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Plasmonic crystal enhanced refractive index sensing
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(Received 21 April 2014; accepted 12 June 2014; published online 25 June 2014)

We demonstrate experimentally how the local anisotropy of the dispersion relation of surface

plasmon modes propagating over periodic metal gratings can lead to an enhancement of the figure

of merit of refractive index sensors. Exploiting the possibility to acquire defocused images of the

Fourier space of a highly stable leakage radiation microscope, we report a twofold increase in

sensing sensitivity close to the band gap of a one-dimensional plasmonic crystal where the

anisotropy of the band structure is the most important. A practical sensing resolution of O(10�6)

refractive index units is demonstrated. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4885120]

Surface plasmon (SP)-based sensors have become stand-

ard systems in the detection of ultra small refractive index

changes, and are thus routinely used today in a great variety

of contexts, from analytical chemistry to medicine.1,2 This

stems from the fact that SP sensors offer a unique combina-

tion of capacities: high-throughput, real-time monitoring,

and label-free characterization at the level of single molecu-

lar interactions, all this within micron-scaled volumes of

interactions.3,4 The efficiency of plasmonic sensing has natu-

rally been accompanied by a burst of recent work with spe-

cific SP-based architectures all aiming at improving

sensitivity and resolution (see Refs. 5–7 and references

therein).

In this context, we have recently demonstrated a large

improvement over the optimal figure of merit (FOM) of an

SP-based sensor by monitoring the evolution, as a function

of the refractive index change dn, of the normalized intensity

variation di(k) of a SP resonant profile, imaged in the Fourier

k-plane. The SP mode being characterized by its wave vector

kSP, the sensitivity S of the sensor is defined by

S ¼
�
�
�
�
di kð Þ
dn

�
�
�
� ¼

�
�
�
�
di kð Þ
dk

�
�
�
��
�
�
�
�
dRe kSP½ �

dn

�
�
�
�: (1)

This expression immediately reveals two different possi-

ble strategies to increase the sensitivity: either by optimizing

di(k)/dk or dRe[kSP]/dn. Our recent work optimized the for-

mer factor exploiting the built-in asymmetry of a Fano reso-

nance recorded on an intensity interrogation scheme

developed on an advanced leakage radiation microscope

(LRM).8

In this Letter, we aim at tailoring the value of the second

factor dRe[kSP]/dn, exploiting a band gap effect in a plas-

monic crystal, as proposed theoretically recently by us10 and

others in a different context.9 While dRe[kSP]/dn is a con-

stant for SP modes propagating along planar interfaces due

to the associated isotropic SP dispersion relation x(Re[kSP]),

the situation turns out to be different on plasmonic gratings

where the dispersion relation becomes anisotropic. Basing

our demonstration on the same LRM imaging setup to record

ultra-stable Fourier space images, we show how this

anisotropy can be exploited for high-resolution refractive

index sensing, giving the possibility to control and thus

amplify the global sensitivity of the sensor.

Our sensor geometry is shown schematically in Fig.

1(b). A nano groove source is illuminated by a laser spot to

launch SPs propagating inside a singly periodic sinusoidal

metal grating (1PG). We recall that for a grating period

chosen close to the Bragg condition,10 band gaps around the

M-point of the grating appear, as clearly seen from the corre-

sponding isofrequency surface (IFS) shown in Figs. 2(a).

The effect of the anisotropy of the SP dispersion relation

with respect to a refractive index change is simulated in Fig.

2(b) and compared to the response on a flat metal film using,

in a wave vector interrogation scheme, the x component kSP
x

of Re[kSP] as a sensing meter at a fixed k position. For a flat

metal film, a small dn change shifts kSP
x by dkflat

x determined

from the SP dispersion relation. It is immediately clear that

over the plasmonic crystal, the anisotropic band structure

will act as a lever on the detected wave vector change, with

an enhanced dk1PG
x change. Such levering results in an equiv-

alent increase of the sensor sensitivity, defined as Sk ¼
dkSP

x =dn in the same wave vector interrogation scheme.

Close to the Bragg condition (ky� 0.25 lm�1), a large

increase of the sensitivity will be observed, stemming from

the diverging slope of the SP band at this M-point.

The performance of the sensor can be assessed by

choosing a standard definition of the figure of merit with

FOM¼ Sk/w where w is the full width at half maximum of

the dip. At a flat interface, this width is fixed by SP loss

according to wflat¼ 1/2 Im[kSP]. Assuming the same loss on

the plasmonic crystal, it is important to stress that the width

at an arbitrary point of the IFS of the grating will broaden

due to a geometric increase of the cross-section as

w1PG ¼ wflat= cos½arctanðdkSP
x =dkyÞ�. Such a correction still

yields for our setup an evaluated FOM improvement for the

1PG sensor of 36% for an optimal choice of ky.

To validate this approach, we specifically designed a

LRM setup performing as a high-resolution sensor. We

monitored, as a function of refractive index changes, the evo-

lution of the anisotropic SP dispersion relation at the level of

a smooth one dimensional metal grating used as a plasmonic

crystal. We imprinted a 1PG directly on an indium-tin oxide

substrate using focused ion beam (FIB) lithography on whicha)Electronic mail: genet@unistra.fr
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a thin (80 nm) layer of gold was evaporated. Remarkably,

the ionic lithography process reduces the indium-tin oxide

initial roughness and we therefore obtained, after the metal

deposition, a very smooth grating with a surface quality that

would not have been achievable by milling directly the metal

film. The design was carefully set with a period

P ¼ 580=
ffiffiffi
2
p

nm, i.e., close to the Bragg period evaluated for

an SP mode at a gold-water interface where the SP wave-

length kSP¼ 2p/Re[kSP]¼ 566 nm for an excitation laser

wavelength kL¼ 782 nm (see Ref. 10). The crystal was em-

bedded in a PDMS microfluidic cell at the level of which the

modifications of the fluidic environment of the sensor can be

fully controlled with precision.11 Note that the thermal sta-

bility of the experimental environment was carefully moni-

tored in order to avoid any temperature effect on the

recorded signals.

Sensing was actually performed in the magnified

Fourier space of the LRM, in a configuration described in

Fig. 1(a). However, as it can be seen in Figs. 2(a), standard

Fourier space leakage radiation images only provide a

relatively low contrast at the level of the SP band gap, in

which evolution turns out to be difficult to monitor precisely.

To overcome this limitation, an original strategy is to exploit

defocused images of the Fourier space. The resulting inter-

ference pattern turns out to be characterized by a well

defined first diffraction dip, following approximately the

shape of the SP band structure. It is this dip which is chosen

as the refractive index probe. In order to record even more

precisely its evolution, we further saturated the image at that

minimum in order to reduce its width. A typical recorded

image is shown in Fig. 3(a). Image cross-sections taken

along ky at the band gap region are displayed in Fig. 3(b). It

is important to realize that, because it is not possible to scale

defocused images in terms of wave vector unit easily, the

resonance shifts are all measured in pixel units (px).

Aiming at probing refractive index changes smaller than

10�5 RIU (refractive index units), deionized water solutions

with varying concentrations of ethanol were prepared, scan-

ning refractive index changes dn ¼ nsol � nH2O from

dnmin¼ 3.4� 10�6 RIU (corresponding to 5.21� 10�5 w/w

FIG. 1. (a) Optical setup: light from a kL¼ 782 nm pigtailed laser diode (LD) passing a polarizer (P1), half-wave plate (HW), beam expander (BE), is weakly

focused by a microscope objective on the plasmonic crystal in a PDMS microfluidic cell. SP modes are decoupled by an NA¼ 1.49 immersion objective and

imaged by two lenses (L1, L2) to intermediate direct space (dotted line) and Fourier k-space (dashed line) planes, respectively. Spatial filtering of direct trans-

mission is conveniently performed in the first intermediate direct space plane. The Fourier space can be scanned with high magnification by a third objective

and recorded with a charge-coupled device (CCD) after an imaging lens (L5). Defocused images are recorded by controlled axial shifts of this whole unit, as

illustrated by the gray box. (b) Sensing scheme: an SP mode is launched on a one-dimensional plasmonic crystal (1PG) from a nano groove source illuminated

by monochromatic light and oriented 45� with espect to the sinusoidal grating vector of the 1PG.

FIG. 2. (a) Zoomed image of the IFS around the M-point. The continuous lines are theoretical fits of the IFS fitting the 1PG modulation depth. (b) 1PG

enhancement sensing scheme: on a flat gold film, the SP dispersion relation corresponds to a circular IFS (black continuous curve). A small change of the re-

fractive index dn leads to an equivalent increase of the circle radius (black dashed curve). On the 1PG, the SP dispersion relation displays an anisotropic IFS

(blue continuous curve). The same dn change now results in an amplified change dk1PG
x measured in the LRM Fourier image as a spatial shift Dxgrat of the SP

resonance enhanced with respect to the shift Dxflat on a flat film.
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of dissolved ethanol) up to dnmax¼ 5.4� 10�3 RIU (corre-

sponding to 8.3� 10�2 w/w of dissolved ethanol). For each

solution, the dip positions are monitored and determined

from a centroid method1 based on finding the geometric cen-

ter of the recorded dip j as xj ¼
P

i xiðIth � IiÞ=
P

iðIth � IiÞ,
where sole pixels i with intensity values Ii below a certain

threshold Ith are included in the centroid evaluation. In this

work, a threshold corresponding to half the dip depth was

chosen, and the resulting values xj for each dip have been

averaged temporally over N¼ 10 frames, yielding an aver-

aged position value �xj of the dip.

In order to compensate for low-noise drift of the signal,

each solution is referenced against pure water, in an

exchange that leads to the temporal evolution of the dip posi-

tion displayed in the inset of Fig. 3(b). This leads to the

determination of refractive index differences by measuring

associated spatial shifts dxj (measured in pixel units) of the

SP resonance dips through dxj ¼ ð�1Þjð�xj � 2�xjþ1 þ �xjþ2Þ=2.

Each measured shift is then averaged over M¼10 cycles,

yielding resulting values hdxi associated with each dn. These

values for all solutions are gathered in Fig. 4, on a logarith-

mic scale. Two sets of data are presented: one set obtained

with an operating point ky close to the band gap (as in Figs.

3(a) and 3(b)) and for comparison, another set obtained far-

off the band gap where the SP dispersion relation is getting

very close to the one obtained over an unstructured planar

metal film. The slope of each curve is extracted by fitting the

intensity evolutions over the range where the response is

well linear. Close to the M-point, the slope is measured as

dx/dn¼43.0�103 px/RIU and is compared to dx/dn
¼18.8�103 px/RIU in the planar film situation. These val-

ues reveal a more than twofold increase in sensitivity when

resorting to the 1PG.

At this stage, it is possible to evaluate the actual FOM of

the 1PG sensor by measuring the dip widths close to the

band gap. A measure of wky
¼ 98:1 px leads to a FOM¼ 438

to be compared with the FOM¼ 228 measured far away

from the band gap (i.e., in the flat band region) where the

width of the SP resonance has a value of 82.3 px. This

increase in the FOM corresponds to a 90% improvement.

We emphasize that this comparison is performed on the

same 1PG and on the same image and therefore clearly

assesses the relevance of exploiting the anisotropy of the

plasmonic band structure in order to improve SP-based sens-

ing figures of merit.

From a practical point of view, a clear estimate of the

sensor resolution requires a baseline noise analysis of the

setup.8 This was done by carefully evaluating the signal

uncertainty (standard deviation) of the dip shift rhdxi over

FIG. 3. (a) Magnified Fourier space leakage radiation image of the IFS close to the M-point recorded by slightly defocusing the magnification block around

lens L5 with respect to the Fourier space conjugate plane (see Fig. 1(a)). The operating point close to the band gap is indicated by the blue line crossing the

Fourier plane vertical axis at a value ky2. (b) Cross-sections along ky2 of the defocused leakage radiation image. These cross-sections are used for evaluating

the sensitivity quantitatively. The profiles were taken in ultra-pure water (solution 1, continuous curve) and in a solution corresponding to a refractive index

increase of dn¼ 4.3� 10�3 RIU (solution 2, dashed curve). Both cross-sections have been taken after a vertical spatial averaging over 17 lines of the CCD

chip around the operating points shown in (a). The insert displays the variation of the detected dip centers xj given through iterative exchanges of solutions 1

and 2.

FIG. 4. Double logarithmic plot of the dip center variation hdxi as a function

of the refractive index change dn (averaged over 10 measurements). Results

are shown close to the band gap (blue data points) and far-off from it, where

the SP dispersion relation is the one of the flat surface (red data points). All

data points have been taken from defocused Fourier space leakage radiation

images. Results for dn< 10�3 RIU are fitted by linear regression, yielding a

sensitivity of dx/dn¼ 43.0� 103 px/RIU close to the band gap (at ky) to be

compared with the sensitivity of dx/dn¼ 18.8� 103 px/RIU far-off it (see

main text). Data from a flat gold film are also shown for comparison. As

expected on a flat gold film, the sensitivity is lower with a linear fit yielding

16.6� 103 px/RIU.
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3� 105 frames. Accounting for the actual time s¼ 20 s nec-

essary to exchange manually the liquid through the micro-

fluidic cell and choosing to average over N¼ 10 frames and

M¼ 10 cycles, an uncertainty of rhdxi ¼ 6:2� 10�2 px was

determined close to the band gap. This leads us to estimate a

practical resolution of our sensor of rhdxi=Sk ¼ 1:4� 10�6

RIU. Neglecting the liquid exchange time increases even fur-

ther the resolution which can be expected at 2.2� 10�7 RIU,

i.e., comparable to the best systems reported to date.12

Throughout these analyses, a Faraday optical isolator was

placed in the path of the illumination beam, preventing back-

reflections into the laser diode and thus increasing the whole

stability of the source.

It is also interesting to note that the measured value of

the FOM in the flat band region exceeds the one predicted

theoretically from simulated band structures (shown in Fig.

2(b)) and calculated SP losses. By working with defocused

images and thus dips instead of peaks, it is possible to satu-

rate the detector around the resonance. This saturation is

accompanied by a reduction of the dip width which turns out

to be interesting to exploit in such a detection scheme, lead-

ing to an effective FOM improvement of the setup.

To conclude, we have demonstrated how the anisotropy

of plasmonic band structure obtained at the level of plas-

monic gratings can be exploited in a sensing context, turning

out to enhance the actual resolution of SP-based sensors. We

revealed a two-fold enhancement of the refractive index sen-

sitivity using a leakage radiation microscope on which a spe-

cific defocusing strategy was adopted in order to better

resolve the Fourier spatial shifts of the SP resonance as a

function of refractive index changes. Our careful analysis

demonstrated a resulting 90% increase in sensing FOM.

Having characterized the baseline noise of the whole system,

we reached a sensing resolution as high as O(10�6) RIU.

This remarkable value shows that our strategy can have a

strong impact on future progress in the context of high-

resolution SP-based sensors. In particular, by exciting sur-

face plasmons in different directions in different liquid cells,

our scheme can be adapted to perform parallel sensing13

with such high resolution levels.
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