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Niemann–Pick type C disease is a rare and ultimately fatal lysosomal storage disorder with variable neurologic
symptoms. The disease-causing mutations concern NPC1 or NPC2, whose dysfunction entails accumulation of
cholesterol in the endosomal–lysosomal system and the selective death of specific neurons, namely cerebellar
Purkinje cells. Here, we investigated whether neurodegeneration is preceded by an imbalance of synaptic
input to Purkinje cells and whether neuronal or glial absence of NPC1 has different impacts on synapses. To
this end, we prepared primary cerebellar cultures from wildtype or NPC1-deficient mice that are glia-free and
highly enriched with Purkinje cells. We report that lack of NPC1 in either neurons or glial cells did not affect
the excitability of Purkinje cells, the formation of dendrites or their excitatory synaptic activity. However, simul-
taneous absence of NPC1 fromneuronal and glial cells impaired the presynaptic input to Purkinje cells suggesting
a cooperative effect of neuronal and glial NPC1 on synapses.
© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/3.0/).
Introduction

Niemann–Pick type C disease (NPC; OMIM #257220) is a rare and
ultimately fatal, autosomal recessive lysosomal storage disorder with
diverse neurologic symptoms including ataxia and vertical supranuclear
gaze palsy (Patterson et al., 2012). The disease is caused bymutations in
the genes encoding for Niemann–Pick C1 protein (NPC1) or NPC2,
whose dysfunction leads to accumulation of cholesterol and other lipids
in the cellular endosomal–lysosomal system (RosenbaumandMaxfield,
2011; Vance and Peake, 2011). A pathologic hallmark of NPC is the loss
of specific types of neurons, namely cerebellar Purkinje cells (PCs), in
human patients (Harzer et al., 1978) as well as in mouse (Higashi
et al., 1993; Tanaka et al., 1988) and cat models of the disease (March
et al., 1997). At present, it is unknown, why NPC1 deficiency causes
type-specific neuronal degeneration.

Previous studies reported that NPC1 and NPC2 are located at synap-
ses and in surrounding astrocytic processes (Hu et al., 2000; Karten
et al., 2006; Ong et al., 2004; Xu et al., 2011). Neurodegeneration in
NPC1-deficient mice and cats was found to start at nerve terminals,
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axons and dendrites and to progress retrogradely to neuronal somata
(March et al., 1997; Ong et al., 2001; Sarna et al., 2003; Zervas et al.,
2001). Prominent changes in the levels of different neurotransmitters
were observed in the cerebellum of NPC1-deficient mice (Yadid et al.,
1998). Together, these observations suggest that NPC1 dysfunction
perturbs synaptic activity in PCs (Paul et al., 2004) in a cell-autonomous
manner (Ko et al., 2005) or with a contribution from degenerating glial
cells (German et al., 2002). To test these hypotheses, we took advantage
of a glia- and serum-free cerebellar culture preparation from postnatal
mice that is highly enrichedwith PCs thanks to antibody-based cell selec-
tion (Buard et al., 2010). These primary cultures allowed us for the first
time to test, whether the lack of NPC1 in neurons or glial cells affects
the level of synaptic activity in PCs. Our results show that the absence of
NPC1 from either neurons or glial cells left the excitability of PCs, the for-
mation of dendrites or their synaptic activity unaffected, whereas simul-
taneous NPC1 deficiency in both cell types impaired synaptic input to
PCs, possibly at the presynaptic level.

Results

To study the relevance of NPC1 for synaptic activity in cerebellar
PCs, we used a serum- and glia-free cerebellar culture preparation
from postnatal mice that is enriched with PCs (Buard et al., 2010).
The enrichment is accomplished by an immunopanning protocol,
which selects first for L1CAM-positive cerebellar neurons and then
for Thy1-positive PCs (Buard et al., 2010). The yield of L1CAM-
positive cerebellar neurons per NPC1-deficient mouse was reduced
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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(mean± SD; 1.01± 0.76 × 106 cells) compared to cells isolated from
wildtype littermates (1.99 ± 1.34 × 106 cells; 4 preparations; p =
0.07, Wilcoxon matched pairs test), possibly due to a lower number of
granule cells. As described previously (Buard et al., 2010), cultures of
L1CAM- and Thy1-selected cells comprise granule cells, GABAergic inter-
neurons and PCs, the latter of which can be reliably recognized by the
large size of their somata. After one week in defined medium, the neu-
rons formed an extensive network of neurites (Fig. 1A). Cytochemical
staining with filipin, a fluorescent antibiotic that binds to unesterified
cholesterol, revealed that PCs isolated from mutant mice but not from
wildtype animals showedmarked intracellular staining (Fig. 1). A similar
distributionwas observed in primary cultures of glial cells thatwere pre-
pared fromNPC1-deficientmice (Fig. 1). This indicated that cultured PCs
Fig. 1. Intracellular accumulation of cholesterol in cultured Purkinje cells and glial cells from N
enriched by immunopanning and cultured for seven days in chemically definedmedium in the
of PCs growing in coculture. Scale bar: 80 μm. B, Fluorescence micrographs of PCs (top) and gli
week in definedmedium and then stainedwithfilipin to reveal the distribution of unesterified c
top: 20 μm, bottom: 50 μm.
and glial cells lackingNPC1maintain the characteristic intracellular accu-
mulation of cholesterol that they show in vivo (Reid et al., 2004).

We next tested,whether the lack of NPC1 affected the level of synap-
tic activity in PCs using whole-cell patch-clamp recordings. In the
absence of glial cells, PCs fromwildtype andmutantmice showed a sim-
ilarly low level of synaptic activitywith inhibitory postsynaptic currents
occurring even more rarely than excitatory postsynaptic currents
(Figs. 2, 3). Based on our previous finding that glial cells strongly in-
crease synaptic input to PCs (Buard et al., 2010), we cultured PCs with
glial cells and testedwhether the lack of NPC1 in glial cells affected synap-
tic activity in PCs. Glial cells with or without NPC1 enhanced significantly
the frequency and the size of spontaneous excitatory postsynaptic cur-
rents (EPSCs) in wildtype PCs (Fig. 3). In these cocultures, the level of
PC1-deficient mice. A, phase-contrast micrographs of PCs from wildtype mice that were
absence (left) or presence (right) of cerebellar glial cells. Black arrowheads indicate somata
al cells (bottom) from wildtype (left) and mutant (right) mice that were cultured for one
holesterol. Cells frommutantmice show intracellular accumulation of cholesterol. Scale bar



Fig. 2. Spontaneous synaptic activity in cultured PCs from wildtype and NPC1-deficient
mice. Representative traces of spontaneous synaptic activity thatwas recorded at different
holding potentials to monitor excitatory (−70 mV) and inhibitory postsynaptic currents
(−40 mV) in PCs from wildtype (left) and mutant mice (right) that were cultured for
seven days in the absence of glial cells (Con, top) and in the presence of glial cells that
were prepared from wildtype (middle) or from mutant mice (bottom).

Fig. 3. Levels of spontaneous excitatory and inhibitory synaptic activity in cultured PCs
from wildtype and NPC1-deficient mice. Frequency and size of spontaneous excitatory
(A) and inhibitory (B) postsynaptic currents in PCs from wildtype (left) and mutant mice
(right) that were cultured for seven days in the presence or absence of glial cells from
wildtype andmutant mice as indicated. Coculture with glial cells enhanced excitatory syn-
aptic activity exceptwhen glia and PCs lackedNPC1. The rare occurrence of inhibitory activ-
ity precluded further analysis (PC+/+Con: n = 28 cells; Glia+/+: n = 27; Glia−/−: n = 27;
PC−/− Con: 10; Glia+/+: n = 24; Glia−/−: n = 30; N3 independent culture preparations).
Note that frequencies of synaptic events are displayed by box-plots and that asterisks
mark statistically significant differences (Kruskal–Wallis test; 2-tailed multiple compari-
son), whereas n.s. indicates the absence of the latter.
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inhibitory synaptic activity was also elevated, butmost PCs still lacked in-
hibitory postsynaptic currents precluding a detailed analysis. We next
tested, whether glial cells could also enhance synaptic activity in PCs
from mutant mice. Indeed, glial cells from wildtype animals strongly en-
hanced the frequency of spontaneous EPSCs in PCs from mutant mice.
However, in cocultures, where both types of cells lacked NPC1, the size
and frequency of spontaneous EPSCs were significantly enhanced and di-
minished, respectively, compared to the levels in cocultures with NPC1-
expressing glial cells (Fig. 3). These results indicated that the lack of
NPC1 in either neurons or glial cells does not impair excitatory synaptic
activity, whereas the absence from both cell types lowered selectively
the frequency of spontaneous events.

We next studied the excitability of PCs by current-clamp recordings
(Fig. 4A). As shown in Fig. 4B, the resting membrane potentials of PCs
from mutant mice cultured under glia-free conditions appeared more
depolarized than those from wildtype mice, but the difference did not
reach statistical significance (p = 0.31; Mann–Whitney U test). When
cultured in the presence of glial cells, neurons showed similar mem-
brane potentials regardless of the presence or absence of NPC1 in neu-
rons or glia. Next, we measured the threshold current to elicit action
potentials and the maximal frequency of action potentials that could
be attained. Our results revealed no difference in the action potential-
related parameters among the different culture conditions (Fig. 4) indi-
cating that a lack of NPC1 in neurons and glial cells does not affect the
excitability of PCs.

The low level of spontaneous synaptic activity in NPC1-deficient co-
cultures could have been caused by impaired dendritogenesis. Our pre-
vious studies showed that glia-induced formation of dendrites is a
prerequisite for synaptogenesis in PCs (Buard et al., 2010) and retinal
ganglion cells (Goritz et al., 2005). Immunocytochemical staining with
an antibody against the dendritic protein microtubule associated pro-
tein 2 (MAP2) revealed that in cocultures, dendrite formation was
significantly enhanced compared to glia-free cultures independently
from neuronal or glial expression of NPC1 (Fig. 5). This indicated that
the lower level of synaptic activity in NPC1-deficient cocultures was
not caused by impaired dendritogenesis. Alternatively, this may have
been due to a reduced axodendritic synaptic input to PCs. To address
this possibility, we performed immunocytochemical co-staining with
antibodies against MAP2 and synaptophysin, which labels presynaptic
terminals (Fig. 6A; Buard et al., 2010). Glial cells enhanced the percentage
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Fig. 4. Excitability of cultured PCs from wildtype and NPC1-deficient mice. A, recording
traces of the membrane potential in PCs during current injection by rectangular pulses
(bottom) at three selected amplitudes, which induced no AP (5 pA; left), which passed
the threshold to induce APs (15 pA; middle) and which elicited the maximal frequency
of APs in this cell (75 pA; right). The dashed line indicates membrane potential at 0 mV.
B, resting membrane potential (top), threshold current to elicit action potentials (middle)
and maximal frequency of action potentials induced by current injection (bottom) in PCs
fromwildtype (left) andmutantmice (right) that were cultured for seven days in the pres-
ence or absence of glial cells from wildtype and mutant mice as indicated (PC+/+Con: n =
14 cells; Glia+/+: n = 16; Glia−/−: n = 14; PC−/− Con: 10; Glia+/+: n= 13; Glia−/−: n =
10; N3 independent culture preparations). None of the parameters showed statistically
significant differences (Kruskal–Wallis test).

Fig. 5. Dendrite formation in cultured PCs fromwildtype and NPC1-deficient mice. A, fluo-
rescence micrographs of PCs after immunocytochemical staining for MAP2-positive den-
drites. The images represent four types of PCs showing either no dendrite (top, left;
coculture PC−/− with Glia−/−), at least one short dendrite (top, right; PC+/+ + Glia−/−),
prolonged dendrites (bottom, left; PC−/−) or multiple dendrites with branches (bottom,
right; PC+/++Glia−/−). Scale bar: 20 μm. B, stacked columnplots showing the percentages
of PCs with different degrees of dendrite differentiation. The four categories correspond to
images shown in panel A (black: no dendrites; dark gray: single short; bright gray:
prolonged; white: multiple branching dendrites). PCs from wildtype and mutant mice
were cultured with or without glial cells from wildtype and mutant mice as indicated
(PC+/+Con: n = 85 cells; Glia+/+: n = 78; Glia−/−: n = 64; PC−/− Con: 52; Glia+/+:
n =59; Glia−/−: n=30; N3 independent culture preparations). Asterisksmark statistically
significant differences (Pearson's chi-square test).
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of dendriteswith synaptophysin-positive puncta in all types of cocultures,
except for those with simultaneous NPC1 deficiency in neurons and
glial cells. Under this condition, half of the PCs had dendrites without
synaptophysin-positive puncta suggesting that these neurons did not re-
ceive synaptic input (Fig. 6B). This finding could explain, why nearly half
of the PCs in NPC1-deficient cocultures lacked spontaneous synaptic ac-
tivity (Fig. 3).

Discussion

Our study reveals that simultaneous lack of NPC1 in neurons and
glial cells impairs selectively the formation of excitatory synaptic input

image of Fig.�4
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Fig. 6. Synaptic input to cultured PCs fromwildtype andNPC1-deficientmice. A,fluorescence
micrographs of a representative PC from mutant mice that was cocultured for seven days
with glial cells from wildtype mice and then subjected to immunocytochemical staining
with antibodies against MAP2 (left) and synaptophysin (right). Arrowheads indicate
colocalization of the presynaptic marker and dendrites. Scale bar: 20 μm. B, percentage of
PCs showing no (black), few (b5; gray) or numerous (N5; white) synaptophysin-positive
puncta on MAP2-positive dendrites. PCs from wildtype and mutant mice were cultured
with or without glial cells from wildtype and mutant mice as indicated (PC+/+Con: n = 61
cells; Glia+/+: n = 78; Glia−/−: n = 64; PC−/− Con: 28; Glia+/+: n = 33; Glia−/−: n =
30; N3 independent culture preparations). Asterisks mark statistically significant differences
(Pearson's chi-square test).
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to PCs, but not their excitability or their ability to form dendrites. The
absence of NPC1 from either neurons or glial cells did not affect any of
these parameters.

Our study adds evidence that NPC1 deficiency affects synaptic trans-
mission. In line with our results, the frequency of spontaneous synaptic
activity was found to be lower in PCs from cerebellar slices (Bae et al.,
2007) and in cultured hippocampal neurons from NPC1-deficient com-
pared towildtypemice (Wasser et al., 2007; Xu et al., 2011). Other stud-
ies reported enhanced synaptic activity and a block of long-term
depression in PCs from adult NPC1-deficient mice (Sun et al., 2011).
Evoked synaptic responses in NPC1-deficient animals were increased
(Avchalumov et al., 2012; D'Arcangelo et al., 2011; Wasser et al., 2007;
Zhou et al., 2011), decreased (Claudepierre et al., 2010; Phillips et al.,
2008; Xu et al., 2010) or unchanged (Avchalumov et al., 2012; Deisz
et al., 2005). These discrepancies may be caused by different brain
areas under study and by the different experimental approaches used.

Our findings suggest a cooperative effect of neuronal and glial NPC1
on synaptic input to PCs. This effect is independent from secreted mol-
ecules like cholesterol (Karten et al., 2005; Mauch et al., 2001) or
steroids (Chen et al., 2007), because glia-conditioned medium does
not promote synaptogenesis in PCs (Buard et al., 2010). The selective
decrease of the frequency but not of the size of spontaneous EPSCs in
PCs from NPC1-deficient cocultures suggests that neuronal and glial
NPC1 is required for proper presynaptic development. This is further
supported by experimental evidence for a presynaptic function of
NPC1 (Hawes et al., 2010; Karten et al., 2006; Sun et al., 2011; Xu
et al., 2010). NPC1-deficient hippocampal neurons showed a presynap-
tic defect even in the absence of glial cells (Xu et al., 2011), but unlike
PCs, hippocampal neurons from postnatal mice form functional synap-
ses in vitro even in the absence of glia (Steinmetz et al., 2006). Lack of
NPC1 in either neurons or glial cells left the excitability of PCs and
their ability to form dendrites and excitatory synapses unaffected. This
finding supports previous observations of normal electrophysiologic
properties of PCs after neuron- or astrocyte-specific deletion of NPC1
(Elrick et al., 2010; Yu et al., 2011).

At present, it is unclear, whether an imbalance of synaptic input to
PCs impacts their survival in vivo or after long-term culture. Some stud-
ies on transgenic mice suggest that neurodegeneration proceeds in a
cell-autonomous manner. Selective ablation of NPC1 in PCs suffices to
cause their demise (Elrick et al., 2010; Ko et al., 2005; Yu et al., 2011)
and selective re-expression of NPC1 in PCs saves them from degenera-
tion (Lopez et al., 2011). Notably, the degeneration of PCs also occurred,
whenNPC1was eliminated in the adult stage (Yu et al., 2011) indicating
an independence fromdevelopmental defects. On the other hand, itwas
shown that transgenic expression of NPC1 in Gfap-positive astrocytes
prolongs the life-span of NPC1-deficient mice and prevents neurode-
generation (Erickson, 2013; Zhang et al., 2008). Different genetic back-
grounds of the transgenic mouse models used may impact the results.

In conclusion, our study suggests that the simultaneous absence of
NPC1 fromneurons and glial cells impairs presynaptic input to PCs. It re-
mains to be determined whether an ensuing imbalance of synaptic ac-
tivity contributes to the age-dependent degeneration of PCs.

Experimental methods

Mice

Balb/cmice homozygous for theNpc1nih allele (Balb/cNctr-Npc1m1N/J;
stock # 003092, The Jackson Laboratory, Bar Harbor, Maine, USA) and
wildtype littermates were used for all experiments. Experimental proce-
dures involving animals and their care were performed in accordance
with European and French regulations on animal experimentation (Di-
rective 86/609 CEE). For genotyping, tail biopsies were prepared from
three-to four-days-old pups and genomic DNA was subjected to PCR
using primers (Eurogentech, Angers, France) flanking the insertion
site (mp25-8F: GGTGCTGGACAGCCAAGTA and mp25-INTR3: 5′-GATG
GTCTGTTCTCCCATG-3′) as described (Loftus et al., 1997).

Cell isolation and culture

Primary cultures enriched with cerebellar PCs were prepared from
seven-days-old genotyped mice as described (Buard et al., 2010;
Steinmetz et al., 2006). Cells from wildtype and mutant animals were
isolated and cultured in parallel. Neurons were plated at 600 cells/mm2

in a small circle (Ø 10 mm) centered on tissue culture plates (Ø 35 mm,
Falcon, BD Bioscience, France) coated with 5 μg ml−1 poly-D-lysine (mo-
lecular weight ~ 40 kDa; Sigma) and cultured in serum-free medium
(Buard et al., 2010). Cocultureswith glial cellswere prepared as described
(Buard et al., 2010; Steinmetz et al., 2006).

Cytochemical and immunocytochemical staining

To visualize the cellular cholesterol distribution, cultured cells were
fixed (4% paraformaldehyde for 30 min) and incubated for 2 h with
filipin (10 μg/ml with 1% ethanol, Sigma). Filipin fluorescence was
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excited by monochromatic light (356 nm, provided by a xenon-lamp
and a monochromator, Polychrome Junior, TILL Photonics), fed into
the epi-illumination port of an upright microscope (Axioskop II FS,
Zeiss) and digitized by an air-cooled camera (Sensicam; PCO Computer
Optics, Kelheim, Germany) controlled by custom-written Labview rou-
tines (National Instruments).

Immunocytochemical staining was carried out using standard pro-
cedures (Nagler et al., 2001). Cells growing on tissue culture plates
were washed with phosphate buffered saline, fixed [10 min in parafor-
maldehyde 4% at room temperature or 7min in ethanol at 4 °C], perme-
abilized with Triton X (0.1%) and blocked for 30 min in antibody buffer
containing 150mMNaCl, 50mMTris, 1% bovine serum albumin (Sigma
A2153), 100 mM L-lysine, 0.04% sodium azide (pH 7.4) and 50% goat
serum. Cells were then incubated overnight with a mouse or rabbit
anti-MAP2 (1/500; Sigma) and mouse anti-synaptophysin (1:1000;
Sigma). As secondary antibodies Cy2- or Cy3-conjugated goat anti-
mouse or goat anti-rabbit antibodies were used (1/500; Jackson
Immunoresearch Laboratories/Dianova). Fluorescence was viewed
through appropriate excitation and emission filters and a 40× objective
(water-immersion, n.a. 0.8, Zeiss). Images were acquired by an air-
cooled monochrome CCD camera (Sensicam) controlled by custom-
written Labview routines (National Instruments). Control experiments
showed absence of background staining by secondary antibodies. To
quantify dendrite differentiation, PCs were grouped in four categories
according to the distribution of MAP2 (no dendrite: MAP2 only in
somata or only; first dendrites: at least one MAP2-positive neurite of
similar length as soma diameter; prolonged dendrites: MAP2-positive
dendrites longer than soma diameter; fully differentiated dendrites:
well-developed MAP2-positive dendrites with branches; Fig. 5A). To
quantify synaptic input, cells were assigned to three categories (0: no
colocalization of synaptophysin with MAP2-positive dendrites; b5:
fewer than five colocalized puncta; N5: more than 5 co-localizing
puncta).

Electrophysiological recordings

Whole-cell patch-clamp recordings were performed as described
(Nagler et al., 2001; Goritz et al., 2005) from PCs that were recognized
by their characteristic size (Buard et al., 2010). All PCs tested were elec-
trically excitable as indicated by the presence of large voltage-activated
sodium currents in response to depolarizing voltage steps. For each
cell, spontaneously occurring postsynaptic currents were recorded dur-
ing 3× 1min at−70mV in voltage-clampmode. Analysis of postsynap-
tic currents was performed automatically by custom-written Labview
routines (National Instruments). The frequency of EPSCs was deter-
mined from inward currents. At −70 mV holding potential, EPSCs
could be distinguished from inhibitory postsynaptic currents, which
were also inwardly directed under our recording conditions, due to
their faster time course. The frequency of inhibitory postsynaptic cur-
rents was determined from outward currents recorded for 3 × 1 min
at−40mV. The size of postsynaptic currents of individual cells is repre-
sented by the 90th percentile. To study the excitability of PCs, their
membrane potential was recorded in current-clamp mode with in-
jection of depolarizing current pulses of incrementing amplitude
(20 pulses, 1 Hz, 200 ms length, step size 5 pA). The responses
were analyzed by custom-written Labview routines.

Data representation and statistical analysis

Graphs were created by SigmaPlot 9.01 (Systat Software GmbH,
Erkrath, Germany). Unless otherwise indicated, whiskers indicate stan-
dard deviation. Non-normally distributed values were represented by
box-plots (horizontal line: median; lower and upper box limits: 1st
and 3rd quartiles, respectively; whiskers: 10th and 90th percentile).
Statistical analysis was performed using STATISTICA 12 (StatSoft Inc.,
Maison-Alfort, France). Statistically significant differences were detected
by appropriate tests as indicated (*p b 0.05; ** p b 0.01; *** p b 0.001).
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