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Fracture of disordered solids in compression as a critical phenomenon.
II. Model Hamiltonian for a population of interacting cracks

Renaud Toussaint* and Steven R. Pride†

Géosciences Rennes, Universite´ de Rennes 1, 35042 Rennes Cedex, France
~Received 14 November 2001; revised manuscript received 13 June 2002; published 27 September 2002!

To obtain the probability distribution of two-dimensional crack patterns in mesoscopic regions of a disor-
dered solid, the formalism of Paper I requires that a functional form associating the crack patterns~or states!
to their formation energy be developed. The crack states are here defined by an order parameter field repre-
senting both the presence and orientation of cracks at each site on a discrete square network. The associated
Hamiltonian represents the total work required to lead an uncracked mesovolume into that state as averaged
over the initial quenched disorder. The effect of cracks is to create mesovolumes having internal heterogeneity
in their elastic moduli. To model the Hamiltonian, the effective elastic moduli corresponding to a given crack
distribution are determined that includes crack-to-crack interactions. The interaction terms are entirely respon-
sible for the localization transition analyzed in Paper III. The crack-opening energies are related to these
effective moduli via Griffith’s criterion as established in Paper I.
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I. INTRODUCTION

In triaxial-stress experiments on rocks in the brittle
gime, the onset of a macroscopic localization of deformat
is usually observed around peak stress@c.f. Bésuelle@1# for a
review#. Such departure from a macroscopically uniform d
formation regime is intrinsically beyond the capacities o
mean-field theory, and so a specific model is developed h
that takes the orientational nature of crack-to-crack inter
tions into account.

This is the second paper in a series of three dedicate
exploring how the physical properties of disordered sol
evolve as they are led to failure in a state of compress
The goal of this paper is to obtain a reasonable form for
HamiltonianEj («,«m) which is defined as the average wo
required to lead an intact region at zero deformation to
crack state denoted byj when the maximum applied strain
«m and where the final strain« is possibly different than«m

due to a final unloading. This Hamiltonian must be expres
in terms of the spatial distribution of the local order para
eter that is the variable used to characterize the populatio
cracks in each mesovolume of a huge disordered-solid
tem.

Most existing lattice models explore the dynamics of s
lar order parameters either representing the breakdow
elastic spring or beam networks under tensile stress@2#, or of
fuse networks@3#. The analogies between such scalar mod
and fracture of disordered media has been widely discus
@4#. One advantage of our approach is the ability to expl
interactions based on a fully tensorial description of
stress perturbations produced by each crack. Another i
ability to yield analytical rather than only numerical resul
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UsingEj in the partition function established in Paper I, it
possible to explore the crack patterns that emerge in c
pressive settings for which isolated cracks appear in an
trinsically stable manner no matter their size@5#, and for
which macroscopic localization is a collective phenomen
due to the energetic organization of small cracks as oppo
to an instability associated with the largest defects. In
present paper, we retain the leading-order effects of orien
crack populations interacting in two-dimension~2D!. The
overriding importance of the long-range elastic interactio
leaves hope that 3D generalizations would not yield qual
tively different critical behavior.

II. PRINCIPLES OF THE MODEL

A. Order-parameter definition

We now elaborate on the crack model introduced in Pa
I. Each mesovolume of a huge rock system is discretized
a square network of diamond-shaped cells of sizeL ~grain
sizes! and only a single crack is potentially present in ea
cell. A crack is located at the center of the cell and ha
lengthd somewhere within the support@0,dm#, wheredm is
the maximum crack length~a fixed parameter of the system!
required to satisfydm,L. In the perturbative treatment o
the crack interactions developed herein,e5(dm /L)D is
taken to be a small number, whereD is the number of space
dimensions~in the present model,D52). The local order
parameterw(x) associated with each cellx is taken to have
an amplitudec5uwu5(d/dm)D and has a sign that indicate
whether the crack is oriented at145 ° or 245 ° relative to
the principal stress direction~the so-called ‘‘axial direc-
tion’’ !. The model is summarized in Fig. 1

The restriction that cracks are either at645 ° and have
lengths less than the grain dimensions is of course a g
simplification compared to what is found inside of real rock
However, we only need to characterize the essential feat
of a crack population that contribute to localization pheno
ena and, to this extent, it appears overly complicated

O.
:
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RENAUD TOUSSAINT AND STEVEN R. PRIDE PHYSICAL REVIEW E66, 036136 ~2002!
model the amazing variety of crack geometries encounte
in real rocks@6,7#. The localization transition involves spon
taneous breaking of symmetries both under translation
parity ~inversion of the minor stress axis! as is seen from the
structure of the shear bands emerging in the post-peak-s
regime@8#. The essential feature of any proposed order
rameter is that it must reflect and quantify the amount
local symmetry breaking and our simple model with crac
at either645 ° does just this.

Furthermore, there is evidence both from acous
emissions monitoring@9# and from direct observation afte
unloading@10#, that cracks developing prior to peak stress
not exceed an extent of a few grains diameters. This is p
cipally because the grain contacts that break are m
weaker than the grains and have a finite length so that cr
arriving in compression do so stably@5#. Crack coalescence
is not explicitly allowed for. However, since several neig
boring cells in a line may all contain cracks of the same si
the long-range elastic effect of long~coalesced! cracks is
effectively allowed for. Our picture of the final shear ban
experimentally observed in the post-peak-stress regim
that they were created by unstable sliding along a b
weakened in the pre-peak-stress regime by a concentratio
coherently oriented cracks@8#. Our model allows small
cracks to stably concentrateen échelon along conjugate
bands relative to the principal-stress direction; however
does not model the final unstable rupture along a given ba

B. Formation energy of a crack pattern

It has been established in Paper I that to a reason
approximation, the work required to form a crack state,

FIG. 1. Part of the diamond network of cells that comprise
mesovolume. Each cell has the linear dimensionL and is only
allowed to contain one crack. The maximum length of any crac
dm and this length is assumed to be sufficiently small t
(dm /L)D!1. The amplitude of the order parameter is by definiti
c5uwu5(d/dm)D, whered is the length of the crack found in th
cell, while the sign ofw indicates the orientation of the crack a
shown.
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averaged over the initial disorder, separates into one
representing the work required to break the grain conta
and a second part representing the elastic energy stored i
cracked solid. This was expressed in Eqs.~26!–~28! of Paper
I as

Ej5
q

2
«m :~C02Cj !:«m1

1

2
«:Cj :«. ~1!

The first term of Eq.~1! is the energy spent in the irreversib
formation of the crack statej averaged over quenched diso
der and was obtained through an application of Griffith
principle. The parameterq derives from the quenched
disorder distribution and lies in the range@1/2,1# ~see Sec.
III B 2 of Paper I!. The second term is the reversibly-store
elastic energy withCj being the elastic-stiffness tensor o
statej.

Our principal task is therefore to model the way th
cracks and collective crack-states affect the overall ela
moduli of a mesovolume. This requires detailed knowled
of the stress~or strain! field throughout the mesovolume i
the presence of arbitrary crack populations, and we treat
need using the following approximations. First, since t
cracks in the model are isolated one to each cell, their m
effect regarding the far-field stress is to change the ela
moduli of their embedding cell. Such a change is mode
assuming the cracks to be penny-shaped ellipsoidal cavi
We ignore how such ellipses change shape when the app
stress is unloaded/reloaded since linear elasticity alone
tures the principle effect of how the rock becomes wea
due to strategic placement of cracks in cells. Since a cr
occupies a limited extent of a cell, the modification of t
moduli is small compared to the moduli of the intact cell
that the resulting far-field stress field can be developed a
Born series. It is in the third term of this development th
crack-to-crack interactions are first allowed for. Higher-ord
interactions~three cracks simultaneously interacting and
on! are negligible to the extent thate5(dm /L)D can be con-
sidered small.

III. ELASTIC ENERGY

The goal of this section is to determine the elastic ene
Ej

el stored in a mesovolume occuping the regionV and con-
taining the crack statej ~which denotes the spatial distribu
tion of w(x) at all pointsx of V) when a displacement cor
responding to a uniform strain tensor«(0) is applied on the
external surface]V of the mesovolume.

A. Elastic energy of a weakly heterogeneous solid

The effect of the crack fieldw(x) is to perturb the stiff-
ness tensor of each cell asC(x)5C01dc@w(x)#, whereC0

denotes the moduli of an uncracked cell~assumed uniform
for all cells!, and wheredc(x) is a small perturbation due to
the possible presence of a crack as characterized byw(x). It
is established in the Appendix that the nonzero compone
of dc are typically smaller than those ofC0 by a factore
5(dm /L)D!1. Our problem is to resolve an elasticit

s
t
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FRACTURE OF DISORDERED . . . II. . . . PHYSICAL REVIEW E 66, 036136 ~2002!
boundary-value problem in a regionV containing a weakly
heterogeneous stiffness tensorC(x).

The displacement boundary conditions are given as

;xP]V, u~x!5«(0)
•x, ~2!

wherex denotes distance from the center of the mesovolu
Elastostatic equilibrium requires that

] jt i j 5Ci jkl
0 ] j]kul1] j@dci jkl ]kul #50 ~3!

throughoutV, where summation over repeated indices
assumed both here and throughout. Due to the linearity of
problem, we use the elastostatic Green tensorG5Gi j x̂i x̂j for
a uniform material which is a solution of

Ci jkl
0 ] j]kGlm~x,x8!1d imdD~x2x8!50, ~4!

;xP]V, Gi j ~x,x8!50. ~5!

The componentsGi j (x,x8) define thei th component of the
displacement atx induced by a unit point force acting alon
the j axis atx8. Here,d i j is the Kronecker symbol, anddD is
the D-dimensional Dirac distribution.

The solution for the displacements when no cracks
present is simplyu(0)(x)5«(0)

•x throughout all ofV. Thus,
it is a straightforward excercise to demonstrate that the t
displacementu in the presence of the cracks satisfies
following integral equation:

ui~x!5ui
(0)~x!1E

V
Gi j ~x,x8!]k8@dcjklm] l 8um#~x8!dDx8,

~6!

where] i 8 denotes the partial derivative relative to the co
dinatexi8 . Usinge as the argument of a series expansion,
write the displacements as u5u(0)1u(1)1•••u(n)

1O(e (n11)), where eachu(m) is O(em). Collecting terms at
each order ofe in Eq. ~6! gives the following recursion re
lation:

ui
(n11)~x!5E

V
Gi j ~x,x8!]k8@dcjklm] l 8um

(n)#~x8!dDx8.

~7!

The boundary conditions used to defineG guarantee that for
all n.0, the displacementsu(n) are zero on the boundar
]V.

The quantity we are specifically seeking to establish is

elastic energy densityEel5,2D*V
1
2 t(x):«(x)dDx, where

we recall that, is the linear dimension of a mesovolum
The definitions of the strain« i j 5

1
2 (] iuj1] jui) and stress

t i j 5(Ci jkl
0 1dci jkl )«kl give immediately the following rela-

tions:

« i j
(n)5

1

2
~] iuj

(n)1] jui
(n)!, ~8!

t i j
(n)5Ci jkl

0 «kl
(n)1dci jkl «kl

(n21) , ~9!
03613
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E(n)5
1

2,D (
a50

n E
V

t(n2a):«(a)dDx, ~10!

with the convention«(21)50. In the last expression, the fac
that u(a)50 on the boundary for alla.0 guarantees tha
after integrating by parts,

E
V

t(n2a):«(a)dDx5E
V

t(n2a):“u(a)dDx

5E
]V

n•t(n2a)
•u(a)dD21x50,

where we used the facts that the stress tensor is symm
and solenoidal. Thenth term of the total elastic energy i
then

E(n)5
1

2
t(n):«(0), ~11!

where the upper bar denotes a volume average overV.
The first term of the elastic energy is independent of thew

field, and corresponds to the physically unimportant amo
of energy

E(0)5
1

2
«(0):C(0):«(0) ~12!

stored in the intact state.
For the higher ordersn>1, t(n) is expressed by Eq.~9!,

and the same argument as above using the fact thatu(n)50
on ]V eliminates a term:

E(n)5«(n):C(0):«(0)1
1

2
«(n21):dc:«(0)5

1

2
«(n21):dc:«(0).

~13!

The second term of the developement,

E(1)5
1

2
«(0):d c̄:«(0), ~14!

represents only a local dependance ondc ~and therefore on
the crack field! since it does not involve nested integrals ov
two different positions. It will be shown to represent only th
contribution of the average crack porosity to the stiffness
the rock.

The third term of the development is where the desi
crack-to-crack interactions arrive. Using the symmetry ofdc
under the inversion of its two first or last indices, and Eq.~7!
to have an integral form ofu(1), Eq. ~13! transforms to

2,DE(2)5E ]bua
(1)~x!dcabcd~x!«cd

(0)dDx

5E E «cd
(0)dcabcd~x!]bGa j~x,x8!

3]k8dcjklm~x8!« lm
(0)dDxdDx8. ~15!
6-3
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RENAUD TOUSSAINT AND STEVEN R. PRIDE PHYSICAL REVIEW E66, 036136 ~2002!
This term accounts for the way that a crack present atx8
energetically interacts with a different crack atx. This is the
nonlocal interaction term that is ultimately responsible
the localization transition. The higher terms of the Born d
velopment can be neglected for our purposes.

B. Elastic energy as explicit function of the crack field

To establish the terms of the Born-approximated ela
energy as explicit functions of both the crack statew and the
imposed strain«(0), a few definitions are first introduced.

The principal axes of«(0) are along (êradial,êaxial) as de-
noted in Fig. 1. Our square network of cells is rotated145 °
from this orthonormal basis. We work here in the coordina
(ê1 ,ê2) of the square network so that the applied-strain ta
the form

«(0)5
1

2 S D g

g D
D , ~16!

whereD5« radial1«axial andg52(« radial2«axial) are the im-
posed dilatation and shear strain.

For convenience, we assume the intact material to be
tropic. Takingl12m as the stress unit, where (l,m) are the
Laméparameters of the material, and using the usual ten
to-matrix mapping of the indices (11)→1; (22)
→2; (12)→3, the fourth-order stiffness tensor of the inta
material takes the form

C05S 1 2a21 0

2a21 1 0

0 0 12a
D , ~17!

where

a5
l1m

l12m
~18!

is a material-dependent constant in the range@0.5,1#.
The deviationdc of this tensor due to the possible pre

ence of a crack in a cell separates into an isotropic contr
tion independent of the crack’s orientation, and into an
isotropic orientation-dependent contribution. In t
Appendix, we demonstrate that

dc~x!5e@Aw~x!1Buw~x!u#, ~19!

A5S h22h1 0 0

0 h12h2 0

0 0 0
D , ~20!

B5S 2h1 2~2a21!h2 0

2~2a21!h2 2h1 0

0 0 2~12a!h3

D ,

~21!

where (h1 ,h2 ,h3) are positive constants expressed in t
Appendix in terms of the Lame´ parameters.
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Making the necessary contractions over the indices,
easily obtain the trivial~crack independent! energyE(0) us-
ing Eqs.~12!, ~16!, and~17!. For later convenience, this re
sult is best written in matrix form as

E(0)5
1

2
~D,g!•M0•~D,g!T, ~22!

M05S a 0

0 12a D . ~23!

Using the auxiliary field

c~x!5uw~x!u ~24!

denoting the amplitude of each crack, one similarly obta
@using Eqs.~14! and ~19!–~21!#

E(1)5
e

2
@«(0):A:«(0)w̄1«(0):B:«(0)c̄#

5
1

2
~D,g!•M1•~D,g!T, ~25!

with

M152ec̄S k2 0

0 k3
D , ~26!

k25
h1

2
1

2a21

2
h2 , ~27!

k35~12a!h3 . ~28!

The term proportional tow̄ has algebraically canceled due
the symmetry of the problem under parity; inversion of t
minor axisêradial flips the orientation of cracks, and therefo
changes the sign ofw̄, while the energy remains necessar
unchanged. The surviving term is negative and proportio
to c̄, and accounts for the softening of the mesovolume d
to the presence of cracks. This dependence on the total n
ber of cracks is the only order-parameter dependent effec
first order.

Last, the crack-interaction term of principal interest c
be readily expressed from Eqs.~15! and ~19! as

22,DE(2)5e2«cd
(0)«kl

(0)AabcdAi jkl f aib j

12e2«cd
(0)«kl

(0)AabcdBi jkl gaib j

1e2«cd
(0)«kl

(0)AabcdBi jkl haib j , ~29!

where the fourth-order tensorsf,g,h are functionals ofw and
defined as

f aib j5E dDxE dDx8Gai~x,x8!]bw] j 8w, ~30!

gaib j5E dDxE dDx8G$ai%~x,x8!]bw] j 8c, ~31!
6-4
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FRACTURE OF DISORDERED . . . II. . . . PHYSICAL REVIEW E 66, 036136 ~2002!
haib j5E dDxE dDx8Gai~x,x8!]bc] j 8c. ~32!

In the second term, the reciprocity of the Green funct
Gai(x,x8)5Gai(x8,x) is used as well as the notationG$ai%
5(Gai1Gia)/2.

The Green tensor needed here satisfies the Dirichlet
ditions of Eq.~5! and can be obtained, in principle, from th
infinite-space Green tensor via the image method. Howe
this transformsE(2) into an infinite series~one term for each
image!, and makes the functional integrations of Paper
analytically hopeless. To remedy this problem, the Gre
function with a periodic instead of zero boundary conditi
is used as ersatz. Sinceu(1) is only affected close to the
boundaries by this replacement, this approximation will
considered valid for the evaluation of the volume integ
E(2).

The double integrals of Eqs.~30!–~32! are most easily
expressed using the 2D finite-Fourier transform

F̃~k!5E
V

dDxF~x!e2 ik•x, ~33!

F~x!5
1

,D (
k

F̃~k!eik•x, ~34!

where the sum over the wave vectorsk is over $k
52pni /,êi ; ; i ,niPZ% with an upper cutoff given by
maxni.,/L that reflects the fact that the order parame
cannot vary on scales smaller than cell sizesL. Since the
Green function used is defined with periodic boundary c
ditions, it satisfiesGai(x,x8)5Gai(x2x8). Its Fourier trans-
form is easily established, and upon recalling that (l12m)
is adopted as the stress unit, reads

G̃~k!5
1

~12a!k2
~ I2a k̂k̂!, ~35!

k̂5
k

iki , ~36!

whereI is the identity tensor. This is real and symmetric,
is G(x) itself. Sincew and c are real fields, one hasw̃
(2k)5w̃* (k) and c̃(2k)5c̃* (k). Using these relations
together with the identity*VdDxeik•x5,Ddk , the integrals
of Eqs.~30!–~32! become the following sums

f aib j5
1

,D (
kÞ0

uw̃~k!u2k̂ j k̂b~d ia2a k̂i k̂a! ~37!

gaib j5
1

,D (
k5” 0

Re@w̃~k!c̃* ~k!# k̂ j k̂b~d ia2a k̂i k̂a!, ~38!

haib j5
1

,D (
k5” 0

uc̃~k!u2k̂ j k̂b~d ia2a k̂i k̂a!, ~39!
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where Re denotes the real part of a complex quantity
where k̂i denotes thei th component ofk̂5k/iki . With the
following definitions associated with the orientation ofk:

uk5~ ê1 ,k!, ~40!

uk5cos~2uk!5cos2uk2sin2uk5 k̂1
22 k̂2

2 , ~41!

vk5sin~2uk!52 cosuk sinuk52k̂1k̂2 , ~42!

the remaining contraction in Eq.~29! over the eight indices
(abcdi jkl) is performed. The calculation is a bit long bu
without surprise and finally produces

E(2)5
1

2
~D,g!•M2•~D,g!T, ~43!

M25
2e2

~12a!,2D S a b

b cD , ~44!

where the componentsa, b, andc are defined,

a5(
k5” 0

ak ; b5(
k5” 0

bk ; c5(
k5” 0

ck , ~45!

ak5~12auk
2!k1

2uw̃ku212~12a!ukk1k2 Re~ w̃kc̃k* !

1~12a!k2
2uc̃ku2,

bk52aukvkk1k3 Re~ w̃kc̃k* !1~12a!vkk2k3uc̃ku2,

ck5~12avk
2!k3

2uc̃ku2,

with k2 ,k3 defined in Eqs.~27!, ~28! andk1 a new material-
dependent constant,

k15̂
h12h2

2
. ~46!

IV. SURFACE FORMATION ENERGY

Next, we must account for the energyEj
I that irreversibly

went into creating the cracks of a given crack statej at a
maximum deformation«m . In Paper I, this contribution was
obtained using Griffith’s criterion as

Ej
I5

q

2
,D«m :~C02Cj !:«m , ~47!

whereq derives from the quenched disorder and is bound
as 0.5<q,1. The derivation of this statement implicitly as
sumed that all cracks were the same length. In the pre
treatment, cracks are allowed to have any length in the ra
0<d<dm . It is a straightforward exercise to demonstra
that if the breaking energies for each possible lengthd are all
sampled from the same quenched-disorder distribution, t
Eq. ~47! again holds. We forego such a demonstration. In
notation of the present paper we may thus state that
6-5
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RENAUD TOUSSAINT AND STEVEN R. PRIDE PHYSICAL REVIEW E66, 036136 ~2002!
E@w# I5q~E(0)2Eel@w#!52q~E(1)1E(2)!@w#, ~48!

whereE(1) andE(2) are the terms of the Born-developme
given by Eqs.~25! and~43! upon replacing the current strai
parametersD andg by the maximum-achieved strainDm and
gm .

V. TEMPERATURE

Although not required as part of the Hamiltonian mod
we now give an explicit inDm ,gm approximate expressio
for the temperature by using Eq.~59! of Paper I. This tem-
perature was derived in Paper I assuming only a single c
size. Unfortunately, the result does not easily generalize
multiple crack sizes and so we simply taked5dm to obtain
the estimate

,DT~Dm ,gm!52
~12q!dm

De1~Dm ,gm!

ln$@z/e1~Dm ,gm!#q/(12q)21%
,

~49!

wheree1dm
D is how much the first-Born elastic energy in

mesovolume is reduced when a crack of lengthdm is intro-
duced @c.f. Eqs. ~25! and ~26!#. The energy density
e1(Dm ,gm) is defined as

e1~Dm ,gm!5
1

2
~k2Dm

2 1k3gm
2 !, ~50!

while z is a dimensionless ‘‘fracture toughness’’ parame
defined as

z[
G

~l12m!dm
. ~51!

There is a phase transition when (z/e1)q/(12q)52 andT di-
verges so that all crack states become equally probable.

We now consider whether such a phase transition is
pected in laboratory experiments on rocks. The order of m
nitude valuesG;102 J/m2, dm;1025 m, k2;1, and (l
12m);1010 Pa are appropriate for typical grains in rocks
that z;1023. When a rock fails in shear, the accumulat
strain is on the order of a percent or two, so that the ma
mum value ofe1 of interest is also on the order of 1024. We
thus find that at shear failure,z/e1;10 and so wea priori
expect the localization transition to occur prior to t
temperature-divergence transition. This is more quant
tively demonstrated in Paper III.

VI. SUMMARY

Collecting together both the elastic energy and the surf
formation energy, we obtain at last the Hamiltonian to
used in performing ensemble averages over crack state
the next paper. We write this Hamiltonian in the final form
03613
,
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Ej~«,«m!5ER~«!@w#1EI~«m!@w#,

ER~«!@w#5E0~D,g!1Eav~D,g!@w#1Eint~D,g!@w#,

EI~«m!@w#52q$Eav~Dm ,gm!@w#1Eint~Dm ,gm!@w#%,

where (D,g) are the isotropic and shear strain compone
of the current strain tensor«, and (Dm ,gm) are similar quan-
tities referring to the maximum achieved strain«m . The en-
ergy E0 is the trivial elastic energy of the uncracked state

E0~D,g!5
1

2
$aD21~12a!g2%,

where a is a dimensionless elastic constant in the ran
@0.5,1# defined by Eq.~18!.

The next term in the Born development isEav5E(1),
which depends only on the volume averagec̄, which is the
fraction of cracked cells in the crack statew and is thus
entirely independent of the spatial fluctuations ofw. Its de-
pendence on the strain (D,g) is

Eav~D,g!@w#52
1

2
@k2D21k3g2#ec̄.

We definede5(dm /L)D to be a small parameter, whereD
52 is the number of space dimensions in the model, a
dm , L, and, as respectively the linear sizes of the large
crack, a unit cell, and a mesovolume. The three coefficie
k i are positive dimensionless material-dependent const
defined by Eqs.~27!, ~28!, and~46!.

The interaction energyEint5E(2) involve a quadratic ma-
trix operatorPk that, for each nonzero wave vectork, mixes
together the Fourier modes of bothw andc:

Eint~D,g!@w#5
2e2

2~12a!,2D (
kÞ0

~Rk
T
•Pk•Rk1I k

T
•Pk•I k!,

Rk5@Re~ w̃k!;Re~ c̃k!#
T,

I k5@ Im~ w̃k!;Im~ c̃k!#
T,

Pk5F Lk M k

M k Nk
G ,

where Re and Im represent the real and imaginary part
complex number. The componentsLk , M k , Nk depend
both on the applied-strain parameters~maximum or actual
ones!, and the wave vectork. In anticipation of Paper III, it
is convenient to introduce

v5
k3

k1

g

D

as the shear-strain variable and to define the parameter

c5k2 /k1511
2m~l1m!~l12m!

l3
,

6-6
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wherec.1. The components of the matrixPk are then

Lk~D,v!5D2k1
2~12auk

2!,

M k~D,v!5D2k1
2uk@~12a!c2avkv#,

Nk~D,v!5D2k1
2@~12a!c212~12a!cvkv

1~12avk
2!v2#,

whereuk5cos(2uk) andvk5sin(2uk) are functions that char
acterize the orientation ofk through its polar angleuk .

Note that all terms contributing to the Hamiltonian ha
been written in a dimensionless form in which energy d
sity Ej , like stress, is measured in units of (l12m).

APPENDIX: EFFECTIVE MODULI
OF A CRACKED CELL

A crack is modeled here as an elongated ellipse havin
major axis of lengthd and a minor axes of lengthw in the
limit that w/d!1 which corresponds to a so-called ‘‘penn
shaped’’ crack. Its long axis is by convention oriented alo
ê1 if locally w.0, and alongê2 if w,0. The unit cell is a
square whose sides are colinear with (ê1 ;ê2), and has a size
L@d since the crack is taken to be small. The interior of t
crack is supposed to be much more compliant than the
bedding matrix and all plastic deformation will be ignore
i.e., there is no residual stress or strain allowed for in
cracked system when it is unloaded to zero applied stres

Denoting as usual the volume average of a quantity w
an overbar, we seek to determine the elastic-stiffness te
C of a cell as defined through the relation

t̄ i j 5Ci jkl «̄kl . ~A1!

The region inside the crack is occupied by a uniform ma
rial of stiffnessC1 while the intact matrix surrounding th
crack is occupied by a material of stiffnessC1. Upon denot-
ing v the volume fraction of the crack in the cell, we obta
directly

t̄ i j 5~12v !Ci jkl
0 «̄kl

0 1vCi jkl
1 «̄kl

1 . ~A2!

Eshelby@11# demonstrates that the strain«1 inside an elliptic
inclusion is uniform while Wu@12# relates this strain to the
strain at infinity by a tensorT,

«̄ i j
1 5Ti jkl «kl

` . ~A3!

With cracks considered as small inclusions in their emb
ding cell (v!1), the approximation«`.«̄ is valid to lead-
ing order in the above, so that

«̄ i j
0 5Wi jkl «̄kl , ~A4!

~12v !Wi jkl 5~d ikd j l 2vTi jkl !. ~A5!
03613
-
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Using Eqs.~A3! and~A4! for the average deformation in an
out of the inclusion, Eq.~A2! has the desired linear form o
Eq. ~A1! with an effective stiffness tensor given by

Ci jkl 5Ci jkl
0 2v~Ci jmn

0 2Ci jmn
1 !Tmnkl.Ci jkl

0 2vCi jmn
0 Tmnkl .

~A6!

This approximation is justified under the hypothesis that
material inside the inclusion~air! is far more compliant than
the host material~solid silicate!. These relations are valid in
any space dimensionD . The two-dimensional case of inte
est to us here can be obtained from the three-dimensi
Wu-Eshelby results by working with a three-dimensional
lipsoidal inclusion having semiaxes of linear dimensiona
5d/2; b5w/2; and c5h/2 embedded within a cell of di-
mensionL3L3h in the limit thath@L. In this limit, the
three-dimensional problem becomes one in two dimensio

Wu expresses his tensorT in terms of a tensorS defined
by Eshelby,

Ti ji j 5
1

2~122Si ji j !
when i 5” j , ~A7!

S T1111 T1122 T1133

T2211 T2222 T2233

T3311 T3322 T3333

D
5S 12S1111 2S1122 2S1133

2S2211 12S2222 2S2233

2S3311 2S3322 12S3333

D 21

.

~A8!

The Eshelby@11# tensor components are defined

S11115Qa2I aa1RIa , ~A9!

S11225Qb2I ab2RIa , ~A10!

S12125
Q

2
~a21b2!I ab1

R

2
~ I a1I b!, ~A11!

with similar expressions for the remaining components
tained through the permutation ofa,b,c and 1,2,3. In the
notation of the present paper, the various parameters of
~A9!–~A11! are defined

Q5
3

8p~12sp!
and R5

122sp

8p~12sp!
, ~A12!

wheresp5l/2(l1m) is the Poisson’s ratio of the solid ma
terial ~assumed isotropic!, and

I a52pabE
0

` du

~a21u!D
, ~A13!

I aa52pabE
0

` du

~a21u!2D
, ~A14!
6-7
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I ab5
2

3
pabE

0

` du

~a21u!~b21u!D
, ~A15!

with D5A(a21u)(b21u) and I c5I ac5I bc5I cc50. Simi-
lar expressions are obtained forI b andI bb by replacinga and
b in the above. These elliptic integrals are evaluated to
leading order in the small aspect ratiod5b/a which gives

I a54pd, I b54p~12d!, ~A16!

I aa5
4p

3a2
2d, I bb5

4p

3b2
, I ab5

4p

3a2
~122d!.

~A17!

Defining parametersq and r by

q54pQ5
3

2~12sp!
and r 54pR5

122sp

2~12sp!
,

~A18!

we obtain that to the leading order in 1/d,

T12125
3

4q

1

d
, ~A19!

T22115

q

3
2r

r S 11
q

3
2r D

1

d
, ~A20!

T22225
1

r S 11
q

3
2r D

1

d
. ~A21!

All remaining components ofT are eitherO(1) and there-
fore negligible, or are unimportant for the components ofC
related to directions 1 and 2.

To get finally the deviationdc of the effective elastic
moduli of the cracked cell through Eq.~A6!, we note first
that

v5
4p

3

abc

L2h
5

2p

3

a2

L2

b

a
5

p

6

d2

L2
d5

p

6
ecd, ~A22!

where we recall thatd52a is the crack’s length,w52b its
width, andd its aspect ratio. It is through this expression th
the small parametere5(dm /L)2!1 enters the Born series
Note thatc5uwu5(d/dm)2 characterizes the extent of th
crack. The third dimension ofh52c goes to infinity in order
to obtain the two-dimensional limit of this three-dimension
system.

Replacingq and r by their expressions in terms of th
Laméparametersl,m, and using by convention (l12m) as
the stress unit, the crack-induced perturbations of the
moduli are
03613
e

t

l

ll

dc222252vC2222
0 T222252

p

6
ec

l12m

m
, ~A23!

dc111152vC1122
0 T221152

p

6
ec

l2

m~l12m!
, ~A24!

dc112252vC1122
0 T222252

p

6
ec

l

m
, ~A25!

dc221152vC2222
0 T221152

p

6
ec

l

m
, ~A26!

dc121252v~C1212
0 T12121C1221

0 T2112!52
p

6
ec

1

2

m

l1m
,

~A27!

with all other terms being zero except those obtained by
necessary symmetries under exchange of the two first or
last indexes.

Using the dimensionless constantsa defined in Eq.~18!
and introducing the positive dimensionless coefficientsh i ,

h15
p

6

l31m~l12m!2

lm~l12m!
,

h25
p

6

l12m

l
,

h35
p

12

l12m

l1m
, ~A28!

we obtain at last the deviation of the elastic moduli of a c
containing a crack with long axis oriented alongê1 ~corre-
sponding to a positivew),

dc5S h222h1 2~2a21!h2 0

2~2a21!h2 2h2 0

0 0 2~12a!h3

D ec.

~A29!

The expression for both possible orientations of the crack
straightforward. Orienting the crack alongê2 insteadê1 is
equivalent to exchanging the one and two indices in the co
ponents ofdc, which results in an exchange of the comp
nents dc1111 and dc2222, all remaining components ofdc
being unaffected by this change. Separating both express
of dc into symmetric and antisymmetric parts, and noti
that dc50 trivially when w50 ~no crack!, we obtain the
general expression used in Eqs.~19!–~21!.
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