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Biochemistry and Molecular Biology

Retinoid Content, Visual Responses, and Ocular
Morphology Are Compromised in the Retinas of Mice
Lacking the Retinol-Binding Protein Receptor, STRAG

Alberto Ruiz,' Manuel Mark,>> Hugues Jacobs,?> Muriel Klopfenstein,>> Jane Hu,*
Marcia Lloyd," Samer Habib,* Chinatsu Tosha,* Roxana A. Radu,* Norbert B. Ghyselinck,>>>

Steven Nusinowitz,*> and Dean Bok'*°

Purrose. We report generation of a mouse model in which the
STRAG gene has been disrupted functionally to facilitate the
study of visual responses, changes in ocular morphology, and
retinoid processing under STRA6 protein deficiency.

MerHons. A null mouse line, stra6 —/—, was generated.
Western Blot and immunocytochemistry were used to deter-
mine expression of STRA6 protein. Visual responses and
morphological studies were performed on 6-week, 5-month
and 10-month-old mice. The retinoid content of eye tissues was
evaluated in dark-adapted mice by high performance liquid
chromatography.

Resurts. STRAG protein was not detectable in stra6 —/— null
mice, which had a consistent reduction, but not total ablation
of their visual responses. The mice also showed significant
depletion of their retinoid content in retinal pigment
epithelium (RPE) and neurosensory retina, including a 95%
reduction in retinyl esters. At the morphological level, a
reduction in thickness of the neurosensory retina due to
shortening of the rod outer and inner segments was observed
when compared to control litter mates with a commensurate
reduction in rod a- and b-wave amplitudes. In addition, there
was a reduction in cone photoreceptor cell number and cone
b-wave amplitude. A typical hallmark in stra6 —/— null eyes
was the presence of a persistent primary hypertrophic
vitreous, an optically dense vascularized structure located in
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the vitreous humor between the posterior surface of the lens
and neurosensory retina.

Concrusions. Our studies of stra6 —/— null mice established
the importance of the STRAG protein for the uptake,
intracellular transport, and processing of retinol by the RPE.
In its absence, rod photoreceptor outer and inner segment
length was reduced, and cone cell numbers were reduced, as
were scotopic and photopic responses. STRAG also was
required for dissolution of the primary vitreous. However, it
was clear from these studies that STRAG is not the only
pathway for retinol uptake by the RPE. (Invest Opbthalmol
Vis Sci. 2012;53:3027-3039) DOI:10.1167/iovs.11-8476

itamin A (all-trans-retinol) is an essential precursor for the
Vgeneration of various functional derivatives, which include
all-trans-retinaldehyde, all-trans-retinyl esters, and their stereo-
isomers. These retinoids participate in several important
biological processes, such as reproduction, embryonic devel-
opment, immune response, and vision.!"3 Since mammals
cannot synthesize retinol, diet is the main source of vitamin A,
and it is stored initially in the liver as all-frans-retinyl esters
until required for use in multiple tissues. Free retinol is
unstable chemically and is highly insoluble in aqueous
solution. The liver stores retinol as retinyl esters, which are
enzymatically reversible. To transport retinol to other target
tissues via blood circulation, a plasma retinol binding protein
(RBP) and a thyroxine transthyretin (TTR) binding protein are
needed to protect it from filtration by the kidney, oxidation, or
enzymatic damage during the distribution process.*> In the
eye, retinol bound to RBP (holo-RBP) is delivered to the retinal
pigment epithelium (RPE) through choriocapillaris blood.
Since the mid-1970s, it was suggested that holo-RBP interacts
with the basal side of RPE cells via a putative RBP receptor.®~3
Accordingly, using RPE cells and a photo-cross linking reagent
combined with high affinity purification, an RBP receptor
protein was characterized and found localized on the basal side
of these cells.® This receptor now is identified as STRAG, a
polytopic membrane protein that binds to RBP with high
affinity and mediates retinol uptake from the holo-RBP
complex.” STRAG6 has been proposed to possess a dual
function as a membrane receptor and a membrane transport-
er.2-11 While it is clear that STRAG carries out the catalytic
extraction of retinol from RBP, the precise pathway that retinol
takes to reach its intracellular binding partners remains
elusive.!? STRAG also is expressed in other tissues responsible
for retinol processing, like skin, choroid plexus, placenta, and
testis.!3-1> Human STRAG mutations are associated strongly
with severe pathological phenotypes, particularly at the
embryonic stage. The consequences of these mutations are
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manifested in a variety of disorders, which include pulmonary
dysgenesis, cardiac malformations, mental retardation, and
microphthalmia/anophthalmia, which are referred to collec-
tively as Mathew-Wood syndrome.'®-18 Most recently, a variety
of developmental abnormalities due to defects in retinol
uptake and its processing also were reported in zebrafish with
STRAG partial deficiency.'®

To examine the essential regulatory role of STRA6 on retinol
uptake and processing by the RPE cells, we sought to generate
a mouse model in which its expression was disrupted
functionally.

The data presented in our report demonstrate that stra6 —/—
mice display an eye phenotype less severe than the pathological
abnormalities observed in humans with mutations in the same
gene. Our studies conclude that STRAG is required for most of
the retinol uptake process in the RPE, but also suggest the
existence of alternative pathways that would compensate
partially STRAG function under compromised conditions.

MATERIALS AND METHODS
Mice

Frozen embryos with a hybrid C57BL/6) (50%)-129Sv (50%) genetic
background and heterozygous for the stra6 mutation (STRAG"" ! Nbs
allele, Fig. 1A; stra6 +/—) were received from the Institut de Génétique
et de Biologie Moléculaire et Cellulaire (IGBMC, Illkirch, France).
Cryopreserved embryos went through a re-derivation process in
surrogate females by the UCLA/Assisted Reproductive Technology
(ART) core facility. Resulting offspring were genotyped by PCR of
genomic DNA from tail biopsies. Genotyping was performed by using
primers described in Supplementary Table S1 (http://www.iovs.org/
lookup/suppl/doi:10.1167/iovs.11-8476/-/DCSupplemental), and the
PCR core reagents (Applied Biosystems, Branchburg, NJ). Primers P1
and P2 were used for the detection of the wild-type gene (173 base
pairs bp-long), and primers P1 and P3 for the detection of the stra6
null allele (326 bp-long). Heterozygous mice (stra6 +/—) were
intercrossed to obtain the stra6 —/— mutants used in our studies. All
mice were maintained on a 12-hour light/dark cycle and fed ad libitum
with NIH-31 modified open formula, which contains 24,500 IU/kg
vitamin A acetate (Harlan Teklad, Madison, WI). All experimental
procedures were performed on groups of mice at 6 weeks, 5 months,
and 10 months of age. All experiments involving the use of mice were
in compliance with guidelines established by the National Institutes of
Health, and by the ARVO Statement for the Use of Animals in
Ophthalmic and Vision Research.

Western Blot Analysis

Proteins from freshly dissected tissues were extracted as described
previously.?® Ten micrograms of sample were used for each analysis.
Electrophoresis and immunodetection were carried out as described
previously.?® Primary antibodies included: rabbit anti-STRAG peptide
(from IGBMC), rabbit anti-RPE65 peptide (M.T. Redmond), rabbit anti-
RGR peptide (H. Fong), rabbit anti-LRAT peptide (D. Bok), and a
commercial monoclonal anti-GAPDH (sc-51905; Santa Cruz Biotech-
nology Inc., Santa Cruz, CA).

Retinoid Analysis

All mice were dark-adapted overnight, and all tissue manipulations
were performed under dim red light (Eastman Kodak Co., Wratten 1A
filter). Each retina and eyecup containing RPE were processed and
analyzed by normal-phase high performance liquid chromatography
(HPLC) as described previously.?! Identification of each retinoid was
confirmed by on-line spectral analysis and co-elution with authentic
retinoid standards.
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Fundus Imaging

Fundus images were obtained using the Micron II retinal imaging
microscope (Phoenix Research Laboratories, Inc., Pleasanton, CA).
Mice were anesthetized with an intraperitoneal (IP) injection of normal
saline solution containing ketamine (15 mg/g) and xylazine (7 mg/g
body weight), and pupils were dilated with a drop of 1% atropine
sulfate. The mouse eye was aligned with the optical axis of the camera,
with the objective lens positioned so that it touched the corneal surface
(corneal applanation). Serial images were recorded to document the
change in retinal and ocular appearance over the course of the study.

Retinal Angiography

Retinal angiography was performed using the same general fundus
imaging procedure described above. Mice were anesthetized and
injected IP with 10% sodium fluorescein (Akorn Inc., Decator, IL) at a
dose of 0.01 mL per 5-6 gm body weight. Short-wavelength light (1,
= 487 nm) was used to excite the fluorescein, and a blocking filter
(transmission <500 nm <0.1%) was placed in the optical pathway to
prevent the excitation light from reaching the camera. A movie of
approximately 10 minutes’ duration was recorded from which
individual images and clips were extracted.

Spectral Domain Optical Coherence Tomography
(SD-OCT)

Ultra high resolution SD-OCT imaging was performed with a
commercially available SD-OCT system designed specifically for the
mouse (Bioptigen, Research Triangle Park, NC). A series of 100 b-scans
were collected, stacked and aligned spatially to form a registered three-
dimensional rendering of retinal volume (see Supplementary Fig. S1,
http://www.iovs.org/lookup/suppl/doi:10.1167/iovs.11-8476/-/
DCSupplemental). A high resolution b-scan from superior to inferior
retina centered on the optic nerve head was captured by averaging and
spatially aligning 20 individual b-scans along the same vertical axis. The
resulting images were exported as 640 x 480 pixel 8 bit grey bitmap
files, and processed in Adobe Photoshop CS3 (Adobe Systems, San Jose,
CA).

Electroretinogram (ERG)

ERGs were recorded as described previously.?? Briefly, after overnight
dark-adaptation, ERGs were recorded from the corneal surface of the
eye using a gold-loop electrode referenced to a similar gold wire
inserted in the mouth. The mouse eye was positioned in front of an
opening in a large integrating sphere in which brief flashes of light
were presented. Responses to these light flashes were amplified
10,000x (Grass P511 High Performance AC Amplifier), band-pass
filtered (0.1-300 Hz), digitized using an I/O board (PCI-6221; National
Instruments, Austin, TX) in a personal computer, and averaged. Rod-
mediated responses were recorded to blue flashes (Wratten 47A, Amax
= 470 nm) after dark adaptation. Cone-mediated responses were
recorded to white flashes on a rod-saturating background (32 cd/m?).
All stimuli were presented at 1 Hz except for the brightest flashes,
where the presentation rate was slowed to 0.2 Hz.

Histology

Paraffin Embedded Tissue. Heterozygous mice were mated, and
12 PM of the day of vaginal plug appearance was taken as 0.5 day
post-coitum (E0.5). Embryos and fetuses were collected by cesarian
section at selected time points, and were fixed in Bouin’s fluid for 5
days, embedded in paraffin, and serially sectioned at a thickness of 5
um. Before paraffin embedding, E18.5 fetuses were treated for 30
hours in DC3 decalcifier (Labonord, Templemars, France). Sections
then were stained with hematoxylin and eosin according to standard
procedures.
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Figure 1. Genotyping of the wild-type and mutant alleles was done by PCR on genomic DNA samples from tail biopsies, and absence of STRAG
protein from RPE cells was confirmed subsequently by Western Blot analysis. (A) A genomic region that includes the area encompassing exons E3
through E8 (numbered solid boxes) of the stra6 wild-type allele (fop). In the stra6 null (L—) allele, the fragment containing exons E5 to E7 was
replaced by a single LoxP site (flag), making the stra6 gene non-functional (bottom). Position and orientation of DNA primers (P) used for
genotyping are indicated by arrows. (B) A representative image from PCR amplifications obtained by the combination of primers described in (A).
(C) Western Blot image using RPE cell extracts from stra6 —/— mutant and WT control. Immnunodetection was performed with a polyclonal
antibody against a C-terminal peptide of mouse STRAG and a monoclonal anti-GAPDH as internal control.

Plastic Embedded Tissue. Mice anesthetized with isoflurane were
fixed by intracardiac perfusion. Light cautery was applied at the
superior pole of the cornea to mark the orientation before enucleation
of the eyeball. The eye cup was trimmed into temporal and nasal
hemispheres. All tissues were immersed for 1 hour in 1% osmium
tetroxide dissolved in 0.1 M sodium phosphate buffer (pH 7.4)
followed by dehydration in a graded series of alcohols.

The temporal hemispheres were embedded in an Epon/Araldite
mixture. Light microscope sections were cut at 1 um, and stained with
1% toluidine blue and 1% sodium borate, then photographed with a
Zeiss Axiophot microscope fitted with a Planapo 63X oilimmersion
lens and a CoolSNAP digital camera.

Immunocytochemistry and Confocal Microscopy

Mice were euthanized with isoflurane. The eyes were fixed in 4%
formaldehyde. After the eyecups were infiltrated successively with 10%
and 30% sucrose in phosphate buffer, they were embedded in OCT
(Sakura Fine Technical Co., Torrance, CA). Ten micrometer frozen
sections were cut on a cryostat (Leica CM3050S). The cryosections
were re-fixed in 4% formaldehyde for 10 minutes and quenched with
50 mM ammonium chloride (NH4CD). Cryosections were incubated
with a blocking solution followed by incubation with affinity purified
antibodies against a C-terminal peptide of STRAG (1:200, abCam Inc.
# ab73490). The sections were exposed to secondary goat anti-rabbit
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IgG antibodies, conjugated to Alexafluor 488 (Molecular Probes,
Eugene, OR) for 1 hour. The cone sheaths were labeled with
fluorescein-tagged peanut agglutinin (PNA, 20 ug/mL; Vector Labora-
tories, Burlingame, CA). The sections were examined under a confocal
laser scanning microscope (Fluoview, Olympus, Japan).

Retina Flat-Mount Preparation

Mice were euthanized with isofluorane, and the eyes were enucleated.
The retina was separated from the rest of the posterior segment and
was fixed in 4% formaldehyde. The retina was stained with fluorescein-
tagged PNA (20 pg/mL) for an hour, cover-slipped and examined under
a confocal laser scanning microscope (Fluoview, Olympus, Japan) with
a 40x objective.

RESULTS

Gene Disruption in the stra6 —/— Mice

After re-derivation of cryopreserved embryos, heterozygous
stra6 +/— mice obtained from the F1 progenies were
intercrossed for generation of the stra6 —/— mutant with total
disruption of the gene. PCR screening of genomic DNA from tail
biopsies was used to differentiate genotypically stra6 null mice
from wild type (WT) and heterozygous litter mates (Fig. 1B).
stra6 —/— mice developed with normal appearance, which was
unexpected when compared to outcome of stra6-null mutation
in humans. Synthesis of STRAG protein was not detected by an
anti-STRAG antibody raised against the C-terminal sequence of
the mouse polypeptide, as opposed to stra6 +/4, which showed
a product with a molecular mass of about 74 kDa and an
additional one of higher molecular weight (Fig. 1C). The fact
that no proteins smaller than 74 kDa were observed in the straé
—/— extracts, rules out the possibility of re-initiation of
translation downstream from the deleted region of the straG
mRNA. To confirm that an equal amount of protein was loaded
from each cell extract, a commercial monoclonal anti-GAPDH
antibody was used as an internal reference (Fig. 1C).

STRAG Localization and Morphological Changes in
the Retina of Null Mice

A slight reduction in eye diameter was noticed in specimens
from 6-week-old stra6 —/— mice. These observations were
recorded by measuring freshly dissected eyeballs from WT and
stra6 —/— mice using a calibrated scale under light microsco-
py. The reduction in size was 8-10% in eye diameter, which
persisted in stra6 —/— mice at 5 and 10 months of age,
respectively (Fig. 2). Cellular localization of STRAG protein on
whole retinal samples was imaged by immunocytochemistry
and confocal microscopy. Representative images presented in
Figure 3 show no STRAG signal in RPE cells or any other
surrounding cells in tissue sections coming from 6-week-old
stra6 —/— mice (Fig. 3B). In contrast, a strong fluorescent
signal was observed in control tissue sections on the baso-
lateral side of RPE cells, which is consistent with the expected
localization of the RBP receptor (Fig. 3A and inset). In addition,
light microscopy of plastic sections revealed a shortening in
the length of inner (IS) and outer (OS) segments of stra6 —/—
retinas, compared to control mice (Figs. 3C, D). Variations in
IS/OS thickness along the entire extent of the retina were
observed. To illustrate these differences, a morphometric
analysis of each WT and mutant eye was performed for inferior
and superior hemispheres (at equally spaced points, eight for
each hemisphere). This analysis demonstrated a consistent
reduction in inner/outer segment length in stra6 —/— eyes

(Fig. 3B).
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Figure 2. Comparison of eye diameter between stra6 —/— and WT
mice. Eyeballs were collected at 3 different ages, 6 weeks, 20 weeks (5
months), and 40 weeks (10 months). Measurements were recorded
under stereo microscopy. Each value represents the average of 3-5
eyeballs from each WT and stra6 —/— group of mice.

Effect of STRAG Disruption on Other RPE Proteins

To determine if, due to the lack of STRAG, there was any
variation in the expression of proteins present normally in RPE
cells, we performed Western Blot analysis for visual cycle
proteins RPE6G5, RGR, and LRAT. As seen in Supplementary
Figure S2  (http://www.iovs.org/lookup/suppl/doi:10.1167/
iovs.11-8476/-/DCSupplemental), protein extracts from RPE
cells of stra6 +/+, stra6 +/—, and stra6 —/— mice showed no
difference in the levels of expression among the three
genotypes. Conversely, STRAG expression was higher in
control stra6 +/4 than heterozygous stra6 +/— and was
undetectable in the stra6 —/—. From these results we
conclude that STRAG expression was disrupted effectively in
RPE cells, and its absence had no repercussion on expression
levels of other visual cycle proteins whose reduced expression
would cause attenuation of the visual cycle.

Persistent Hyperplastic Primary Vitreous (PHPV)
in the Eyes of stra6 —/— Mice

SD-OCT and fundus imaging studies were performed routinely
on all stra6 mice before further evaluation. After analyzing
several eyes from 6-week-old stra6 —/— mice, dense “asteroid-
like” bodies were apparent by fundus examination. These
structures were localized in the vitreous humor and posterior
to the lens. An IP injection of fluorescein allowed us to view
their vascularization (Figs. 4A, B). A movie of blood flow
through this structure is provided in the Supplementary
Material (http://www.iovs.org/lookup/suppl/doi:10.1167/iovs.
11-8476/-/DCSupplemental). A representative fundus image of
the “asteroid-like” structure is displayed in Figure 4C. These
structures contained many pigmented cells resembling choroi-
dal melanocytes (Fig. 4D). Further analysis identified them as
persistent PHPV. The primary vitreous body is a transient
embryonic structure consisting of fibroblastic cells stemming
from the periocular mesenchyme and a capillary network
given off by the hyaloid artery.?? Between E13.5 and E14.5, the
fibroblasts forming the primary vitreous body (PV, Fig. 5A)
become dispersed within the rapidly expanding, acellular,
secondary vitreous body (SV, Fig. 5A), and are no longer
identified at E15.5 (not shown). At E13.5, stra6 —/— and WT
eyes were indistinguishable histologically (z = 3). However, at
E14.5 the number of cell nuclei in the secondary vitreous was
markedly increased in stra6 —/— fetuses compared to the WT
(n =3 for each genotype; compare PV, Figs. 5A, B, and data not
shown). Later, E18.5 stra6 —/— mutants (n = 3) showed a
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Ficure 3. Histological features of the retina in stra6 mutants and controls. (A, B) Frozen sections (10 pm) of retina from stra6 +/4 and stra6 —/—
mice. STRAG staining was performed by using the anti-STRAG6 antibody from abCam Inc. at 1:200 dilution. (C, D) Images of 1 um plastic sections of
retina from both genotypes showing the shortening of outer segments and inner segments in the retina of mice lacking STRAG (D). (E)
Measurements of outer/inner segment thickness along the entire extent of the retina. The optic nerve head (ONH) was used as a point of reference
to differentiate the superior (right) and inferior (Jeft) hemispheres. Means of four representative retinas are shown for each stra6 +/4 and stra6 —/—
genotype. Eight different points were measured in each hemisphere. ONL, outer nuclear layer. Bar, 20 pm.

Downloaded From: http://iovs.arvojour nals.or g/pdfaccess.ashx?url=/data/j our nals/iovs/932979/ on 09/25/2017



3032 Ruiz et al.

I0VS, May 2012, Vol. 53, No. 6

FiGure 4. Representative fundus analysis and light microscopy images from a 6-week-old stra6 —/— mouse are shown. (A, B) The presence of a
PHPYV structure in two different focal planes observed following IP injection of fluorescein. Vascularization of these structures is observed by the
presence of blood vessels (B, arrows). (C) The asteroid-like appearance of the PHPV structure from (A) and (B) in standard fundus imaging. (D)
Epon-Araldite sagittal section (1 pum) showing the internal features of the PHPV body, which includes pigmented melanocytes.

small mass of densely packed cells in the secondary vitreous
body (PHPYV, Fig. 5D) that was never observed in the WT (n =
3, Fig. 50). All 2-month-old, adult, stra6 —/— mutants (n=11)
exhibited a conical mass of cells between the optic nerve exit
point and the lens (PHPV, Figs. 5E H), whereas no PHPV was
ever observed in the eyes of their WT litter mates (1 = 6, Figs.
5E, G). PHPV also were observed in adult, stra6 —/— mice,
namely at 5 and 10 months old (Fig. 6, and not shown). SD-
OCT analysis of eyes of stra6 —/— mice also revealed that, in
some cases, the density of these PHPV structures was sufficient
to block the path of infrared light penetration for OCT signal
acquisition in the right (OD) and left (OS) eyes, as shown in
Figure 7 (see arrows in bottom panels of the left group). SD-
OCT images of eyes from 5-month-old mice shown in Figure 7
(bottom panels of the right group) were similar to retinas of 6-
week-old null mice.

Additionally, the retinal thickness of 5-month-old stra6 —/—
mice was equivalent to the 6-week-old mice (Fig. 6, lower
panels). An interesting morphological observation in stra6G
mutants was the finding of a 20% reduction in the number of
cones stained with fluorescein tagged PNA in 6-week-old mice
as opposed to an 80% reduction at 5 months of age in
comparison to corresponding controls (Fig. 8).

Effect of STRAG Deficiency on Visual Responses

Dark-adapted ERG recordings are shown in Figure 9 for stra6
+/4, stra6 +/—, and stra6b —/— mice. This figure shows the
average (+ 1 SE) ERG response amplitudes to progressively
higher light intensities for each mouse genotype. For the a- and
b-waves, response amplitudes for the stra6 +/— mice were
indistinguishable from those obtained from the stra6 +/+

control mice. In contrast, ERG responses from stra6 —/— mice
were significantly smaller than those of the stra6 +/4 control
mice. On average, scotopic a- and b-wave amplitudes,
reflecting performance of photoreceptors and middle retinal
cells, respectively, were approximately 20% and 50% those of
stra6 +/4 control mice. Interestingly, in the case of 6-week-old
null mice with unilateral presence of PHPYV, recording in both
eyes showed a similar reduction in amplitude as shown in
Supplementary Figure S3 (http://www.iovs.org/lookup/suppl/
doi:10.1167/iovs.11-8476/-/DCSupplemental), indicating that
these structures had little effect on retinal function. Our
morphological observations regarding reduced cone density in
null mutants was supported by a reduced cone response to
light stimulation in stra6 —/— mice. Cone b-wave amplitudes
were, on average, only 20% of the WT or heterozygous
responses at 6 weeks of age. This did not change substantially
with age (data not shown).

Effect of STRA6 Deficiency on Retinoid Content in
Retinal Tissues

For the evaluation of retinoid content, mice corresponding to
all three stra6 genotypes were dark adapted overnight before
the eyes were freshly dissected. RPE cells and neurosensory
retina samples were collected as separate groups. As shown in
Figure 10, the amount of all-trans-retinol (all-trans-ROL) found
in RPE and retina samples from null mice was reduced
consistently compared to heterozygous and WT samples (Figs.
10A, D). The same reduced pattern also was observed when
mutant eyes were tested for other retinol derivatives, such as
all-trans-retinyl palmitate (all-trans-RP) and 11-cis-retinyl pal-
mitate (11-cis-RP) for RPE (Figs. 10B, C), and 11-cis-retinalde-
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Adult

Ficure 5. Ontogenesis of the persistent hyperplastic primary vitreous body in stra6 —/— mutants. (A-D) Comparison of sagittal histological
sections from E14.5 and E18.5 WT fetuses, and stra6 —/— mutants (stra6 —/—). (E-H) Comparison of 6-week-old WT and stra6 —/— eyes. C,
cornea; H, hyaloid vessel; L, lens; ON, optic nerve; R, retina. Bar indicates 160 pm (A-F).
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Ficure 6. Fundus and light microscopy images from 5-month-old stra6 mice. (A, B) Fundus images of a stra6 —/— mouse showing the presence of
PHVP in both eyes. (C, D) Light microscopy images revealing a reduction in the retinal IS and OS length for stra6 —/— mice compared to WT

controls. Bar, 20 pm.

hyde (11-cis-RAL) and all-trans-retinaldehyde (all-trans-RAL) for
the retina (Figs. 10E, F), respectively. As shown in these panels,
for overnight dark adapted mice, the vitamin A storage form
(all-trans-RP) in the RPE cells showed the most dramatic
variation with about 95% reduction in the stra6 —/— extracts
when compared to control samples (Fig. 10B). Interestingly,
the stra6 —/— mice were able to regenerate about 21% of the
wild-type 11-cis-RAL levels (Fig. 10E) during dark adaptation,
consistent with the photoreceptor response as indexed by the
amplitude of the a-wave of the ERG (Fig. 9).

DISCUSSION

Retinol is an essential component of the biological machinery
needed by a living organism to achieve proper functioning
throughout life. Due to the relevance of STRAG as a membrane
receptor for the retinol/RBP complex and its critical role as a
retinol transporter,” ' we sought to generate a stra6 null
mouse model to provide a better understanding of the
consequences of STRAG deficiency in mammals. Severe
phenotypic abnormalities have been associated with stra6
mutations in human patients with Matthew-Wood syn-
drome.'®"18 Interestingly, the straG null mice presented in

our report show phenotypic variations that differ markedly
from control litter mates, but are less severe than the ones
observed in humans bearing stra6 mutations.

An important phenotype in stra6 —/— mutant mice was a
reduction in retinal thickness due to shortening of their rod
photoreceptor outer and inner segment lengths. Similar
morphological changes were observed when other RPE
proteins important for the processing of retinol derivatives
were disrupted genetically in these cells, as in the case of
RPE652% and LRAT.?> However, it is important to mention that
in the rpe65 and lrat knock-out models the visual response as
measured by ERG was virtually non-detectable as opposed to
the stra6b —/— mutant, where a significant, albeit abnormal,
visual response to light stimulation remained. This significant
ERG response suggests clearly that, despite the absence of
STRAG in the RPE, retinol or retinyl esters still were delivered
and processed through the visual cycle for the generation of
11-cis-RAL. Therefore, the physiological effect of STRAG
ablation does not have the same impact as the disruption of
partner proteins, like RPEG5 and LRAT. This probably is due to
the fact that, unlike RPE65 and LRAT, STRAG is not directly
responsible for the generation of 11-cis-retinoids.

The amount of retinol and its derivatives in RPE and
neurosensory retina samples was much lower in stra6 null
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5 months

Stra6 +/+

Stra6 -/~

Ficure 7. Representative SD-OCT showing the retinal features of stra6 +/4 and stra6 —/— mice at 6 weeks and 5 months. Images from 5-month
group were taken at a lower magnification. Lower panel of 6-week-old mice shows the presence of asteroid-like dense structures (PHVP) above the
retinal layers of both right (OD) and left (OS) eyes of stra6 —/— mice (arrows). These structures were able to block the light path through the retina
generating a shadow effect. However, in the lower panels of 5-month-old mice, despite the presence of PHVP in both eyes, the light path was not
blocked, probably due to variability in the anatomical localization and degree of pigmentation.

mice. In both tissues, all-trans-ROL was considerably reduced
to about 84% in the RPE and about 88% in the neurosensory
retina, suggesting that the majority of retinol intake by RPE
cells is STRAG dependent. For RPE cells, allfrans-RP was
depleted to a greater extent than any other retinoid (3% of
control). Moreover, 11-cis-retinal was only 24% of controls in
the neurosensory retina. This was in spite of the fact that in
these mutants, LRAT and RPE65 showed no variation in their
protein expression (suggesting full enzymatic activity). None-

Stra6 +/+

Stra6 -/-

theless, even in the presence of reduced retinol uptake by the
RPE, the amount of all-trans-RP available was sufficient to allow
generation of enough 11-cis-RAL to provide a significant visual
response. Interestingly, unlike 7pe65 and lrat null mice, there
was no significant rod photoreceptor cell degeneration by 5 or
10 months, although the number of cone photoreceptors at
that age was reduced considerably in stra6 mutants. These
findings resembled observations reported for rpe65 and irbp
knock-out mice,?®?7 and implied that retinoid levels are more

RPE

Ficure 8. Histological features of the retina in stra6 mutants and controls. Frozen sections (10 pm) of retina from 5-month-old stra6 +/4+ and stra6
—/— mice are shown in all panels. Cone sheath staining (A, C) was obtained by using a fluorescein-tagged PNA (20 pg/mL). STRAG staining (A) was
performed by using the anti-STRAG antibody from abCam Inc. at 1:200 dilution. (B, D) are Nomarski images of controls for stra6 +/+ and stra6 —/—,

respectively.
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Ficure 9. ERG analysis of 6-week-old stra6 mice. ERG responses to
blue-flash stimuli recorded under dark adapted conditions are shown
for each group of mice. The shadowed regions define the normal
ranges for a- and b-wave amplitudes for WT stra6 +/+ mice. The
responses from heterozygous stra6 +/— mice fell completely within
this range, consistent with normal retinal function. In contrast, ERG
responses from stra6 —/— mice were significantly smaller, with a- and
b-wave amplitudes approximately 20% and 50%, respectively, of WT
control and heterozygous mice. ERG analysis of 5-month-old stra6 mice
showed similar visual responses as the 6-week-old mice (data not
shown).

critical for cone survival than for rods. Cones on the other
hand, while present in higher numbers at 6 weeks of age,
reduced their numbers to 20% of normal by 10 months. The
effect on the cone b- wave amplitude was more dramatic. Even
though cone numbers were higher at 6 weeks of age (70% of
W), their b- waves held steady at ~20% of normal between 6
weeks and 5 months.

Fundus imaging revealed the presence of dense bodies in
the vitreous chamber of the stra6 —/— mutant eyes, which
resembled PHPV. Interestingly, PHPV represents the most
frequent congenital abnormality of the rodent fetal vitamin A
deficiency syndrome,?®2° and it also is a characteristic feature
of RARbeta and Raldh3 knock-out mice.’%3! It was proposed
previously that retinoic acid (RA) synthesized by Raldh3,
which is expressed in the ventral retina and RPE,3! activates
RARbeta, which is expressed in the fibroblasts of the PHPV,3?
to control its normal involution during prenatal development.
Our study shows that STRAG also is instrumental to the
involution of the PHPV. Involvement of STRAG in this event
most likely stems from its role in supplying RPE and retinal
cells with vitamin A. Actually, as all-frans-ROL intake is
considerably reduced in those cells, it is plausible that the
amount of RA that can be synthesized by Raldh3 in the absence
of STRAG is not sufficient to allow proper activation of
RARbeta in the primary vitreous body fibroblasts, and thereby
arrest their proliferation. It is worth noting that although RA is
required to prevent proliferation, impaired RA signaling does
not interfere with cell differentiation, since the cells of the
PHPV give rise to melanocytes, one of the differentiated cell-
types normally arising from the periocular mesenchyme from
which they originate.>°

On retinal angiography, these PHPV structures were fed by
blood vessels from the retina and choroid. Since in some
cases the PHPV structures had sufficient density to block the
light path during SD-OCT imaging, we wondered if the
reduction of the ERG response in null stra6 mice also was

I0VS, May 2012, Vol. 53, No. 6

due partly to the obstruction of light reaching the retina
rather than a physiological effect due to outer segment
shortening. However, whether or not PHPV was present at 6
weeks or 5 months of age, the ERG responses observed in
mutant mice always were reduced when compared to
controls, and showed similar scotopic b-wave amplitude
patterns for both eyes whether the presence of the PHPV
structure was unilateral or bilateral. Therefore, the lower ERG
response in mutants was due to the retinal changes caused by
the lack of STRAG and a direct consequence of reduced
retinol intake, but not related to the dense structures
themselves.

Our findings suggest clearly that STRAG deficiency in these
mutants had a significant impact at the physiological and
biochemical level. However, they also demonstrate that its
absence from the RPE does not abolish the visual response to
light completely. These observations have interesting implica-
tions, because it is known that variability in loss of function
exists for some of the human sfra6 mutations, and this is
manifested by variable severity of the phenotype. It also has
been reported that, when some of these mutations have
resulted in full gene inactivation, the consequences were very
dramatic, as in the total absence of eyes.'®-!8 That was not the
case for this model where, despite full disruption of the stra6
gene, these mice showed a phenotype similar to that reported
for young rbp4-deficient mice, which under normal diet
(vitamin A sufficient), had impaired visual responses but
otherwise were phenotypically normal.32-34

One must ask why such a phenotypic variation exists
between humans and mice in the presence of abnormal STRAG
function. The most parsimonious explanation would be to
refer to species-specific background gene differences. There
are precedents for this from other studies. Examples include
the generic p53 knock-out®> and the eye-related abca4 (aber)
knock-out,3°-3% in which the phenotype in mice is not as
severe as it is in humans with disruption of the same genes.
These comparisons have taught us that there not always is a
phenotypic correlation when orthologous genes are mutated
in mice and humans, particularly when comparisons are drawn
between genes that are disrupted in mice versus genes that
carry point mutations in humans. In addition, environmental
influence and differences in retinoid metabolism are likely
different between humans and mice.

The other important question is, how do the null mice
compensate for the lack of STRAG function and cellular retinol
intake? Our findings suggest clearly that STRAG is not the only
pathway for retinol uptake from circulating holo-RBP. This was
evident from our earlier studies in which we disrupted the lrat
gene conditionally and observed small amounts of retinyl esters
in the RPE.?> Therefore, alternative mechanisms for retinol
intake must exist. Before the identification of STRA6 as an
important membrane protein responsible for retinol uptake,
several hypotheses were proposed in the literature for that
role. These mechanisms included passive diffusion of free-
retinol through cellular membranes,'%3 retinoid delivered via
the systemic circulation as chylomicrons,*° and a putative role
involving megalin as an endocytic holo-RBP receptor (Han et
al., unpublished data).¥%42 It is possible that one or a
combination of them could be playing a role in this process
after all.

In summary, our studies provide a useful mouse model for
the study of STRAG function in ocular intracellular retinol
transport. These mice will be important particularly for studies
involving vitamin A deprivation. Along these lines, the use of
combinatorial gene knock-out with this model also would
advance our understanding further of the mechanisms
underlying retinoid trafficking in the RPE.
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Ficure 10. Retinoid content in RPE and neurosensory retina from all three stra6 genotypes. A reduction in the levels of all-zrans-ROL was observed
in both RPE and neurosensory retina of stra6 null mice (A, D). These mutants also showed a reduction in the content of all-trans-RP and 11-cis-RP in
RPE (B, O) as well as 11-cis-RAL and all-trans-RAL in the neurosensory retina (E, F). Each value represents the average of 4 eye samples for each
genotype group. All samples were collected from 6-week-old stra6 mice. Samples were analyzed by normal-phase HPLC. all-trans-ROL, all-trans-
retinol; all-frans-RP, all-trans-retinyl palmitate; all-trans-RAL, all-trans-retinal; 11-cis-RAL, 11-cis-retinal; 11-cis-RP, 11-cis-retinyl palmitate.
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