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Fracture of disordered solids in compression as a critical phenomenon.
[I. Model Hamiltonian for a population of interacting cracks
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To obtain the probability distribution of two-dimensional crack patterns in mesoscopic regions of a disor-
dered solid, the formalism of Paper | requires that a functional form associating the crack pattestases
to their formation energy be developed. The crack states are here defined by an order parameter field repre-
senting both the presence and orientation of cracks at each site on a discrete square network. The associated
Hamiltonian represents the total work required to lead an uncracked mesovolume into that state as averaged
over the initial quenched disorder. The effect of cracks is to create mesovolumes having internal heterogeneity
in their elastic moduli. To model the Hamiltonian, the effective elastic moduli corresponding to a given crack
distribution are determined that includes crack-to-crack interactions. The interaction terms are entirely respon-
sible for the localization transition analyzed in Paper Ill. The crack-opening energies are related to these
effective moduli via Griffith’s criterion as established in Paper I.

DOI: 10.1103/PhysReVE.66.036136 PACS nunid)er62.20.Mk, 46.50+a, 46.65+(, 64.60.Fr

I. INTRODUCTION Using E; in the partition function established in Paper |, it is
possible to explore the crack patterns that emerge in com-
In triaxial-stress experiments on rocks in the brittle re-pressive settings for which isolated cracks appear in an in-
gime, the onset of a macroscopic localization of deformatioririnsically stable manner no matter their sigs}, and for
is usually observed around peak strgsé Besuelle[1] for a which macroscopic localization is a collective phenomenon
review]. Such departure from a macroscopically uniform de-due to the energetic organization of small cracks as opposed
formation regime is intrinsically beyond the capacities of a0 an instability associated with the largest defects. In the
mean-field theory, and so a specific model is developed hef@€Sent paper, we retain the leading-order effects of oriented-
that takes the orientational nature of crack-to-crack interacSr@cK populations interacting in two-dimensi¢2D). The
tions into account. overriding importance of the long-range elastic interactions

This is the second paper in a series of three dedicated ggaves hope that 3D generalizations would not yield qualita-

exploring how the physical properties of disordered solidst've'y different critical behavior.

evolve as they are led to failure in a state of compression.

The goal of this paper is to obtain a reasonable form for the Il. PRINCIPLES OF THE MODEL
HamiltonianE; (&, &y,) which is defined as the average work o
required to lead an intact region at zero deformation to the A. Order-parameter definition

crack state denoted fywhen the maximum applied strainis  We now elaborate on the crack model introduced in Paper
£, and where the final straia is possibly different thar,, I. Each mesovolume of a huge rock system is discretized into
due to a final unloading. This Hamiltonian must be expressea square network of diamond-shaped cells of sizégrain
in terms of the spatial distribution of the local order param-sizes and only a single crack is potentially present in each
eter that is the variable used to characterize the population afell. A crack is located at the center of the cell and has a
cracks in each mesovolume of a huge disordered-solid sysengthd somewhere within the suppdrd,d,,], whered,, is
tem. the maximum crack lengtta fixed parameter of the systgm
Most existing lattice models explore the dynamics of scatequired to satisfyd,,<A. In the perturbative treatment of
lar order parameters either representing the breakdown dhe crack interactions developed hereiw=(d,,/A)P is
elastic spring or beam networks under tensile stigksor of ~ taken to be a small number, wheDeis the number of space
fuse network$3]. The analogies between such scalar modelslimensions(in the present modeD =2). The local order
and fracture of disordered media has been widely discussguhrameterp(x) associated with each cetlis taken to have
[4]. One advantage of our approach is the ability to explorean amplitudey=|¢|=(d/d,)® and has a sign that indicates
interactions based on a fully tensorial description of thewhether the crack is oriented at45° or —45° relative to
stress perturbations produced by each crack. Another is ithe principal stress directiolithe so-called “axial direc-
ability to yield analytical rather than only numerical results.tion”). The model is summarized in Fig. 1
The restriction that cracks are either a¥5° and have
lengths less than the grain dimensions is of course a great
*Present address: Department of Physics, University of Oslo, P.Gsimplification compared to what is found inside of real rocks.
Box 1048 Blindern, 0316 Oslo 3, Norway. Email address: However, we only need to characterize the essential features
Renaud.Toussaint@fys.uio.no of a crack population that contribute to localization phenom-
"Email address: Steve.Pride@univ-rennesi.fr ena and, to this extent, it appears overly complicated to
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Bicia averaged over the initial disorder, separates into one part
| i representing the work required to break the grain contacts,
€ radinl and a second part representing the elastic energy stored in the
- cracked solid. This was expressed in H@§)—(28) of Paper
| as

I

€,

1
j=2£m:(C0—Cj):8m+ Es:Cj (€. D

The first term of Eq(1) is the energy spent in the irreversible
— Pp= e il g }D formation of the crack stateaveraged over quenched disor-
der and was obtained through an application of Griffith’'s
principle. The parameteq derives from the quenched-
disorder distribution and lies in the ran{#&/2,1] (see Sec.
I1IB 2 of Paper ). The second term is the reversibly-stored
d elastic energy withC; being the elastic-stiffness tensor of
statej.
| / Our principal task is therefore to model the way that
p=+d/ f.':":!ﬂ cracks and collective crack-states affect the overall elastic
moduli of a mesovolume. This requires detailed knowledge
FIG. 1. Part of the diamond network of cells that comprise apf the stresgor strain field throughout the mesovolume in
mesovolume. Each cell has the linear dimensibrand is only  the presence of arbitrary crack populations, and we treat this
allowed to (_:ontain one crack. The maximum Ier_wgth of any crack isneed using the following approximations. First, since the
dm and this length is assumed to be sufficiently small thatcracks in the model are isolated one to each cell, their main
(dm/A)P<1. The amplitude of the order parameter is by definition effect regarding the far-field stress is to change the elastic
¥=|¢l=(d/dy)", whered is the length of the crack found in the o q,ii of their embedding cell. Such a change is modeled
cell, while the sign ofe indicates the orientation of the crack as assuming the cracks to be penny-shaped ellipsoidal cavities.
shown. We ignore how such ellipses change shape when the applied
model the amazing variety of crack geometries encounterestress is unloaded/reloaded since linear elasticity alone cap-
in real rocks[6,7]. The localization transition involves spon- tures the principle effect of how the rock becomes weaker
taneous breaking of symmetries both under translation andue to strategic placement of cracks in cells. Since a crack
parity (inversion of the minor stress axias is seen from the occupies a limited extent of a cell, the modification of the
structure of the shear bands emerging in the post-peak-stregsoduli is small compared to the moduli of the intact cell so
regime[8]. The essential feature of any proposed order pathat the resulting far-field stress field can be developed as a
rameter is that it must reflect and quantify the amount ofBorn series. It is in the third term of this development that
local symmetry breaking and our simple model with crackscrack-to-crack interactions are first allowed for. Higher-order
at either=45° does just this. _ interactions(three cracks simultaneously interacting and so

Furthermore, there is evidence both from acousticp) are negligible to the extent that=(d,,/A)P can be con-
emissions monitoring9] and from direct observation after gjjered small.

unloading[10], that cracks developing prior to peak stress do

not exceed an extent of a few grains diameters. This is prin-

cipally because the grain contacts that break are much lll. ELASTIC ENERGY
weaker than the grains and have a finite length so that cracks
arriving in compression do so stadly]. Crack coalescence
is not explicitly allowed for. However, since several neigh-
boring cells in a line may all contain cracks of the same sign,. X ;
the Igng-range elastic gﬁect of lon@oalescej cracks is 9tion of ‘P_(X) at all pointsx of Q) when ?Fjlsplaqement cor-
effectively allowed for. Our picture of the final shear bandsrespondlng to a uniform strain tensef®) is applied on the
experimentally observed in the post-peak-stress regime External surfacé() of the mesovolume.

that they were created by unstable sliding along a band

weakened in the pre-peak-stress regime by a concentration of  A. Elastic energy of a weakly heterogeneous solid

cohekrenttly (t)riglnted crac!:@Ei]. Ourr] lmodeil allows_sm?ll The effect of the crack fielgb(x) is to perturb the stiff-
cracks fo stably concentralen &helon along conjugate .gess tensor of each cell &x)=C"+ &c ¢(x)], whereC°

The goal of this section is to determine the elastic energy
EJ-el stored in a mesovolume occuping the regfdrand con-
taining the crack statg (which denotes the spatial distribu-

e tton oweVer, Menoes the modul of an Uncracked osbsumed Unform
or all cells), and wheresc(x) is a small perturbation due to
the possible presence of a crack as characterizeg(ky. It
is established in the Appendix that the nonzero components
It has been established in Paper | that to a reasonablef oc are typically smaller than those @® by a factore
approximation, the work required to form a crack state, as=(d,/A)°<1. Our problem is to resolve an elasticity

B. Formation energy of a crack pattern

036136-2



FRACTURE OF DISORDERED... ll... PHYSICAL REVIEW E 66, 036136 (2002

boundary-value problem in a regidd containing a weakly 1 0
heterogeneous stiffness tengdx). EM=—0 > | #3300, (10)
The displacement boundary conditions are given as 2¢~ a=0 Ja
VxedQ, u(x)=e®.x, (2)  with the conventiore!”Y=0. In the last expression, the fact

that u®=0 on the boundary for ala>0 guarantees that
wherex denotes distance from the center of the mesovolumeafter integrating by parts,
Elastostatic equilibrium requires that

n—a). o(a)4Dy — n—a). (a)yD
ajTij:Ciojklajakul+(9j[5cijk|(7ku|]:0 (3) QT( -€ d X JQT( .VU d X
throughout(), where summation over repeated indices is ha) (@)D 1
assumed both here and throughout. Due to the linearity of the = Jmﬂ- 7). y@dP~1x=0,
problem, we use the elastostatic Green te@erG”f(iij for
a uniform material which is a solution of where we used the facts that the stress tensor is symmetric
0 , 5 ) and solenoidal. Thath term of the total elastic energy is
Ciik1 91 Gim(X,X") + §im 6~ (x—x") =0, 4 then
Yxedh GybeA)=0. © E(n)%ﬁ; £©) (11)

The component§;;(x,x") define theith component of the
displacement ax induced by a unit point force acting along \yhere the upper bar denotes a volume average ver

thej axis atx’. Here, dj; is the Kronecker symbol, anéf is The first term of the elastic energy is independent ofghe

the D-dimensional Dirac distribution. field, and corresponds to the physically unimportant amount
The solution for the displacements when no cracks argg energy

present is simply(@(x) = €. x throughout all ofQ). Thus,
it is a straightforward excercise to demonstrate that the total oL o1~ (0
displacementu in the presence of the cracks satisfies the E )258( ):C0): 0 (12
following integral equation:
stored in the intact state.
ui(x)zui(O)(X)Jrf Gy (%X )i [ 6 qmd U] (X APX, For the higher orders=1, #" is expressed by Eq9),
Q and the same argument as above using the factuffat 0
(6)  ondQ eliminates a term:

whered;, denotes the partial derivative relative to the coor-
dinatex . Usinge as the argument of a series expansion, we E
write the displacements asu=u@+u®+...yM (13)
+0(e" D), where eachu™ is O(e™). Collecting terms at

each order ok in Eq. (6) gives the following recursion re- The second term of the developement,

lation:

(M = g(M: C(0); £(0)+ %s(”*l): sc: 8(0)2%8(”*1): sc.e©).

E® =105 £, (14
u§”+1)(x)=JQG”(x,x')ak,[5cjk|ma.,u$:>](x')de’. 2

(7) represents only a local dependance&m(and therefore on
the crack fieldl since it does not involve nested integrals over
The boundary conditions used to defi@eguarantee that for  two different positions. It will be shown to represent only the
all n>0, the displacements(™ are zero on the boundary contribution of the average crack porosity to the stiffness of
Q. the rock.

The quantity we are specifically seeking to establish is the The third term of the development is where the desired
elastic energy densitfE®=¢"Pf,1#(x):e(x)dPx, where crack-to-crack interactions arrive. Using the symmetryof
we recall that¢ is the linear dimension of a mesovolume. Under the inversion of its two first or last indices, and &9.
The definitions of the straim;; =4 (du;+d;u;) and stress 0 have an integral form ai™), Eq. (13) transforms to
Tijz(Cf}kﬁ OCijii) e give immediately the following rela-
tions: 2(PE@= f U (X) SCaped X) 8 dPx

1
Si(jn)zi(ﬁiuj(n)+ﬂjui(n)), (8)

= J f £(d OCaned X) 9pGaj(X.X')
7V=Cl e+ scijuel Y, 9) X Jyr Cjam(X" ) &{dPxdPx’. (15)
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This term accounts for the way that a crack present’at Making the necessary contractions over the indices, we

energetically interacts with a different crackatThis is the  easily obtain the trivialcrack independehenergyE(®) us-

nonlocal interaction term that is ultimately responsible foring Egs.(12), (16), and(17). For later convenience, this re-

the localization transition. The higher terms of the Born de-sult is best written in matrix form as

velopment can be neglected for our purposes. 1

E@=2(A,y)-Mg-(A,y)7, 22
B. Elastic energy as explicit function of the crack field 2( 7):Mo-(4.7) 22
To establish the terms of the Born-approximated elastic o 0
energy as explicit functions of both the crack statand the Mo:( ) ) (23
imposed straire®), a few definitions are first introduced. 0 l-a

The principal axes o&(®) are along & .agian €axia) as de- Using the auxiliary field
noted in Fig. 1. Our square network of cells is rotated5 °
from this orthonormal basis. We work here in the coordinates P(X)=|e(X)] (29

e,,6,) of the square network so that the applied-strain takes, . . - .
(€1,6) d PP denoting the amplitude of each crack, one similarly obtains

the form '
[using Egs(14) and (19)—(21)]
1/A vy
() — € — —
€ 2\y A’ (16) E(l)ZE[S(O)IAIE(O)(p'F £0:B: £y
whereA = & agiart € axial aNd Y= — (&radia— € axia) are the im- 1
posed dilatation and shear strain. = E(A,y) M- (A, )T, (25)
For convenience, we assume the intact material to be iso-
tropic. Taking\ +2u as the stress unit, whera () are the with
Lameparameters of the material, and using the usual tensor-
to-matrix mapping of the indices (1H1; (22) k, O
—2; (12)—3, the fourth-order stiffness tensor of the intact Mi==ep| o | (26)
material takes the form 3
_ n 2a—1
1 2a=1 0 ko= =52, (27)
Cl=| 2a—1 1 o |, (17

0 0 1-a k3=(1—a)73. (28)

where The term proportional te has algebraically canceled due to
Nt the symmetry of the problem under parity; inversion of the
)2

(18) minor axisé,adia| flips the orientation of cracks, and therefore
changes the sign ap, while the energy remains necessarily
is a material-dependent constant in the rap@é,1]. unchanged. The surviving term is negative and proportional
The deviationsc of this tensor due to the possible pres-to ¢, and accounts for the softening of the mesovolume due
ence of a crack in a cell separates into an isotropic contributo the presence of cracks. This dependence on the total num-
tion independent of the crack’s orientation, and into an anber of cracks is the only order-parameter dependent effect to

isotropic  orientation-dependent  contribution. In  thefirst order.
Appendix, we demonstrate that Last, the crack-interaction term of principal interest can
be readily expressed from Eq4d5) and(19) as

- N+2u

8c(x) = e[Ag(x)+Ble(x)[], (19
—2tPE@ = €2 Qe(PApcijui faibi
72— M 0 0
A 0 m—7m, O (20 + Zezs(c%)s(k?)Aabchijmgaibj
= 1772 ;
0 0 0 +e%e{e ) AabedBijiNaib - (29
where the fourth-order tensofg, h are functionals ofp and
/A —(2a=1)7n, 0 defi '
efined as
B=| —(2a—=1)n, /i 0 :
0 0 —(1=a)mns 1 faibjzf def d®Xx’ G,i(X,X) dped; @, (30)

where (1,7,,73) are positive constants expressed in the

— D Dy ’
Appendix in terms of the Lamparameters. ga‘bj_f d Xf d"X Gaiy (%, X") dp @ dy ¢, (3D
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5 o ) where Re denotes the real part of a complex quantity and
haibi:f d XJ d™X" Gai(X,X") I ;4. (32 \yherek, denotes thath component ok=k/||k|. With the
following definitions associated with the orientationkof
In the second term, the reciprocity of the Green function

Gai(X,.X")=Ggi(x',X) is used as well as the notatid®y,, 6= (e k), (40)
=(Gait+Gia)/2.

The Green tensor needed here satisfies the Dirichlet con- U= cog 26,) = co$ b, — Sinf = k2— k2, (41)
ditions of Eq.(5) and can be obtained, in principle, from the
infinite-space Green tensor via the image method. However, v =SiN(26,) =2 cosf, sin B= 2k, Ky, (42)

this transform€ @ into an infinite seriegone term for each

image, and makes the functional integrations of Paper llithe remaining contraction in E429) over the eight indices

analytically hopeless. To remedy this problem, the Greefahcdijkl) is performed. The calculation is a bit long but
function with a periodic instead of zero boundary conditionyithout surprise and finally produces

is used as ersatz. Sinaé? is only affected close to the

boundaries by this replacement, this approximation will be @ 1 T
considered valid for the evaluation of the volume integral E9=54,7) M2 (4,7)", (43)
E@.
The double integrals of Eq$30)—(32) are most easily _ 2 a b
expressed using the 2D finite-Fourier transform My=——— , (44)
(1-a)¢?®\b c
F(k)= jﬂdDXF(X)G_ik'X, (33 where the components b, andc are defined,
1 a=> a; b=> b, c=2 ¢, (45
FOO= 5 2 Flle ™, (34 Zo Zo 7o
K

_ &= (1 - aud) k1 @yl®+ 2(1— @) Uy ko RE(pl )
where the sum over the wave vectoks is over {k

=2mn;/¢g; Vi,neZ} with an upper cutoff given by +(1-a) k3|2,
maxn;>{/A that reflects the fact that the order parameter o 5
cannot vary on scales smaller than cell sizesSince the b= — aUw k1 k3 RE @i )+ (1— a)vykoks| a2,
Green function used is defined with periodic boundary con-
ditions, it satisfiess,;(x,x")=G,;(x—x"). Its Fourier trans- c=(1— avd) k3|2,
form is easily established, and upon recalling that-Qu)
is adopted as the stress unit, reads with «,, x5 defined in Eqs(27), (28) and; a new material-
dependent constant,
~ 1 PN
Gllo= o (1~ kb, (35 (=BT .
.~k
k= DK (36) IV. SURFACE FORMATION ENERGY

. . . . ) Next, we must account for the enerljﬂ( that irreversibly
wherel is the identity tensor. This is real and symmetric, as,yant into creating the cracks of a given crack st a
is G(x) itself. Sinceq and ¢ are real fields, one hag  maximum deformatiors,,. In Paper I, this contribution was
(—k)=¢*(k) and (—k)=4y*(k). Using these relations, obtained using Griffith’s criterion as
together with the identity odPxe'**=¢P§,, the integrals

f EQs.(30)—(32) b the followi q
of Egs.(30)—(32) become the following sums E}=§€D£m:(Co—Cj)38m, (47

1 ~ PN PN
fainj=—5 > 1ok kijky( 5ia— akiky) (37 whereq derives from the quenched disorder and is bounded
t" k=0 as 0.5sq<1. The derivation of this statement implicitly as-
sumed that all cracks were the same length. In the present
1 ~ o~ S o a treatment, cracks are allowed to have any length in the range
[ — * . . _ . !
gaibj_gD k%) ReL@(k) ¢ (k) Jkjko( S~ akika), (38) O0=d=d,,. It is a straightforward exercise to demonstrate
that if the breaking energies for each possible lembgine all
sampled from the same quenched-disorder distribution, then
> |7,Z/(k)|2R,- Ko(8ia— akiky), (39  Ed.(47) again holds. We forego such a demonstration. In the
kZ£0 notation of the present paper we may thus state that

1
©

Naip;=

036136-5



RENAUD TOUSSAINT AND STEVEN R. PRIDE PHYSICAL REVIEW B6, 036136 (2002

E[¢]'=q(E@-E*[¢])=—a(EV+EP)[¢], (48 Ej(e,em) =ER(e)[@]+E'(en)¢],

R —_ 0 a int
whereE® andE® are the terms of the Born-development £ (&)l@]=E(A,»)+E (8.7l +ET(A o],

given by Eqs(25) and(43) upon replacing the current strain | _ av int
parametera andy by the maximum-achieved straix,, and Elemle]=—a{E™Am, ymle]+ ENAm, yml e},
Ym: where (A,vy) are the isotropic and shear strain components
of the current strain tenser, and A,,, y,) are similar quan-
V. TEMPERATURE tities referring to the maximum achieved straif. The en-

_ o ergy E° is the trivial elastic energy of the uncracked state
Although not required as part of the Hamiltonian model,

we now give an explicit imA,, v, approximate expression 0 1 ) 5

for the temperature by using E9) of Paper I. This tem- E'(A,y)= E{QA +(1-a)y7,

perature was derived in Paper | assuming only a single crack

size. Unfortunately, the result does not easily generalize tvhere « is a dimensionless elastic constant in the range
multiple crack sizes and so we simply ta#te=d, to obtain  [0.5,1] defined by Eq(18).

the estimate The next term in the Born development EV=E®),
which depends only on the volume avera@,ewhich is the
(1—)der(Am, ¥m) fraction of cracked cells in the crack stage and is thus
OT(A Y =— ) , entirely independent of the spatial fluctuationsgoflts de-
In{[{/e:(Am, ym)]® —1; (49) pendence on the straii\(y) is
av, _ 1 2 27 .1
wheree;d® is how much the first-Born elastic energy in a EMAvle]=— §[K2A + K3y le.

mesovolume is reduced when a crack of lendthis intro-
duced [c.f. Egs. (25 and (26)]. The energy density We definede=(d,,/A)P to be a small parameter, whebe
e;(An,, vm) is defined as =2 is the number of space dimensions in the model, and
d,, A, andf as respectively the linear sizes of the largest
1 crack, a unit cell, and a mesovolume. The three coefficients
e(Am, Ym) = E(,<2A2m+ K3Y2), (500  «; are positive dimensionless material-dependent constants
defined by Eqs(27), (28), and(46).
The interaction energg™=E() involve a quadratic ma-
while ¢ is a dimensionless “fracture toughness” parametertrix operatorP, that, for each nonzero wave vectgrmixes

defined as together the Fourier modes of boghand :
2
PO N 61 E"AMlel=r—— = 3 (RI-PeReH TPy,
(N+2p)dy, 2(1—a)€?P 7o
_ ~ . 3 T

There is a phase transition whety/é,)Y*~9=2 andT di- Re=[Rel¢w);Re(yr) ],
verges so that all crack states become equally probable. - ~ 1

We now consider whether such a phase transition is ex- Le=[Im(ew);Im() ],
pected in laboratory experiments on rocks. The order of mag-
nitude valuesI'~10? J/n?, d;~10"°m, k,~1, and @ b _ L My
+2u)~10'° Pa are appropriate for typical grains in rocks so k™ M, Ny|’

that /~10 3. When a rock fails in shear, the accumulated
strain is on the order of a percent or two, so that the maxiwhere Re and Im represent the real and imaginary part of a
mum value ofe; of interest is also on the order of 16 We ~ complex number. The components, M,, N, depend
thus find that at shear failuré/e;~10 and so wea priori both on the applied-strain parametémaximum or actual
expect the localization transition to occur prior to theones, and the wave vectdt. In anticipation of Paper IlI, it
temperature-divergence transition. This is more gquantitais convenient to introduce
tively demonstrated in Paper lll.
_ K3y

0= K1 A

VI. SUMMARY

Collecting together both the elastic energy and the surfac8® the shear-strain variable and to define the parameter

formation energy, we obtain at last the Hamiltonian to be 2N ) (L2
used in performing ensemble averages over crack states in C=rplii=1+ pAt p) (N4 20)
the next paper. We write this Hamiltonian in the final form A3

3
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wherec>1. The components of the matri¥, are then Using Eqs(A3) and(A4) for the average deformation in and
out of the inclusion, Eq(A2) has the desired linear form of
L(A,0)=A%3(1—au?), Eq. (A1) with an effective stiffness tensor given by
M (A, 0)=A%kul(1- a)c— avw], Cijia = ikt = 2(Cijmn = Cijmn) Tmnk= Ci(}kl_vci(}mnTm(fK%)
Nk(A,w)zAzxf[(l—a)chr 2(1- a)cvyw This approximation is justified under the hypothesis that the
2 2 material inside the inclusiofair) is far more compliant than
+(1-avi) 0], the host materiafsolid silicate. These relations are valid in

any space dimensioD . The two-dimensional case of inter-
whereu, = cos(2)) andv,= sin(26) are functions that char- est to us here can be obtained from the three-dimensional
acterize the orientation df through its polar anglé . Wu-Eshelby results by working with a three-dimensional el-
Note that all terms Contributing to the Hamiltonian have|ipsoida| inclusion ha\/ing semiaxes of linear dimens®n
been written in a dimensionless form in which energy den-= d/2: b=w/2; andc=h/2 embedded within a cell of di-

sity E;, like stress, is measured in units of{2u). mensionA X A X h in the limit thath>A. In this limit, the
three-dimensional problem becomes one in two dimensions.
APPENDIX: EFFECTIVE MODULI Wu expresses his tensdrin terms of a tenso8 defined
OF A CRACKED CELL by Eshelby,
A crack is modeled here as an elongated ellipse having a 1 o
major axis of lengthd and a minor axes of lengti in the Tijij =2(1_—28””) when i#j, (A7)

limit that w/d<1 which corresponds to a so-called “penny-
shaped” crack. Its long axis is by convention oriented along

e, if locally >0, and alongg, if ¢<0. The unit cell is a
square whose sides are colinear wi&@;éz), and has a size

Tllll T1122 T1133

T2211 T2222 T2233

A>d since the crack is taken to be small. The interior of the Taa1n Taszz Taass
crack is supposed to be much more compliant than the em- 1-s _s _s -
bedding matrix and all plastic deformation will be ignored; — 1122 1133
i.e., there is no residual stress or strain allowed for in the =| —Swo11 1-Sp2 —Spss
cracked system when it is unloaded to zero applied stress. —Ssa11 —Ssams  1—Sazas
Denoting as usual the volume average of a quantity with
an overbar, we seek to determine the elastic-stiffness tensor (A8)

C of a cell as defined through the relation The Eshelby{11] tensor components are defined

7ij=Cija 8 - (A1) Si111= Qal ;. + Ry, (A9)

The region inside the crack is occupied by a uniform mate- S112=Qb%l p— Ry, (A10)

rial of stiffnessC! while the intact matrix surrounding the

crack is occupied by a material of stiffne8s. Upon denot- 5 1o

ing v the volume fraction of the crack in the cell, we obtain S12177 % (@%b lapt S (1at1p), (A1)

directly
with similar expressions for the remaining components ob-

Tij=(1=v)Clyen+vCiyen. (A2) tained through the permutation afb,c and 1,2,3. In the

notation of the present paper, the various parameters of Egs.

Eshelby{11] demonstrates that the straihinside an elliptic ~ (A9)—(A11) are defined

inclusion is uniform while WU 12] relates this strain to the 3 )

strain at infinity by a tensor, _ _ 1740

T Q= 8m(1—op) and R= 8m(l—op)’ (AL2)

;:Ti‘msa. (A3) . . . .
et whereo,=\/2(\ + u) is the Poisson’s ratio of the solid ma-
With cracks considered as small |nclu5|ons in their embedterlal (assumed isotropjcand

ding cell v <1), the approximatiorz™=¢ is valid to lead-

ing order in the above, so that I —27-rabf (A13)
(a +u)D
;ioj:Wijklsklv (Ad) . du
=27-rabj —_— (A14)
(1=0)Wiji = (i 6 —v Tiji) - (AS5) o o (a+u)?D
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% du 0 ™ Nt2u
lap=5 7ab j 5 , (A15) OCo227= ~VCo2l 220~ — geb——,  (AZ3)
3 o (a?+u)(b2+u)D M
with D= \(a?+u)(b?+u) andl =1,4.=1p=1.=0. Simi- - A2
lar expressions are obtained igrandl ,;, by replacinga and 6Cq1111= — UC(1)122T2211= % ezﬂm, (A24)
b in the above. These elliptic integrals are evaluated to the K K
leading order in the small aspect ratde= b/a which gives
T A
la=475, lp=4m(1-9), (A16) 8c112= ~vChipglone=— g et (A29)
I 47725 I am I 47T(l 26)
aa~ _ o4O bb™ S 5 ab™ o147 . T A
3a 3b 3a (A17) 8C211= —0CT 211= — 5 flﬂ;, (A26)
Defining parameterg andr by K
8C101= = (C1T 1010+ CloniT o110 =
. 3 ) . 1-20, 1212 (C1212T1212F Clo21T 2112 lﬂz M‘M
q= WQ_Z(l—O'p) and r=4mx _Z(TO'p)’ (A27)
(A18)
. . . with all other terms being zero except those obtained by the
we obtain that to the leading order insl/ necessary symmetries under exchange of the two first or two
last indexes.
- 231 (A19) Using the dimensionless constartsdefined in Eq.(18)
1212749 &° and introducing the positive dimensionless coefficiemnts
ﬂ_r N+ u(N+2u)?
1 M=z N x220,.)
T T T 5 (A20) 6 Aulh+2u)
r( 1+ 3” r)
TAT2u
M=z )
To20= q 5 (A21)

All remaining components of are eitherO(1) and there-
ig:gtggg:ggé?rlgét?énzri l;r::[jnpz)ortant for the component<of we obtain at last the deviation of the elastic moduli of a cell
To get finally the deviationsc of the effective elastic Ccontaining a crack with long axis oriented aloeg (corre-
moduli of the cracked cell through E¢A6), we note first SPonding to a positive),

that

47 abc 2w a’b d? Em e hm °

b= ; . ?ﬂ_zazg_zé ZGM (A22) sc=| —(2a=1)n, — 72 0 €.
A=A A 0 0 ~(1- )7

: . (A29)
where we recall thatl=2a is the crack’s lengthw=2b its
width, andé its aspect ratio. It is through this expression that
the small parametes=(d,,/A)2<1 enters the Born series. The expression for both possible orientations of the cracks is
Note thaty=|¢|=(d/d,)? characterizes the extent of the straightforward. Orienting the crack alorgg insteade, is
crack. The third dimension df=2c goes to infinity in order equivalent to exchanging the one and two indices in the com-
to obtain the two-dimensional limit of this three-dimensional ponents ofsc, which results in an exchange of the compo-
system. nents 6Cq411 and 8C,,,,, all remaining components ofc

Replacingq and r by their expressions in terms of the being unaffected by this change. Separating both expressions
Lameparameters., u, and using by conventiol\(+ 2u) as  of Sc into symmetric and antisymmetric parts, and noting
the stress unit, the crack-induced perturbations of the cethat 5c=0 trivially when ¢=0 (no crack, we obtain the
moduli are general expression used in Eq$9)—(21).
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