAGGTGAGTATCCCTGCC-
TAA-3′) were used. Finally, DNAsis software (Hitachi
Software Engineering, Molecular Biology Insights,
Colorado, USA) and BioEdit Sequence Alignment
Editor (Ibis Therapeutics, CA, USA) were used to
analyze the sequences. The residue numbering is
based upon that of the prototypic HxBc2 HIV-1 en-
velope glycoproteins, according to current convention
(Korber, B. Numbering positions in HIV relative to
HxBc2, Los Alamos National Laboratory, 1998).

Fluorescence polarization binding experiments
The resistance associated mutations were introduced into
recombinant gp120 by site-directed mutagenesis. The
mutant proteins were expressed transiently using the
Freestyle 293 expression system (Invitrogen, Paisley, UK)
and purified by affinity column as previously described
[67].
The concentrations of the purified gp120 proteins were

then standardized by ELISA using the antibody D7324
(Aalto Bio Reagents). The affinities of all the mutants to
both fluorescent labeled M48 and M48U1 were deter-
mined by fluorescence polarization as previously
described [68] on a LJL Analyst reader (LJL Biosystems,
Sunnyvale, CA) and by fitting data with a non-linear re-
gression program (Prism, GraphPad software Inc., San
Diego, USA). Then, the fold increases in Kds for the dif-
ferent mutants in comparison with the native SF162
gp120 were calculated.

Site-directed mutagenesis
Site-directed mutants were produced using the Quick-
Change Lightning Site-Directed Mutagenesis kit (Strata-
gene, La Jolla, CA) following the manufacturer’s
instructions. The TOPO TA vector containing the
gp160 sequence of wild type SF162 served as template
and mutagenic primers were used to introduce the re-
sistance associated mutations (RAMs). Following PCR,
inserts were sequenced as described above to confirm
the desired mutations. Inserts containing the RAMs
were cloned in pBRNL4.3 Δ Env and subsequently
293 T cells were transfected using the calcium phos-
phate transfection method (Promega, Madison, WI) to
produce replicate competent RAM mutants. The
pcDNA4/TO expression vector containing the gp160 se-
quence of BaL (subtype B), VI829 (primary C strain) or
VI1090 (primary CRF02_AG strain) and the psv7d ex-
pression vector containing the gp160 sequence of SF162
(subtype B), served as templates for the design of mu-
tant pseudotyped viruses. Mutagenic primers and the
QuickChange Lightning Site-Directed Mutagenesis kit
were used to introduce the mutations. Subsequently,
293 T cells were co-transfected with the different mu-
tant env expressing plasmids and the pNL4.3. Luc-R-E
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backbone using the calcium phosphate transfection
method (Promega, Madison, WI) to produce
pseudovirions.

Evaluation of entry efficiency of env-mutant viruses
Mutants were quantified on RT activity using the HS-
Lenti RT Activity Kit (Cavidi AB, Uppsala, Sweden) as
described in the instructions from the manufacturer.
Next, 100 μl of TZM-bl cells (1x105 cells/mL) supple-
mented with 30 μg/mL DEAE dextran were seeded in a
96-well tissue culture plate and 100 μl of virus dilution,
containing a fixed amount of RT activity, were added to
the cells. Plates were incubated for 48 hours at 37°C and
5% CO2, subsequently luciferase activity was measured
as described above.

Representation of the mutated residues and sequence
analysis
PyMOL 1.0 (DeLano Scientific, San Carlos, CA, USA)
was used to visualize the location of the resistance asso-
ciated mutations. In order to show these residues, the
coordinates of the pdb accession code [PDB: 3JWD] were
used to report the structure of the gp120 core and the
CD4 was replaced by the M48 structure found in [PDB:
2I60] based on the gp120 from the subtype B virus YU2
in complex with sCD4 and the mAb 17b. The CD4 mini-
proteins M48 and M48U1 were manually docked into
the structure. To determine the degree of amino acid
conservation on the altered positions in the gp120 enve-
lope protein, the Los Alamos HIV Database was used
(http://www.hiv.lanl.gov/content/sequence/HIV/main-
page.html).

Drug sensitivity
The inhibitory activity of the different compounds and
antibodies was measured in a TZM-bl assay. Fifty μl of
(pseudo)virus solution and 50 μl of a serial dilution of
compound or 50 μl medium (negative control) have been
pre-incubated for 30 minutes at 37°C, 5% CO2. Next,
100μL of TZM-bl cells (at 1x105/mL) supplemented with
30 μg/mL DEAE dextran were added to each well and the
96-well plates have been incubated for 48 hours at 37°C,
5% CO2. After incubation, luciferase activity was mea-
sured. Finally, the inhibitory activity was calculated in
GraphPad Prism 5.03 using non-linear regression
(GraphPad Software, San Diego, CA, USA).
Technical cut-off (TCO) values were used to define the

susceptibility of each virus to a given inhibitor. TCOs
were defined as the means and standard deviations (SD)
of the IC50 values obtained for the control wild-type
viruses BaL and SF162 according to the following for-
mula: TCO=1+ 2 SD/mean.
Viral growth on MDM and HOS cells
Stimulated PMBCs were used to titer control wild-type
and resistant viruses. Briefly, 100 μl of a serial dilution of
virus were added to 100 μl of PBMCs (0.75 x 106/ml) in a
96-well tissue culture plate, which were incubated for 2 h
at 37°C, 7% CO2. After incubation the inoculum was
washed away, and cultures were incubated for 7 days at
37°C, 7% CO2. At day 7, p24 was measured using an in-
house p24 antigen capture ELISA. The method of Reed
and Muench was used to calculate the tissue culture dose
for 50% infectivity (TCID50) [65]. The monocyte aliquots,
coming from the same buffy coat, were thawed and incu-
bated for seven days in 10% FCS medium containing
50 ng/mL human macrophage colony-stimulating factor
(MCSF) (PeproTech, London, UK), medium was
refreshed at day 4. At the end of the incubation period,
macrophages were gently scraped (Greiner Bio-One)
from the plate and 150 μl of cells (75 x 103 cells) were
seeded in a 96-well tissue culture plate in 10% FCS
medium. Subsequently, 50 μl of virus were added at a
multiplicity of infection of 10-3 and plates were incubated
for 24 h. After incubation, plates were washed thoroughly
to wash away the inoculum. Next, we harvested superna-
tants at different time points and measured p24, using
our in-house p24 antigen capture ELISA, to evaluate viral
growth in the macrophage cultures.
Viral growth on HOS R5 CD4 and HOS R5 cells was

determined by titrating viral stocks on these cell lines.
Therefore, 100 μl of a serial dilution of the viruses were
incubated with 100 μl of cells (0.10 x 106/ml) for 24 h by
37°C, 7% CO2. Inoculum was washed away after incuba-
tion and cells were incubated for 7 days. Half of the
medium was refreshed on day 3 of incubation. At day 7,
medium was harvested and viral growth was measured
by Gag p24 quantification in the culture supernatant.
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