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Abstract

Inherited myopathies are a heterogeneous group of disabling disorders with still barely understood pathological
mechanisms. Around 40% of afflicted patients remain without a molecular diagnosis after exclusion of known genes. The
advent of high-throughput sequencing has opened avenues to the discovery of new implicated genes, but a working list of
prioritized candidate genes is necessary to deal with the complexity of analyzing large-scale sequencing data. Here we used
an integrative data mining strategy to analyze the genetic network linked to myopathies, derive specific signatures for
inherited myopathy and related disorders, and identify and rank candidate genes for these groups. Training sets of genes
were selected after literature review and used in Manteia, a public web-based data mining system, to extract disease group
signatures in the form of enriched descriptor terms, which include functional annotation, human and mouse phenotypes, as
well as biological pathways and protein interactions. These specific signatures were then used as an input to mine and rank
candidate genes, followed by filtration against skeletal muscle expression and association with known diseases. Signatures
and identified candidate genes highlight both potential common pathological mechanisms and allelic disease groups.
Recent discoveries of gene associations to diseases, like B3GALNT2, GMPPB and B3GNT1 to congenital muscular dystrophies,
were prioritized in the ranked lists, suggesting a posteriori validation of our approach and predictions. We show an example
of how the ranked lists can be used to help analyze high-throughput sequencing data to identify candidate genes, and
highlight the best candidate genes matching genomic regions linked to myopathies without known causative genes. This
strategy can be automatized to generate fresh candidate gene lists, which help cope with database annotation updates as
new knowledge is incorporated.
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Background

A large number of disorders affecting skeletal muscle have a

genetic basis, with multiple modes of inheritance. They are

classified based on phenotype and histopathological features into

several groups, which include muscular dystrophies, congenital

myopathies and myotonic syndromes, among others (Table 1) [1].

Muscular dystrophies and congenital muscular dystrophies, for

example, are characterized by dystrophic changes on muscle

biopsy, as opposed to congenital myopathies, which have non-

dystrophic peculiar histopathologic findings [2–5]. Despite being

rare, most inherited myopathies impose a heavy burden on the life

of affected persons, and have a strong impact on the health care

system. The identification of the causative gene and mutations is

often a pre-requisite for genetic counseling and potentially

prenatal diagnosis, improved disease care, and access to more

specific therapies or inclusion in clinical trials. A lot of advances

have been made in the last few decades on the molecular bases of

inherited myopathies, which included the discovery of about 130

genes associated with different disorders [1]. Still, it is estimated

that around 40% of patients afflicted with myopathies remain

without a molecular diagnosis, supporting the implication of

additional genes [6,7]. Further identification of these genes is the

focus of a tremendous research effort at present, and will help

understand pathological mechanisms and defining novel drug

targets.

Next-generation sequencing (NGS) is a relatively new technol-

ogy that enables massive parallel sequencing of a huge number of

bases. It has revolutionized molecular diagnosis and genetic
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research, as it represents a cost-effective way of testing several

genes at once in disorders with genetic heterogeneity, such as

myopathies [8–10]. Moreover, exome sequencing (ES) or genome

sequencing (GS) aid in the discovery of new genes associated with

various diseases [11,12]. There has recently been a surge in

publications that use NGS to discover new genes associated with

diseases, including myopathies [13–20].

The biggest challenge of NGS is to cope with the complexity of

analyzing the massive amount of variants generated by the

approach. Indeed, comparing two unrelated individuals may lead

to about 3 million matching variants in their genomes or about

20,000 in their exomes, but only one of these variants can cause a

monogenic disease. The resolution of this issue demands good

filtering pipelines to exclude common or meaningless variants,

based on the biochemical function of genome location as studied

through the ENCODE project [21], and on relationships between

human variations and phenotype as in ClinVar and in locus

specific databases [22,23]. In addition, ranking systems can help

prioritize validation of the most promising variants. It makes sense

to focus on genes presumably implicated in the disease process via

functional, structural or phenotypical links with known genes. One

of the approaches to collect and compare these data is via in silico
analysis using a multitude of open-access knowledge information

sources. This approach has been recently done successfully for

some disorders but not yet for myopathies [24,25]. Lists of

candidate genes thus generated can be ranked and used to

prioritize variants resulting from NGS analysis.

Here, we propose ranked lists of candidate genes for individ-

ualized groups of inherited myopathies and related diseases that

were obtained via data mining of online information databases.

These lists can be coupled to NGS analyses pipelines to help filter

and prioritize variants aiming at the discovery of novel genes. We

also put forward a number of genetic and functional insights taken

from the generation of signatures for such disease groups to suggest

common pathological pathways between them that can be subject

of further scrutiny.

Methods

Classification of myopathy genes into 9 overlapping
disease groups

The disease groups and associated known genes were based on a

modified version of the Gene Table of Neuromuscular Disorders

(GTNMD) [26]. We selected the following disease groups, which

are primarily related to skeletal muscle pathology: Muscular

Dystrophies, Congenital Muscular Dystrophies, Congenital My-

opathies, Myotonic Syndromes, Ion Channel Muscle Diseases,

Metabolic Myopathies, and Congenital Myasthenic Syndromes.

To cope with an ill-defined classification of ‘‘Other Myopathies’’

in the GTNMD, we decided to cluster genes from this group into

two new disease groups, Myofibrillar Myopathies and Vacuolar

Myopathies. A literature search was performed to find recently

published genes not yet listed in the Gene Table version that was

used in our present study, which resulted in the addition of the

following genes: VMA21 [16] and EPG5 [14] to the Vacuolar

Myopathies group; TRAPPC11 [13] and TNPO3 [19,27] to the

Muscular Dystrophies group; and STIM1 [20], CCDC78 [15] and

KLHL40 [17] to the Congenital Myopathies group.

The disease groups have some degree of overlap due to

phenotypic heterogeneity of certain genes. For example, SEPN1 is

Table 1. Breakdown of disease groups and known associated genes.

Disease group Main diseases Associated genes

Muscular dystrophies Duchenne and Becker muscular
dystrophies, Emery-Dreifuss
muscular dystrophy, Limb-girdle
muscular dystrophies

ANO5, CAPN3, CAV3, DAG1, DES, DMD, DNAJB6, DPM3, DUX4, DYSF,
EMD, FHL1, FKRP, FKTN, LMNA, MYOT, PABPN1, PLEC, POMGNT1,
POMT1, POMT2, PTRF, SGCA, SGCB, SGCD, SGCG, SYNE1, SYNE2,
TCAP, TMEM43, TNPO3, TRAPPC11, TRIM32, TTN

Congenital muscular
dystrophies

Merosin-deficient CMD,
Dystroglycanopathies, Ulrich and
Bethlem myopathies

CHKB, COL6A1, COL6A2, COL6A3, DNM2, DPM2, FHL1, FKRP, FKTN,
GTDC2, ISPD, ITGA7, LAMA2, LARGE, LMNA, POMGNT1, POMT1,
POMT2, SEPN1, TCAP

Congenital myopathies Centronuclear myopathy, Nemaline
myopathy, Central core disease

ACTA1, BIN1, CCDC78, CFL2, CNTN1, DNM2, KBTBD13, KLHL40,
MEGF10, MTM1, MTMR14, MYH2, MYH7, NEB, RYR1, SEPN1, STIM1,
TNNT1, TPM2, TPM3, TRIM32, TTN

Metabolic myopathies Glycogen storage diseases (Pompe,
McArdle), Lipid storage diseases
(CPTII deficiency)

ACADVL, AGL, CPT2, ENO3, GAA, GBE1, GYG1, GYS1, LDHA, LPIN1,
PFKM, PGAM2, PGK1, PGM1, PHKA1, PNPLA2, PYGM, SLC22A5,
SLC25A20

Congenital myastenic
syndromes

Acetylcholine receptor deficiency,
Choline acetyl transferase deficiency,
Escobar syndrome

AGRN, CHAT, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COLQ,
DOK7, DPAGT1, GFPT1, LAMB2, MUSK, RAPSN, SCN4A

Myotonic syndromes Myotonic dystrophy type 1 (Steinert
disease), Schwartz-Jampel disease

ATP2A1, CAV3, CNBP, DMPK, HSPG2

Ion channel muscle diseases Myotonia congenita, Hyperkalemic
periodic paralysis, Paramyotonia
congenita

CACNA1S, CLCN1, SCN4A

Vacuolar myopathies Myopathy with excessive autophagia,
Danon disease, Inclusion body
myopathy with Paget disease of bone
and frontotemporal dementia

EPG5, GNE, LAMP2, VCP, VMA21

Myofibrillar myopathies Alpha-B-crystallin related myofibrillar
myopathy, Desmin related myofibrillar
myopathy

BAG3, CRYAB, DES, FLNC, LDB3, MYOT, SEPN1

doi:10.1371/journal.pone.0110888.t001
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implicated in multi-minicore disease (a congenital myopathy), and

in rigid-spine muscular dystrophy (a congenital muscular dystro-

phy); CAV3 both causes limb-girdle muscular dystrophy 1C (a

muscular dystrophy), and rippling muscle disease (a myotonic

syndrome). The largest overlap is found between Muscular

Dystrophies and Congenital Muscular Dystrophies, with 8 genes

out of 34 muscular dystrophy-associated genes also found among

20 congenital muscular dystrophy-associated genes.

GTNMD’s disease group "Distal Myopathies" was not included

as a separate class in this work due to the lack of a gene uniquely

associated with it - all genes were also found in other disease

groups. Non-myopathy disease groups, such as ataxias, neuropa-

thies, and motor neuron diseases, were also not included, as well as

genes that, although listed in the GTNMD under included disease

groups, do not lead to a skeletal muscle phenotype. This was the

case of MYBPC3, implicated in cardiomyopathies, removed from

the Congenital Myopathies group; PRKAG2, which causes a

glycogen storage disease of the heart, not included in the

Metabolic Myopathies group; and genes excluded from the Ion

Channel Muscle Diseases group because they lead to various

ataxia and cardiac arrhythmia syndromes, while not resulting in

periodic muscle paralysis. The full list of genes and disease groups

used in this work can be found in Table 1.

Data-mining from online databases to address complex
biological questions

We used the data mining system Manteia [28], a public

resource available online (manteia.igbmc.fr) that retrieves and

combines data from freely available online data sources such as

Ensembl, Reactome, OMIM, NCBI, Human Phenotype Ontology

(HPO), Gene Ontology (GO), Mouse Genome Informatics, and

InterPro. Manteia makes it possible to address complex biological

questions by running several queries at the same time to mine and

statistically analyze gene sets to highlight their annotation

specificities compared to the rest of the genome. This study was

conducted with Manteia version 2 with data downloaded in June

2013 from the different databases used in the system.

Using Manteia’s orthology module, we analyzed human gene

sets and their mouse orthologs to find an enrichment on

statistically significant terms within several annotation categories,

including Gene Ontology (GO), Human Phenotype Ontology

(HPO), Mammalian Phenotype Ontology (MPO), pathways

(Reactome), protein motifs (Interpro) and interacting complexes

(Reactome). Gene length was not taken into account as there is no

clear enrichment of large genes mutated in myopathies; while

some large genes are indeed implicated (TTN, NEB), smaller

genes were found to accumulate mutations along their sequence

(e.g. ACTA1). Manteia calculates the enrichment of each term in

the gene set compared to all genes in the genome, and sorts the

terms according to individual statistical significances.

The list of specific terms for each data set can then be used to

screen the genome looking for genes that have similar properties.

This is achieved using a query builder, which outputs a list of

candidate genes ranked according to their similarity with the data

set annotation signature and the weight given for each term.

Extraction of specific signatures for each disease group
based on known genes

Statistical analysis for human genes in each disease group was

individually performed for Gene Ontology (GO) terms, Human

Phenotype Ontology (HPO) terms, pathways, complexes and

protein motifs. Mouse orthologs were additionally used to get

statistical breakdowns of Mammalian Phenotype Ontology (MPO)

terms.

Signatures were represented by a weighted combination of GO

terms, HPO terms, MPO terms, and what were collectively called

"Interactions Annotation" (IA) terms - pathways and protein

complexes descriptors from Reactome and descriptors of protein

motifs from InterPro. For each disease group, terms were chosen

from the various domains in order to obtain a signature of the

disease group. We used the following criteria to select GO terms,

HPO terms and MPO terms for each group: 1) significance p-

value less than 0.05 (corrected using the Benjamini-Hochberg false

discovery rate (FDR) procedure); 2) occurrence in the disease

group gene set greater than 1; 3) occurrence in the genome ,800;

4) GO level (or HPO level or MPO level) .2.

The FDR-BH correction of the p-value was chosen because it

reduced the large size of the list of resulting terms while not being

as stringent as the Bonferroni correction. Terms with only one

occurrence in the gene set were deemed not representative of the

set. Criteria 3 and 4 enrich for specificity and are closely associated

owing to less specific terms (higher ontology level) being associated

with a large number of genes; such general terms would not only

be unproductive in compounding a signature for a disease group,

but also could degrade the performance of a complex query.

For IA terms, the restriction on the occurrence of only one gene

in the set was dropped with the aim of improving the scores of new

genes related to protein function linked to single known myopathy

gene. Indeed, a large proportion of significant terms have only one

occurrence in any given disease group gene set. Finally, criteria 4

does not apply to Interpro and Reactome data, which are not

structured in defined hierarchies as gene and phenotype ontolo-

gies.

Ranking formula based on weighted scores of signature
terms

After experimenting with different signature definitions, we

decided to define a signature as having an equal contribution of

GO terms, phenotype terms (HPO and MPO terms) and IA terms

(Figure 1), so as not to a priori give more importance to any term

set. A signature with a stronger component of phenotype terms, for

example, yields a list of purported candidates strongly biased to

genes implicated in known diseases or for which mouse models

have been extensively phenotyped. Likewise, if GO terms are the

main component of the signature, genes with functional links are

preferentially ranked. Finally, IA terms boost the interactome of

the known genes to the top of the ranked lists.

Thus, in our approach, for each disease group, the weight of

individual terms was calculated so that the added weights of all

GO terms was the same as the total PO score (added HPO terms

weights combined with added MPO terms weights) and as the

added weights of all IA terms, which was arbitrarily set as 1000.

In the GO domain, we defined strata of term weights with

percentile cutoffs so that terms with a higher significance would

respond for a larger share of the total GO score. The top 20% of

terms (p80) contributed to 40% of the total GO score, a middle tier

comprising 40% of terms (p40-p80) contributed to an additional

40% of the total GO score, and the lower 40% of terms (p40)

provided 20% of the total GO score.

A similar approach was used to calculate individual weights for

HPO and MPO terms, with the exception that, as the total PO

score reflects the combination of equal shares of HPO and MPO

terms, the maximum score of either HPO terms or MPO terms

was set at 500.

The weight of each IA term, on the other hand, was the same

no matter its position on the corresponding list, and was simply

Data Mining of Candidate Genes for Myopathies
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calculated as 1000 divided by the number of significant IA terms

for each disease group. This approach helped mine all genes that

interacted with any single gene in the training set, provided

pathways and interactions were statistically significant.

While the choice of percentile cutoffs that define the strata of

weights was arbitrary, we observed that the modification of the

cutoffs did not result in substantially different ranked candidate

lists for each disease group, as long as the signature definition is the

same. All terms for every domain in each disease group, with their

corresponding calculated weights, can be found in Table S1.

Generation of ranked lists of candidate genes for each
disease group

Manteia’s query builder feature was used to filter genes in the

human genome that matched the signature defined for each

disease group. Queries combining terms that constitute the

signature were run to obtain a list of genes ranked by a score

represented by the sum of all matched term weights (Figure 1).

More specifically, a gene score results as the sum of a GO score

(sum of weights of the disease group’s signature GO terms that

match the gene’s GO terms), a PO score (sum of weights of

matching HPO and MPO terms), and an IA score (sum of weights

Figure 1. Integrated data mining workflow. A signature of a disease group, composed of weighted terms, is generated from statistical analyses
of genes already implicated in diseases of the group. Terms come from the three main annotation groups, GO (Gene Ontology), PO (Phenotype
Ontology, an aggregate of Human Phenotype Ontology and Mammalian Phenotype Ontology) and IA (Interactions Annotation), are mined using
Manteia and receive weights proportional to the their enrichment in the set of genes implicated in the disease group, as compared to the set of all
genes in the human genome. Weights are attributed to terms so that annotation groups contribute equally to the composition of the signature. The
signature of the disease group is then used to mine the genome for additional genes. Every gene in the genome receives a score equal to the sum of
weights of terms that describe the gene if they match terms that define the disease group signature, for a maximum possible score of 3000. Further
filtering steps mark genes that have low relative skeletal muscle expression or are annotated with known diseases.
doi:10.1371/journal.pone.0110888.g001
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of matching IA terms). The maximum total score a gene can

receive is thus 3000 (1000 for GO score+1000 for PO score+1000

for IA score). To deal with MPO terms applied to murine

orthologs, the predicted best human orthologs were selected using

Manteia’s ORTHO function after the ranking process. The

ranked lists for each of the 9 disease groups, including annotation

detailed in the next subsection, can be found in Table S2.

Additional filtering of ranked candidate genes using
expression data and association with human diseases

The ranked lists for each disease group include the known genes

of the group, which were used to create the signatures, genes

known to be associated with myopathies but implicated in other

disease groups, and genes that are not listed in any disease group

and thus represent potentially good candidate genes for myopa-

thies. Among those, additional filtering was performed using tissue

expression databases. Data from Illumina Body Map E-MAT513,

established from mRNA-Seq of 16 human tissues, was download-

ed for every gene, and genes with no expression in skeletal muscle

or with an expression in skeletal muscle that was less than a cutoff

of 10% of the maximum expression found in any other tissue were

excluded. The rationale behind this filtering is that if a gene is

expressed in a tissue other than skeletal muscle at a much higher

level, one expects such a gene to be implicated in disorders

primarily involving that tissue. The 10% cutoff was empirically

determined due to the fact that all genes already implicated in

myopathies have skeletal muscle expression levels above this

cutoff. To deal with missing expression data and eventual

heterogeneity in Illumina Body Map’s expression database, genes

ruled out by the 10% threshold and candidate genes within the

100 first positions in the rankings for each disease group were

double checked using expression data from the Genotype-Tissue

Expression Project (GTEx) [29].

For the Congenital Myasthenic Syndromes disease group,

which includes diseases primarily related to neuromuscular

junction protein defects, but also some peripheral nerve terminal

protein defects, we decided to disregard the muscle expression

filtering due to the fact that the implicated genes AGRN, CHAT,

and CHRNE do not have significant skeletal muscle expression

(they are instead expressed in the nerve terminal).

The lists of candidate genes after skeletal muscle expression

filtration was further annotated with Online Mendelian Inheri-

tance in Men (OMIM) data on existing human phenotype in the

form of well-characterized diseases or syndromes, in order to easily

identify genes biased by phenotype, such as SMN1, which results

in a phenotype very similar to many myopathies, characterized by

flaccid proximal limb weakness, but which gives rise instead to a

motor neuron disease; or biased by interactions, as occurs to a

number of carbohydrate metabolism genes that share common

pathways to metabolic myopathies but cause instead inborn errors

of metabolism without a muscle phenotype.

Results

Myopathy groups are clustered by gene ontology and
protein function

To identify novel candidate genes for myopathies, we estab-

lished an integrated data mining approach aiming first to extract

specific signatures for disease groups encompassing previously

implicated genes, and then to use these signatures to search for

additional matching genes in the human genome. As detailed in

Figure 1 and the methods section, this approach consists of a

weighted ranking of three main sets of data: gene ontology, human

and mouse phenotypes ontologies, and ‘‘interactions annotation’’

incorporating pathways and protein motifs and complexes.

To test this approach and better visualize signature composition

analysis, we first analyzed a training set that consisted in all

myopathy-associated genes using the data mining system Manteia

[28]. Figure 2 shows graphs with relationships between all known

genes of the nine chosen disease groups. In particular, the

combination of GO, PO and IA terms aggregate most genes that

are part of the same myopathy group for metabolic myopathies,

the congenital myasthenic syndromes, and the glycosylation

components of congenital muscular dystrophies (Figure 2A). Of

note, the gene GFPT1, which causes a congenital myasthenic

syndrome with tubular aggregates, has mainly relationships with

genes in the metabolic myopathy cluster, presumably because it

codes for an enzyme in the metabolism of glycoproteins. Another

large cluster in the graph encompasses the main genes implicated

in muscular dystrophies and congenital or myofibrillar myopa-

thies, without subdivision, suggesting a strong overlap in the

function of the related genes and potentially in the pathogenesis.

This approach can thus retrieve several phenotypic and pathologic

clusters. However, applying only the human phenotype ontology

analysis generates a single large, highly connected graph

(Figure 2B), even when the threshold for representing an edge in

the graph - number of matching HPO term between two genes - is

increased or decreased, or when HPO term hierarchy is taken into

account. This means that genes implicated in myopathies share a

common hierarchy of phenotype ontology terms, e.g. with most

genes annotated with muscle weakness or abnormal muscle

physiology related terms. While they do not help separate genes

into disease groups, HPO terms are important to help emerge

genes with phenotype annotation associated to skeletal muscle.

GO terms and IA terms, on the other hand, are responsible for the

final clustering. Different myopathy groups appear using only GO

terms (Figure 2C), while IA terms, even considering a lower

threshold of 5 terms shared between genes, create smaller clusters

of genes that interact closely by sharing the same pathways,

interactions complexes or motifs, such as constituents of collagen

VI, genes responsible for the assembly of nicotinic cholinergic

receptors, or conglomerated proteins involved with the sarcomere

(Figure 2D). Only the combination of the different GO, PO and

IA terms reaches the most precise clustering.

Characterization of disease groups via biological
processes annotation

We next aimed to extract specific signatures for each disease

group, classified based on the Gene Table of Neuromuscular

Disorders [1]. Statistical analysis of known genes was conducted

for each disease group.

GO terms include three types of ontologies: cellular components

indicate the localization of gene products; molecular function

refers to the normal roles of genes at the molecular level; and

biological processes describe the higher-order roles of genes from a

biological perspective. Four main general skeletal muscle-related

biological processes were extrapolated from the hierarchy of GO

terms: muscle contraction, calcium homeostasis, muscle develop-

ment, and muscle intracellular organization (Table 2). Analysis of

the breakdown of biological process-related GO terms that make

up the signatures of different disease groups reveals differences in

the implicated skeletal muscle processes and hints on other

important biological processes that do not primarily involve the

skeletal muscle.

Vacuolar myopathies and myofibrillar myopathies did not

receive in their signature GO terms associated with biological

processes, because the training set genes for these groups were

Data Mining of Candidate Genes for Myopathies
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annotated with heterogeneous terms that did not attain statistical

significance. Metabolic myopathies and congenital myasthenic

syndromes inferred biological processes were, as expected, not

primarily muscle related, but had mostly to do with glycogen

metabolism and neuromuscular junction, respectively. Congenital

muscular dystrophies, while having two GO terms associated with

muscle development, were also primarily annotated with non

muscle-specific biological processes, especially protein glycosyla-

Figure 2. Graph representation of relationships of known genes. All known genes for the different disease groups were concurrently
analyzed for matching terms in different ontologies. Nodes represent genes, and edges between two given nodes are depicted when the number of
terms shared by the two connected genes is greater than a certain threshold. Edge width is proportional to the number of terms shared between two
genes, and node size and color in a scale from green (lowest) to red (highest) is proportional to the number of associations of a gene in the graph.
Closely related genes appear clustered together, and hubs in the graph appear centrally located. A: graph for combined terms from Gene Ontology
(GO), Human Phenotype Ontology (HPO) and Interactions Annotation (IA), with a threshold of 30 matching terms. The cluster with a yellow
background includes genes implicated in metabolic myopathies, the one with a red background groups congenital muscular dystrophy genes, and
the cluster with a gray background represents genes associated with congenital myasthenic syndromes. B: graph for HPO terms with a threshold of
20 matching terms. C: graph for GO terms, with a threshold of 10 matching terms. Background colors correspond to clusters represented in A. D: IA
terms with a threshold of 5 matching terms. The gray background highlights a cluster with gene that code subunits of cholinergic receptors,
implicated in congenital myasthenic syndromes, the green one groups components of collagen VI, and the cluster with a blue background links
elements of the contractile apparatus.
doi:10.1371/journal.pone.0110888.g002
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tion. Myotonic myopathies and ion channel muscle diseases take

the larger contribution from calcium homeostasis-related terms.

Muscular dystrophies mainly involve muscle intracellular organi-

zation terms, but also receive some contribution from muscle

development and muscle contraction terms. Other important

biological processes for muscular dystrophies are associated with

heart muscle contraction and development. Finally, for congenital

myopathies, muscle development and calcium homeostasis seem to

be the most significant processes, but muscle contraction-related

terms also play a role, as well as processes not specific for skeletal

muscle, such as catabolism of nucleotides - these appear enriched

due to the association of DNM2 to the catabolism of GTP, as well

as MYH7 and TPM2 to the catabolism of ATP.

Training set genes appear at the top of the ranked lists of
the disease groups

We used the signature specific to each disease group to screen

the whole set of human genes and identify candidate genes for

myopathies. The breakdown of the gene score for these training

set genes shows that a similar contribution of the different term

domains can be consistently found throughout the various disease

groups. GO score, PO score and IA score respond for

approximately 30 to 45%, 40 to 55%, and 10 to 15% of the

gene score, respectively. Table 3 shows the ranked lists of known

genes for three disease groups (Congenital Myopathies, Muscular

Dystrophies and Metabolic Myopathies), along with each gene

score and breakdown of partial scores. Table S3 shows similar

additional data for all disease groups.

As expected, genes already known to be mutated in the various

disease groups, which were used as the training set to create the

mining signatures, appear at the top of the ranked lists of data

mining. Considering congenital myopathies, out of the 22 genes

chosen as the training set, 19 genes appeared in the data mining,

while genes CCDC78, KBTBD13, and KLHL40 did not have

annotation in the databases used at the time of this work. Thirteen

of these genes were ranked within the first 100 genes, a coverage of

13/19 (68.4%). The muscular dystrophy group had 31 out of 34

genes of its training set appearing in the data mining list, and of

these 23 were found within the first 100 ranked genes (79.3%). In

the metabolic myopathy disease group, all 19 genes of the training

set were ranked, and 18/19 were found within the top 100 genes

in the rank (94.7%). Outliers among the known genes are mostly

poorly annotated genes, and genes with no score are actually not

annotated at all (see discussion). Thus, the high ranking of most

previously implicated genes supports the signature choice having

adequately defined the disease group.

Proposed candidate genes after filtration
A number of candidate genes sharing disease group signatures

with known myopathy genes are barely expressed in skeletal

muscle or sometimes mutated in other diseases not affecting

skeletal muscle. We thus added filtering steps based on tissue

expression and known implication in diseases (see methods for

details). Table 4 shows the top 8 ranked genes for each disease

group after filtration on skeletal muscle expression and absence of

link with diseases in OMIM (Online Mendelian Inheritance in

Men, omim.org) database. Table S2 lists the full ranked list of

genes for each disease group without filtration, but annotated with

skeletal muscle expression and OMIM diseases, and can be linked

to NGS filtering pipelines to help prioritization of novel gene

discovery, as shown in the discussion. In the following paragraphs,

we discuss a few genes found as candidates in some of the disease

groups, to illustrate the connections between the integrated data

mining results and evidence from the literature.
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Candidate genes for muscular dystrophies display strong links

with muscle development, contraction and intracellular organiza-

tion, expected subcomponents of skeletal muscle-related biological

processes terms from the breakdown of GO terms. ITGB1 codes

for a subunit of ubiquitous fibronectin receptors and has a number

of suggested functions in different tissues. In skeletal muscle, it has

been proposed as a possible target for myostatin in mice myoblast

differentiation [30] and is also critical for the development of

neuromuscular junctions [31]. TMOD1 encodes for tropomodulin,

a protein that regulates tropomyosin and F-actin organization.

Knockout mice present with age-dependent sarcomere misalign-

ment and sarcoplasmic reticulum morphological defects [32].

MYL1 is involved with early differentiation of fast muscle cells [33]

and TNNI1 codes for the slow-twitch skeletal muscle isoform of

troponin I, which has yet to be associated with human diseases

even though the fast-twitch isoform is responsible for a subtype of

arthrogryposis and the cardiac isoform causes cardiomyopathy

syndromes.

Candidate genes for congenital myopathies have a significant

overlap with genes proposed for muscular dystrophies, for example

for TMOD1 and TNNI1. Among those with a high rank in

congenital myopathies are RYR3 and MYH1. RYR3 codes for a

ryanodine calcium release channel with a low Ca2+ sensitivity that

has a physiologic role in the excitation-contraction coupling of

neonatal skeletal muscles and is up regulated in steroid-associated

muscle damage [34], while MYH1 is one of the adult skeletal

muscle isoforms of myosin heavy chain that predominates in 2B

myofibers. RYR3 high ranking is boosted by a strong contribution

of calcium homeostasis terms, explaining why RYR3 received a

similarly high score in the Myotonic Syndromes and Ion Channel

Muscle Diseases groups, which also have a strong component of

calcium homeostasis terms. Also in the group of Ion Channel

Muscle Diseases, the gene CACNB1 encodes both the brain and

skeletal muscle isoforms of the calcium channel beta subunit, and

its loss in mouse is associated to a phenotype similar to that seen in

mice with mutations in the known genes CACNA1S or RYR1
[35].

Within congenital muscular dystrophies, the gene B3GALNT2,
ranked in the 97th place out of 4841 genes with annotation for this

group’s signature, was recently found to be associated with

hypoglycosylation of alpha-dystroglycan and a congenital muscu-

lar dystrophy phenotype in humans [18]. Two other genes,

GMPPB, ranked in 225th, and B3GNT1, ranked in 479th, were

also implicated in a form of congenital muscular dystrophy with

hypoglycosylation of alpha-dystroglycan and Walker-Warburg

disease, respectively [36,37]. These genes had not been used in

the training set of genes for congenital muscular dystrophies, and

have since been annotated in OMIM, but their high placement in

the ranking list validate the proposed data mining strategy and

subsequent filtering steps.

Candidate genes within genomic regions linked to
myopathies

A number of neuromuscular diseases have mapped loci awaiting

gene identification [1]. Matching the genomic positions of the top

100 candidate genes of each disease group with such mapped loci

reveals some interesting candidates (Table 5).

The gene XIRP1, matching the locus for hyalin body myopathy

and congenital muscular dystrophy with joint hyperlaxity, was

originally studied in relation to murine cardiac morphogenesis and

later shown to bind skeletal muscle actin in in vitro assays [38]. Its

product, the Xin protein, is skeletal muscle-specific and has

recently been put forward as a potentially useful biomarker of

muscle damage, which can be used to monitor disease progression
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Table 4. Top 8 ranked candidate genes for each disease group.

Muscular dystrophies

Rank Gene Name Score

33 ITGB1 integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes
MDF2, MSK12)

437

42 TMOD1 tropomodulin 1 391

48 MYL1 myosin, light chain 1, alkali; skeletal, fast 368

53 TNNI1 troponin I type 1 (skeletal, slow) 356

62 MYH4 myosin, heavy chain 4, skeletal muscle 332

67 UTRN utrophin 325

72 TNNC2 troponin C type 2 (fast) 304

81 SRF serum response factor (c-fos serum response element-binding transcription factor) 278

Congenital muscular dystrophies

Rank Gene Name Score

36 GCNT4 glucosaminyl (N-acetyl) transferase 4, core 2 458

44 GALNT1 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 1
(GalNAc-T1)

444

47 ST8SIA2 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 2 444

51 OGT O-linked N-acetylglucosamine (GlcNAc) transferase 444

53 GALNT2 UDP-N-acetyl-alpha-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2
(GalNAc-T2)

444

55 SDF2 stromal cell-derived factor 2 443

57 ST8SIA6 ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 6 442

62 MGAT1 mannosyl (alpha-1,3-)-glycoprotein beta-1,2-N-acetylglucosaminyltransferase 426

Congenital myopathies

Rank Gene Name Score

17 MYH4 myosin, heavy chain 4, skeletal muscle 755

29 MYL1 myosin, light chain 1, alkali; skeletal, fast 640

31 TNNI1 troponin I type 1 (skeletal, slow) 634

37 RYR3 ryanodine receptor 3 587

38 TMOD1 tropomodulin 1 570

43 TNNC2 troponin C type 2 (fast) 527

51 MYH1 myosin, heavy chain 1, skeletal muscle, adult 458

58 MYL6B myosin, light chain 6B, alkali, smooth muscle and non-muscle 438

Metabolic myopathies

Rank Gene Name Score

10 PRKAA2 protein kinase, AMP-activated, alpha 2 catalytic subunit 672

18 PPP1R3C protein phosphatase 1, regulatory subunit 3C 593

21 MTOR mechanistic target of rapamycin (serine/threonine kinase) 588

26 PRKAB2 protein kinase, AMP-activated, beta 2 non-catalytic subunit 560

39 ACACB acetyl-CoA carboxylase beta 470

40 PHKG1 phosphorylase kinase, gamma 1 (muscle) 470

44 PPARGC1A peroxisome proliferator-activated receptor gamma, coactivator 1 alpha 459

48 GSK3A glycogen synthase kinase 3 alpha 441

Congenital myasthenic syndromes

Rank Gene Name Score

Data Mining of Candidate Genes for Myopathies
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Table 4. Cont.

Muscular dystrophies

Rank Gene Name Score

11 CHRNB4 cholinergic receptor, nicotinic, beta 4 (neuronal) 817

15 CHRNA6 cholinergic receptor, nicotinic, alpha 6 (neuronal) 680

19 CHRNB3 cholinergic receptor, nicotinic, beta 3 (neuronal) 636

21 CACNA2D2 calcium channel, voltage-dependent, alpha 2/delta subunit 2 628

22 CHRNA9 cholinergic receptor, nicotinic, alpha 9 (neuronal) 616

40 ITGB1 integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12) 441

52 CHRNA10 cholinergic receptor, nicotinic, alpha 10 (neuronal) 413

61 HTR3B 5-hydroxytryptamine (serotonin) receptor 3B, ionotropic 399

Ion channel muscle diseases

Rank Gene Name Score

12 SCN3A sodium channel, voltage-gated, type III, alpha subunit 1416

13 CACNB1 calcium channel, voltage-dependent, beta 1 subunit 1378

40 RYR3 ryanodine receptor 3 1019

52 CACNG1 calcium channel, voltage-dependent, gamma subunit 1 936

55 CACNA2D1 calcium channel, voltage-dependent, alpha 2/delta subunit 1 930

63 CACNA2D3 calcium channel, voltage-dependent, alpha 2/delta subunit 3 915

70 KCNQ5 potassium voltage-gated channel, KQT-like subfamily, member 5 888

71 KCNA7 potassium voltage-gated channel, shaker-related subfamily, member 7 888

Myotonic syndromes

Rank Gene Name Score

7 CASQ1 calsequestrin 1 (fast-twitch, skeletal muscle) 1079

8 RYR3 ryanodine receptor 3 954

15 JPH1 junctophilin 1 806

21 MYL1 myosin, light chain 1, alkali; skeletal, fast 703

26 CAMK2D calcium/calmodulin-dependent protein kinase II delta 658

32 SYPL2 synaptophysin-like 2 611

34 ITGB1 integrin, beta 1 (fibronectin receptor, beta polypeptide, antigen CD29 includes MDF2, MSK12) 610

47 MYH4 myosin, heavy chain 4, skeletal muscle 559

Myofibrillar myopathies

Rank Gene Name Score

27 MYL1 myosin, light chain 1, alkali; skeletal, fast 984

33 MYH4 myosin, heavy chain 4, skeletal muscle 924

35 MYL12B myosin, light chain 12B, regulatory 921

41 TNNI1 troponin I type 1 (skeletal, slow) 909

42 TNNC2 troponin C type 2 (fast) 909

50 PDLIM3 PDZ and LIM domain 3 862

51 MYO18B myosin XVIIIB 845

52 PDLIM5 PDZ and LIM domain 5 844

Vacuolar myopathies

Rank Gene Name Score

4 CD63 CD63 molecule 1160

8 AP1G1 adaptor-related protein complex 1, gamma 1 subunit 1006

Data Mining of Candidate Genes for Myopathies

PLOS ONE | www.plosone.org 12 October 2014 | Volume 9 | Issue 10 | e110888



and treatment effects in myopathies [39]. OBSCN encodes

obscurin, a giant sarcomeric signaling protein similar to titin,

which has a suspected role in myofibrillogenesis. It is also involved

in dystrophin localization and maintenance of sarcolemma

integrity [40], and is proposed here as a candidate for congenital

muscular dystrophy with merosin deficiency (MDC1B). An

additional candidate gene mapped in the linked region is

GALNT2, a glycosylating enzyme similar to B3GALNT2 recently

found mutated in another form of congenital muscular dystrophy

[18], and also involved in the O-glycosylation of peptides in the

Golgi apparatus.

Although not directly analyzed in this work, malignant

hyperthermia susceptibility regions encompass CACNG1 and

CACNA2D1, which are associated with calcium homeostasis

and calcium channels, are highly ranked for Ion Channel Muscle

Diseases, and are thus interesting candidates. CACNA2D1,

specifically, has been suggested at least as a modifier of

hyperthermia susceptibility in association to other genes [41].

These genes have been excluded in a limited number of families

not linked to RYR1 mutations [42], results which may be revisited

with the advent of NGS data. Additionally, another candidate

gene, CACNB1, has no associated human disease. However,

CACNG1, CACNB1 and CACNA2D1 encode for subunits of the

DHPR calcium channel, which is in direct contact and regulating

RYR1 in skeletal muscle, and one mutation in the channel subunit

CACNA1S of DHPR was linked to malignant hyperthermia [43].

The CALR and AP1M1 genes both map to 19q13, the locus

associated to autosomal muscular dystrophy with rimmed vacu-

oles. In a recent work, the product of the CALR gene, calreticulin,

has been shown to localize in cardiomyocyte mitochondria, and its

content increases in mouse models with dilated cardiomyopathy

[44]. Strikingly, calreticulin was found to be highly expressed in

GNE myopathy, a distal myopathy associated with rimmed

vacuoles [45]. Also in distal myopathies with rimmed vacuoles,

though not necessarily GNE myopathy, adaptin related-proteins

subunits, which are normally not marked in the immunohisto-

chemistry of normal muscle, appear inside or on the rims of

vacuoles. The AP1M1 gene codes for the mu subunit of adaptin

related-proteins [46].

Discussion

In this study, an integrated data mining strategy was used to

cluster and rank genes with known or potential importance for

skeletal muscle, and to provide candidate genes for myopathies

and some related diseases. Results from the clustering and ranking

highlight pathological pathways specific for disease groups. The list

of candidate genes was further filtered based on expression data

and association with other diseases, and the ensuing identification

of mutations in high-ranked genes for congenital muscular

dystrophies (B3GALNT2, GMPPB and B3GNT1) illustrated the

validity of this approach.

Gene clustering and ranking are dependent on database
annotations

Proposed genes in the final ranked list have gene scores with a

major contribution of GO and IA terms, and eventual contribu-

tion of MPO terms. Thus, they represent genes that have mostly

functional links with known myopathy genes (IA terms and GO

term ontologies for biological processes and molecular functions),

but also some degree of product colocalization in the muscle cell,

as expected from matching cellular component-related GO terms.

When available, data on altered skeletal muscle function in mouse

models also tend to contribute to higher scores for proposed

candidate genes.

Database annotation can vary from one gene to another, as it is

dependent on the history of research for each gene, including both

the date when the gene was discovered and the amount of effort

spent for its functional characterization. In addition, animal

models are generally phenotyped with a specific organ system in

mind.

To illustrate the effects of incomplete annotation, the genes

TRAPPC11 and TNPO3, recently implicated in muscular

dystrophies, were used as components of this disease group

training set, but did not impact the results of the gene ranking due

to their poor database annotation. Likewise, they were themselves

not captured by the signature used for the Muscular Dystrophies

disease group. TRAPPC11 does not appear in the ranking, as it

was annotated with only two GO terms that are not significant for

muscular dystrophies ("vesicle-mediated transport" and "Golgi

apparatus"), it has no annotation for pathways or phenotypes, and

its two protein motifs are unique in the genome. Annotation biases

also account for higher placements of better-annotated genes that

have some kind of overlap with myopathy genes. Such is the case

for motor neuron disease-associated genes, which give rise to

human and mouse phenotypes that present some degree of

phenotypic overlap with myopathies and tend to share many HPO

or MPO terms with myopathy phenotypes. In the ranked list of

muscular dystrophies, high scores with a predominant contribu-

tion of HPO terms were given to the genes SMN1, SMN2, ALS2,

IGHMBP2 and AR. These genes are linked to different types of

motor neuron disease, which ultimately manifest with muscle

weakness and atrophy.

Table 4. Cont.

Muscular dystrophies

Rank Gene Name Score

18 VAMP7 vesicle-associated membrane protein 7 1006

20 MARCH8 membrane-associated ring finger (C3HC4) 8, E3 ubiquitin protein ligase 1006

22 ZNRF1 zinc and ring finger 1, E3 ubiquitin protein ligase 1006

26 AP1M1 adaptor-related protein complex 1, mu 1 subunit 1006

27 AP1B1 adaptor-related protein complex 1, beta 1 subunit 1006

40 ABCC4 ATP-binding cassette, sub-family C (CFTR/MRP), member 4 817

Candidate genes are not associated with disease (as per annotation in OMIM) and are expressed in skeletal muscle with at least 10% of the maximum expression in any
tissue, except for congenital myasthenic syndromes, where there was no expression filtering.
doi:10.1371/journal.pone.0110888.t004
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In silico approaches need thus periodic revisits to adjust

candidate lists based on association of new genes that impact

training sets and discovery of new pathways or interactions that

change corresponding database annotation, such as the recently

published interactome of skeletal muscle proteins centered on

proteins that cause limb-girdle muscular dystrophies [47].

Possible insights into pathological mechanisms
The integrated data mining identified gene signatures revealing

common function within specific myopathy groups or between

groups, and highlighting pathological mechanisms.

Known and candidate genes for metabolic myopathies,

congenital myasthenic syndromes, myotonic syndromes, and ion

channel muscle diseases define distinctive functions for each

disease group (Table 2). Highly ranked genes for congenital

myasthenic syndromes are associated to function not primarily

linked to skeletal muscle but point as expected to the neuromus-

cular junction. The cellular basis of myotonic myopathies and ion

channel muscle diseases consists in the alteration of ion

homeostasis. Additional genes contributing to glycogen metabo-

lism were identified as good candidate genes for the metabolic

myopathies.

Muscle development, muscle contraction and calcium homeo-

stasis are key pathways linked to congenital myopathies; indeed

this myopathy group presents generally at or before birth, and is

characterized by histological hallmarks reflecting alteration and

aggregation of proteins implicated in muscle contraction (nemaline

myopathies) or due to primary defects in the excitation-contraction

coupling (core myopathies and potentially the centronuclear

myopathies).

Muscular dystrophies mainly involve muscle intracellular

organization terms that reflect the structural importance of most

proteins already reported mutated. However, other pathways may

have been overlooked because the way the first genes were

discovered; once the DMD gene was found, investigators started

seeking mutations on genes from the dystrophin-glycoprotein

complex. Of note, based on the terms breakdown and candidate

genes identified, muscular dystrophies may have a larger

contribution from the contractile apparatus than previously

assumed, which would bring this disease group closer to congenital

myopathies.

Allelic diseases
The integrated data mining reveals or confirms allelic diseases.

Indeed, while proposed genes for metabolic myopathies or

myasthenic syndromes are rather group-specific, a larger overlap

occurred between congenital myopathies and muscular dystro-

phies than what was expected from the analysis of overlap between

these groups’ training sets. While only 2 genes out of 34 muscular

dystrophy training set genes also appeared among the 22

congenital myopathy training set genes (TTN and TRIM32), the

first positions on the ranked lists of candidate genes after filtering

for known diseases encompass a large overlap of genes: 5 out of the

top 8 candidate genes for muscular dystrophies are within the top

8 for congenital myopathies (Table 4), and 33 out of the top 50

candidate muscular dystrophy genes are also within the top 50

candidate genes for congenital myopathies (Figure 3 and Table

S2). Overlaps are also substantial between both these lists and the

one for myofibrillar myopathies, but in this case the overlap was

expected as the training set for myofibrillar myopathies, despite

being small (7 genes), included 2 genes also associated to muscular

dystrophies and 1 gene associated to congenital myopathies. On

the other hand, while the training sets of muscular dystrophies and

congenital muscular dystrophies overlap with a significant share of

8 genes, only 3 genes within the top 50 candidate genes is the same

for both groups. The reasons for these results lie in the signature of

the disease groups: the breakdown of biological processes terms

(depicted in Table 2), which represent the larger share of GO

terms, is more comparable between congenital myopathies and

muscular dystrophies, with similar contributions of terms involving

muscle contraction and development, as opposed to the absence of

resemblance between these disease groups and the congenital

muscular dystrophies breakdown, which is enriched with mainly

non-skeletal muscle-related terms, especially glycosylation. Taken

together, gene clustering and candidate genes retrieval suggest that

mutations in the same genes will eventually be linked to both

muscular dystrophies and congenital myopathies.

Table 4 presents the top 8 ranked genes after excluding genes

with known disease annotation. Genes with known disease

annotation (listed in Table S2) might still be good candidate

genes for myopathies, considering that phenotypic variability is

more a rule than an exception for known myopathy genes. This is

the case for genes linked to both myopathy and cardiomyopathy.

It is thus expected that known cardiomyopathy-associated genes

may be found associated with a skeletal muscle phenotype. Such

phenotypic variability may even transcend the realm of muscle

alteration. DNM2, for example, is associated both with centro-

nuclear myopathy, a congenital myopathy, and Charcot-Marie

Tooth disease, a hereditary neuropathy [48,49]. LMNA, in

addition to multiple myopathic phenotypes, also causes Charcot-

Marie Tooth disease or progeria [50,51], and SYNE1 can cause

one type of Emery-Dreifuss muscular dystrophy, a dilated

cardiomyopathy syndrome, a form of autosomal recessive

arthrogryposis, and autosomal recessive spinocerebellar ataxia

Table 5. Candidate genes within genomic regions linked to myopathies and related diseases.

Linked
region

Phenotypes and asssociated disease symbols Candidate genes

1q42 Congenital muscular dystrophy with merosin
deficiency - MDC1B

OBSCN, GALNT2

3p22.2-p21.32 Hyalin body myopathy - HBM XIRP1

3p23-21 Congenital muscle dystrophy with joint hyperlaxity XIRP1

7q21-q22 Malignant hyperthermia susceptibility 3 - MHS3 CACNA2D1

17q11.2-q24 Malignant hyperthermia susceptibility 2 - MHS2 SDF2, SYNRG, CACNB1, CACNG1

19p13 Muscular dystrophy, autosomal dominant,
with rimmed vacuoles - MDRV

CALR, PRKACA, AP1M1

doi:10.1371/journal.pone.0110888.t005
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[52–55]. The origin of the variability may stem from varying

impacts of mutations in different protein domains. For example, in

DNM2, mutations giving rise to a centronuclear myopathy

phenotype are enriched in the interface between the middle

domain and the pleckstrin homology domain, while mutations

implicated in Charcot-Marie-Tooth disease tend to cluster in other

parts of the pleckstrin homology domain [56].

After we carried out this work, a form of vacuolar myopathy was

associated to CLN3, implicated in neuronal ceroid lipofuscinosis,

ranked 343rd for vacuolar myopathies [57]. In addition, LRP4, a

gene associated with Cenani-Lenz syndactyly syndrome and

sclerosteosis, and ranked high (54th) for congenital muscular

dystrophies, was implicated in a patient with a CMS disease [58].

We therefore suggest that genes with disease annotation in the

ranked lists should be considered with caution in analyzing NGS

results, but not a priori excluded when using filtering pipelines.

Example of the usage of the ranked lists
We found the ranked lists to be helpful in our own analysis of

exome data to prioritize the scrutiny of potential novel genes

implicated in myopathies. The gene ranks in the Excel file sheets

in Table S2 can be easily used as additional genomic annotation.

Consider this exome of a sporadic patient affected with

nemaline myopathy, a congenital myopathy, from unaffected

parents (Table S4). Out of an initial 86,333 variants called in the

exome data, 250 remained after variants filtering to exclude

purported sequencing errors and polymorphisms. The first

variants we analyze closely are the ones found in genes with

known implication in myopathies. The heterozygous variants in

DMD and CACNA1S were subsequently found in the unaffected

father, while the missense variant in ANO5, associated with

autosomal recessive limb girdle dystrophy 2L, would require an

association to a second mutation to cause disease. We can thus

exclude the implication of these known genes.

We next focus on the candidate genes for congenital myopathies

(Table 4 and Table S2). If a gene has more than 10% expression

in skeletal muscle and is not associated to a disease, it receives a

flag as a ‘‘candidate’’. Only 29 variants, a significant reduction

from the original 250, survive this additional filtering and are

shown in Table 6.

The gene with the highest rank was PXN, which codes for

paxillin, a protein believed to have a function related to integrins

and cytoskeletal localization in multiple tissues, skeletal muscle

included [59]. The second best gene was MYBPH, which codes

for myosin-binding protein H, the second most abundant protein

of the family of myosin-associated proteins [60]. Except for its

cloning, not much is known about its specific function. The third

gene, PPARGC1A, has regulatory functions on glucose and fat

oxidation in muscle cells and protects skeletal muscle fibers against

atrophy in mouse models [61]. However, in all these genes, single

mutations were found in a heterozygous state, thus a putative

dominant negative effect or haploinsufficiency would be required

for a pathogenicity call. The next gene in the list, SYNPO,

produces synaptopodin, a protein whose name stems from its

involvement in synapses involving dendritic spines, in addition to

renal podocytes [62]. In spite of its name, skeletal muscle is

actually the tissue where it is most strongly expressed. Further-

more, synaptopodin directly binds actin, one of the proteins

known to be involved in nemaline myopathy. The missense variant

found in this gene was homozygous, in a highly evolutionary

conserved position, with prediction of pathogenicity in multiple

tools, and was Sanger confirmed to be homozygous in the patient

and heterozygous in her parents. We believe SYNPO is the best

candidate gene for this family, based on a recessive scenario. While

we cannot discard the other genes, the ranking of candidate genes

based on our integrative data mining quickly highlights the best

genes to proceed further in functional analysis.

Conclusions

The above integrated data mining approach was successfully

used to retrieve both specific signatures for different myopathy

groups and to uncover and rank interesting candidate genes for

myopathies. Recent discoveries of gene implications that were

Figure 3. Venn diagrams of gene set overlaps. A: Venn diagram showing the overlap of training set genes between muscular dystrophies (MD),
congenital myopathies (CM) and congenital muscular dystrophies (CMD). B: Venn diagram showing the overlap of genes found within the top 50
ranked candidate genes in the three disease groups.
doi:10.1371/journal.pone.0110888.g003
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correctly identified by the disease group’s signature validated this

approach. In silico approaches allow for systematic, but modifiable

criteria to be used in generating ranked candidate lists and have

the added benefit of automation, whereby such lists can be

updated on the fly as new knowledge is incorporated in genomic

databases.

Signatures and candidate genes highlighted both potential

common pathological mechanisms and overlap between several

disease groups. In addition, the ranked candidate gene lists are

helpful to prioritize functional validation of filtered variants from

overwhelming NGS data.

Supporting Information

Table S1 Breakdown of descriptor terms for every
domain of each disease group, with corresponding
calculated weights.
(XLSX)

Table S2 Full ranked gene lists for each disease group.

(XLSX)

Table S3 Ranked lists of known genes for each disease
group.

(XLSX)

Table S4 Filtered variants from an exome of a patient
with nemaline myopathy, ordered according to the
ranked gene lists for congenital myopathies.

(XLSX)
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Table 6. Resulting 29 variants after filtration of exome data of a patient affected with nemaline myopathy.

CM Rank Flag VariantID State Gene Spec%

208 candidate 12_120660719_C_T Heterozygous PXN 22

355 candidate 1_203139425_T_A Heterozygous MYBPH 16

446 candidate 4_23803919_C_T Heterozygous PPARGC1A 30

586 candidate 5_150028613_T_C Homozygous SYNPO 100

610 candidate 5_138160333_G_A Heterozygous CTNNA1 34

786 candidate 10_115374035_A_T Heterozygous NRAP 100

856 candidate 1_87208087_A_G Heterozygous SH3GLB1 100

951 candidate 6_36076169_A_G Heterozygous MAPK14 18

1044 candidate 11_1901435_C_T Heterozygous LSP1 36

1044 candidate 11_1901435_C_T Heterozygous LSP1 36

1199 candidate 9_125863896_C_T Heterozygous RABGAP1 38

1758 candidate 12_95604081_G_A Heterozygous FGD6 17

1902 candidate 14_103420979_G_A Heterozygous CDC42BPB 32

1976 candidate 9_124522285_C_T Heterozygous DAB2IP 43

2066 candidate 22_19865895_A_C Heterozygous TXNRD2 16

2231 candidate 5_95116054_A_T Heterozygous RHOBTB3 32

2245 candidate 22_41652800_A_C Heterozygous RANGAP1 25

2263 candidate 2_159477732_C_A Heterozygous PKP4 10

2360 candidate 2_152980460_G_T Heterozygous STAM2 26

2679 candidate 1_46472006_A_G Heterozygous MAST2 100

3075 candidate 10_68138967_C_T Heterozygous CTNNA3 19

3434 candidate 7_156976610_G_A Heterozygous UBE3C 100

3530 candidate 9_32407367_C_T Heterozygous ACO1 16

3627 candidate 1_19453077_C_T Heterozygous UBR4 100

4029 candidate 20_35632140_C_G Heterozygous RBL1 40

4235 candidate 22_50356432_A_T Heterozygous PIM3 47

4375 candidate 11_75115893_C_A Heterozygous RPS3 14

5062 candidate 1_204494668_G_A Heterozygous MDM4 47

5084 candidate 7_21469915_C_T Heterozygous SP4 36

An initial 86,333 variants were reduced to 250 using criteria on the variant level, which resulted in the 29 variants after exclusion of genes already ascribed to diseases
and based on specificity of skeletal muscle expression. Variants are then sorted according to the gene ranking calculated for the congenital myopathy group.
doi:10.1371/journal.pone.0110888.t006
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