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Ultrafast magneto-optical (MO) experiments constitute a powerful tool to explore the magnetization

dynamics of diverse materials. Over the last decade, there have been many theoretical and

experimental developments on this subject. However, the relation between the magnetization

dynamics and the transient MO response still remains unclear. In this work, we calculate the

magnetization of a material, as well as the magneto-optical rotation and ellipticity angles measured

in a single-beam experiment. Then, we compare the magnetization to the MO response. The

magnetic material is modeled by a three-level K-type system, which represents a simple model to

describe MO effects induced by an ultrafast laser pulse. Our calculations use the density matrix

formalism, while the dynamics of the system is obtained by solving the Lindblad equation taking

into account population relaxation and dephasing processes. Furthermore, we consider the Faraday

rotation of the optical waves that simultaneously causes spin-flip. We show that the Faraday angles

remain proportional to the magnetization only if the system has reached the equilibrium-state,

and that this proportionality is directly related to the population and coherence decay rates. For the

non-equilibrium situation, the previous proportionality relation is no longer valid. We show that our

model is able to interpret some recent experimental results obtained in a single-pulse experiment.

We further show that, after a critical pulse duration, the decrease of the ellipticity as a function of

the absorbed energy is a characteristic of the system. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4927841]

I. INTRODUCTION

Ultrafast demagnetization of ferromagnetic thin films by

a femtosecond laser pulse1 has been widely studied in recent

years. It has been the starting point of numerous investiga-

tions on various magnetic materials,2,3 in view of the poten-

tial uses of controlling spin dynamics using ultrashort light

pulses. However, in spite of many studies on the subject, the

mechanisms responsible for these effects have not been

elucidated yet. In particular, those which are relevant during

the initial phase of the dynamics. Understanding these mech-

anisms is of a fundamental interest, and that is why many

proposals to explain this light-induced demagnetization have

been proposed. In recent years, various spin-flip processes

have been suggested, highlighting the role played by pho-

nons,4 magnons,5 the spin-orbit coupling (SOC),6–8 or the

helicity transfer of the incident light.9 Alternative studies

propose the relativistic coupling between spins and photons,

as a coherent process occurring during the propagation of the

laser pulse.10,11

Besides the previous fundamental aspects, another prob-

lematic issue has recently appeared, concerning the question

of whether or not the experimental time-resolved magneto-

optical (MO) signal really reflects the magnetization dynam-

ics on the subpicosecond time-scale.12–16 An attempt to give

a new insight to this question can be done by evaluating the

appropriate magnetization change hidden in the measured

nonlinear magneto-optical rotation h and ellipticity g in a

single-pulse Faraday experiment. Such an experiment has

already been performed by Bigot and co-workers,10 and they

have analyzed the nonlinear dependence of the rotation and

of the ellipticity with respect to the absorbed energy. We

emphasize that this experiment was initially interpreted

assuming that a SOC involving the electric field of the laser

pump could be added to that of the ionic static field at high

laser intensities. Without rejecting this interpretation, the

single-pulse Faraday experiment can be considered as an

interesting tool to study the importance of physical parame-

ters on the total induced rotation and ellipticity. As an exam-

ple, a recent semi-classical model17 has been proposed to

indirectly estimate the part of magnetization change in nickel

films, by comparing the available experimental data with a

theoretical nonlinear Faraday phase mainly induced by a

nonlinear charge perturbation.

In this work, we focus on the problematic of the

magneto-optical measurements. The main goal of this paper

is to compare the behavior of the magnetization with that of

the rotation and ellipticity angles measured in a single-pulse

Faraday experiment. The understanding of what is being

measured in a single-beam experiment is a first step before

attempting a description of a multiple-beam experiment. We

have chosen to model the medium as a three-level K-type

system. This represents the simplest model to describe the
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magneto-optical effects induced by ultrafast laser pulses.

Recently, Lefkidis and H€ubner18 have theoretically analyzed

laser-induced spin-flip processes based on K-type systems.

They have shown that their analytical results were consistent

with those already obtained using numerical approaches on

more realistic systems.19 However, their model did not

include phase or energy relaxation processes. We work in

the density matrix formalism, where we take into account

the population relaxation and dephasing by numerically solv-

ing the Lindblad equation of the K system excited by a laser

pulse. We are able to calculate the system polarization and to

specify how the induced magnetization change translates

in the measurement of rotation and ellipticity. The latter

quantities are determined by the modeling of experimental

polarizing beam splitter (PBS) method. Since we are only

concerned with the analysis of experimental signals, the

damping rates will be phenomenologically described. It is

beyond the scope of this work to give a complete understand-

ing of the mechanisms underlying the ultrafast magnetic

dynamics.

This paper is organized as follows. In Section II, we

model a single-pulse Faraday experiment. The propagation

equations of the electric field are solved in the slowly vary-

ing envelope approximation, and the medium polarization is

obtained by solving the master equation for the density ma-

trix. No assumptions are made concerning the exciting field

intensity. Then, we determine the magneto-optical rotation

and ellipticity measured with a PBS. Section III is devoted to

the analysis of the correlations between the magnetization

and the simulated experimental signals. In Section IV, we

discuss the approximations of the model. We provide our

conclusions in Section V.

II. THEORY

Our purpose is to theoretically describe a single-femto-

second-pulse Faraday experiment where the material is

excited by a linearly polarized ultra-short laser pulse. As a

consequence of the light-matter interaction, the polarization

state of the incident light is modified, and the transmitted

field acquires an elliptical state with a polarization character-

ized by a rotation and ellipticity angles. In the experiments,

the transmitted field is analyzed with a half-wave plate

(HWP) to characterize the magneto-optical rotation, and a

quarter-wave plate (QWP) is added to measure the elliptic-

ity. The light beam is then split into two orthogonally polar-

ized components by a PBS, and the resulting intensities are

measured by two photodiodes (Pd).10,20,21 The experimental

configuration is sketched in Fig. 1.

The laser field Eðz; tÞ can be expressed as

E z; tð Þ ¼
1

2
E z; tð Þei xt�kzð Þ þ c:c:; (1)

where k and x are, respectively, the wavenumber and the

pulsation of the field, with c.c. standing for complex conju-

gate. The complex amplitude Eðz; tÞ can be written under the

form

Eðz; tÞ ¼ Exðz; tÞex þ Eyðz; tÞey; (2)

where ex and ey are two perpendicular unit vectors of the lab-

oratory frame. By considering an experiment such as the one

performed by Bigot and his coworkers,10 we can assume that

the thickness L of the system is much smaller than the wave-

length of the laser field. As a consequence, we neglect the

propagation effects over the medium. Therefore, writing the

system polarization Pðz; tÞ and the magnetization Mðz; tÞ
under the form

P z; tð Þ ¼
1

2
P z; tð Þei xt�kzð Þ þ c:c:; (3)

and

M z; tð Þ ¼
1

2
M z; tð Þei xt�kzð Þ þ c:c:; (4)

and using the slowly varying envelope approximation, the

field components are written as22

Ex L; tð Þ ¼ Ex 0; tð Þ � iL
l0xc

2
Px 0; tð Þ � iL

l0x
2
My 0; tð Þ

Ey L; tð Þ ¼ Ey 0; tð Þ � iL
l0xc

2
Py 0; tð Þ þ iL

l0x
2
Mx 0; tð Þ;

8><
>:

(5)

where c is the speed of light and l0 is the vacuum permeabil-

ity. We have noted Pxð0; tÞ and Pyð0; tÞ the components of

Pð0; tÞ in the basis set ðex; eyÞ. Similarly, the two compo-

nents of the magnetization amplitude will be noted by

Mxð0; tÞ andMyð0; tÞ.
In order to calculate the polarization and the magnetiza-

tion, we need to model the excited material. Following

Lefkidis and H€ubner,18 the active medium is described by a

three-level system, as shown schematically in Fig. 2. It is

assumed that the electric field couples only the states j1i and

FIG. 1. Experimental configuration. S: sample; QWP: quarter-wave plate;

HWP: half-wave plate; PBS: polarizing beam splitter; and Pd: photodiode.

FIG. 2. K-type scheme for the three-level system. Radiative transitions are

only allowed between the states j1i and j3i and between the states j2i and j3i.
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j3i, and the states j2i and j3i. Dipole transitions between the

states j1i and j2i are not allowed. Here, a system of two elec-

trons is assumed and all the three states are spin triplets, 3S
and 3P, where S and P correspond to L¼ 0 and L¼ 1, L
being the quantum number associated to the orbital angular

momentum. Due to the SOC, the good quantum numbers are

j and mj which are, respectively, related to the operator J2,

where J ¼ Lþ S is the total angular momentum, and to the

operator Jz, the z-projection of J. The ground state j1i corre-

sponds to the spin-down of the S state and the second one j2i
to the spin-up. In other words

j1i ¼ jj ¼ 1;mj ¼ �1i
¼ jL ¼ 0;ML ¼ 0; S ¼ 1;MS ¼ �1i;

and

j2i ¼ jj ¼ 1;mj ¼ 1i
¼ jL ¼ 0;ML ¼ 0; S ¼ 1;MS ¼ 1i:

The excited state state j3i corresponds to the 3P state. As a

consequence of the SOC, the states 3P0, 3P1, and 3P2 in spec-

troscopic notation 2Sþ1Lj are non-degenerate. Moreover,

as only electric dipole transitions are considered here, the

selection rules, Dmj ¼ 0;61, imply that the excited state is

characterized by mj¼ 0. For convenience, and following

Lefkidis’s model,18 the excited state j3i will be described by

the 3P1 state which can be written as

j3i ¼ jj ¼ 1;mj ¼ 0i
¼ fjL ¼ 1;ML ¼ 1; S ¼ 1;MS ¼ �1i
�jL ¼ 1;ML ¼ �1; S ¼ 1;MS ¼ 1ig=

ffiffiffi
2
p

:

In the basis set fj1i; j2i; j3ig, the matrix representation of

the unperturbed system Hamiltonian H0 is given by

H0 ¼
Eg

Eg

Ee

0
@

1
A; (6)

where Eg is the energy of the degenerated states j1i and j2i,
and Ee is the energy of the excited state j3i. The interaction

with the electric field Eðz; tÞ is described in the electric

dipole approximation by the system-field interaction

Hamiltonian

Hintðz; tÞ ¼ �l � Eðz; tÞ; (7)

where the electric field Eðz; tÞ is given by the relation (1).

The dipole moment takes the form l ¼ lxex þ lyey, where

the matrix representations of lx and ly are given by18

lx ¼ 2l

0 0 1

0 0 �1

1 �1 0

0
B@

1
CA and ly ¼ 2l

0 0 i

0 0 i

�i �i 0

0
B@

1
CA;
(8)

with 4l ¼ hL ¼ 0;ML ¼ 0jxjpxi, and jpxi ¼ ðjL ¼ 1;ML ¼ 1i
þjL ¼ 1;ML ¼ �1iÞ=

ffiffiffi
2
p

. We stress that throughout our

work, l represents the electric dipole moment (and not the

magnetic moment).

It is straightforward to show that only the z component

of the magnetic moment M ¼ lB

�h Lþ 2SÞð is non zero. Its

matrix representation is given by

Mz ¼
�2lB 0 0

0 2lB 0

0 0 0

0
B@

1
CA; (9)

where lB is the Bohr magneton. As a consequence, the rela-

tion (5) can be simplified to the form

Ex L; tð Þ ¼ Ex 0; tð Þ � iL
l0xc

2
Px 0; tð Þ

Ey L; tð Þ ¼ Ey 0; tð Þ � iL
l0xc

2
Py 0; tð Þ:

8><
>: (10)

Therefore, we only need to calculate the system polarization

Pðz; tÞ, which is given by Pðz; tÞ ¼ Trðlqðz; tÞÞ. We denote q
the system density matrix and Tr the trace operation over the

three-level system. In order to describe the dynamics of the

system, we assume that the time evolution of q can be

obtained from a Markovian master equation. The Liouville

equation thus takes the form

dq
dt
¼ � i

�h
H0 þ Hint tð Þ; q½ � þ Lrelaxq; (11)

where Lrelax is the Lindblad superoperator23 defined by

Lrelaxq ¼
c31

2
2r13qr31 � r33q� qr33ð Þ

þ c32

2
2r23qr32 � r33q� qr33ð Þ

þ c21

2
2r12qr21 � r22q� qr22ð Þ

þ c3

2
2r33qr33 � r33q� qr33ð Þ

þ c2

2
2r22qr22 � r22q� qr22ð Þ; (12)

where rij ¼ jiihjj stand for the projection operators,

ði; j ¼ 1; 2; 3Þ. The first three terms on the right-hand side of

Eq. (12) describe dissipative processes with energy loss. We

have noted cij the rate of spontaneous emission from state jii
to state jji. The last two terms correspond to energy-

conserving dephasing processes which are characterized by

the rates c2 and c3. By using the Lindblad’s representation,

we do not make assumptions about the physical origin of the

relaxation terms. Many microscopic mechanisms have been

proposed as, for example, Elliot-Yaffet-like mechanisms

based on electron-phonon,24 electron-magnons,25 electron-

electron26 scatterings, or superdiffusive transport.27 All these

processes affect the spin and contribute to the thermalization

of the system resulting in a characteristic time related to the

spontaneous population decay rate, which can be approxi-

mated by a thermalization time of the order of 100 fs. In

addition, our model does not address the question of the

physical nature of the reservoir, which supplies the angular

momentum ensuring the conservation of the total angular

momentum.13,28 In our approach, the three-level system
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interacts with a bath in such a way that the total energy and

the total angular momentum of the system-bath-photons are

conserved. The physical nature of the bath, and of its interac-

tion with the three-level system, remains an open question

which does not constitute the object of this work.

Equation (11) can be written under the form

dq
dt
¼ L tð Þq; (13)

where LðtÞq ¼ � i
�h H0 þ HintðtÞ; q� þ Lrelaxq½ . For short

time-increments, Dt, we can approximate the propagator

by29

q tþ Dtð Þ ¼ eDtL tþDt
2ð Þq tð Þ; (14)

and we then use the Cayley’s representation30 of the short-

time propagator

eDtL ’ 1� Dt

2
L

� ��1

1þ Dt

2
L

� �
; (15)

in order to calculate the density matrix. Thus, the polariza-

tion of the system can be evaluated and the electric field

going out of the sample can be determined by using the rela-

tion (10) where, for convenience, the factor Ll0xc=2 has

been set to unity.

We consider the usual experimental setup for magneto-

optical measurements with a polarization bridge,10,11,31

where the magneto-optical rotation is determined by analyz-

ing the outgoing field with a half-wave plate tilted by an

angle of p=8 with respect to the ex axe. The Jones-matrix31

of this half-wave plate is written as

1ffiffiffi
2
p 1 1

1 �1

� �
; (16)

enabling to evaluate the rotated field. In order to take into

account of the integration time of the photodiodes, the field

intensities Ih
x and Ih

y are obtained from

Ih
a ¼

ð1
�1
jEh

aðtÞj
2dt; a ¼ x; y; (17)

where Eh
aðtÞ denotes the complex amplitude of the a-compo-

nent of the rotated field. Finally, the magneto-optical rotation

h is determined by

h ¼
Ih
x � Ih

y

Ih
x þ Ih

y

: (18)

Following a similar procedure, the magneto-optical elliptic-

ity g can be measured by adding a quarter-wave plate to the

previous half-wave plate. In this case, the total Jones matrix

is given by

1

2

1 �i
1 i

� �
; (19)

and the field intensities Ig
x and Ig

y can be calculated to deter-

mine the magneto-optical ellipticity

g ¼
Ig
x � Ig

y

Ig
x þ Ig

y
: (20)

Our main goal is to establish the correlation between h (or g),

and the magnetization of the system, which is given by

hMzi ¼ 2lBðq22 � q11Þ: (21)

III. SIMULATIONS

For the purpose of this work, we assume that the excit-

ing field is linearly polarized along the x-axis and, moreover,

that its temporal envelope can be modeled by a square pulse

expressed under the form

Exð0; tÞ ¼ A½hðtÞ � hðt� sÞ�: (22)

The function h(t) stands for the Heaviside function, while A
and s are, respectively, the amplitude and the duration

of the laser pulse. This assumption about the temporal

dependence of the field envelope does not change the main

physical conclusions and makes easier the analysis of our

simulations because it simplifies some time behaviors due

to the convolution of the field envelope and the system

response.

A. Temporal analysis

We first start by considering an input pulse which is

much longer than any characteristic times of the system dy-

namics. The dephasing times and the lifetimes are chosen to

be 10 fs and 100 fs, respectively,11 (c21 ¼ c32 ¼ c31

¼ 0:01 fs�1 and c2 ¼ c3 ¼ 0:1 fs�1). These values have been

used in a recent theoretical work describing coherent mag-

neto-optics.11 Even if they are arbitrary, they can describe re-

alistic systems, since 1=cij can refer to the thermalization

time (�100 fs) and 1=ci is usually a tenth of the latter. The

energy difference �hxeg ¼ Ee � Eg between the excited level

j3i and the two degenerate levels j1i and j2i is fixed at

�hxeg ¼ 1:55eV, which corresponds to a wavelength of

798 nm.10 An analysis of the non-degenerate case ðE1 6¼ E2Þ
is done in Section IV. We test our model by simulating the

time evolution of the medium magnetization, represented in

Fig. 3. Curves (a) and (b) in Fig. 3(I) correspond to a reso-

nant excitation, while curves (c) and (d) are obtained in the

non-resonant case with a resonance detuning of

Dx ¼ x� xeg ¼ 0:025xeg. In the curves (a) and (c), we

have arbitrarily set the field amplitude A to unity, while a

strong field situation is depicted by the graphs (b) and (d)

with a field amplitude seven times larger than the other

cases. All the represented situations reach a plateau which

depends on the system dynamics and tends to zero for a

strong field amplitude. This last case corresponds to a popu-

lation equilibrium between the states j1i and j2i, and Rabi

oscillations are observed in the temporal evolution of the

magnetization. The plateau observed in these time evolutions

is not surprising; it is due to the fact that the duration of the

excitation is long enough with respect to the time scale for

the system dynamics to reach a steady-state. We have set the

pulse duration as 3 ps. It is important to note that these
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simulations show that the time demagnetization is a function

of the system dynamics, of the field amplitude, and of the

field envelope. As already mentioned, this latter is not prop-

erly taken into account in this work, since we used a simple

square pulse model for the field envelope.

For convenience, in this part of the work, we have con-

sidered perfect photodiodes. The magneto-optical ellipticity

gðtÞ and the magneto-optical rotation hðtÞ are then defined

by the relations

g tð Þ ¼
jEg

x tð Þj2 � jEg
y tð Þj2

jEg
x tð Þj2 þ jEg

y tð Þj2
and h tð Þ ¼

jEh
x tð Þj2 � jEh

y tð Þj2

jEh
x tð Þj2 þ jEh

y tð Þj2
;

(23)

where Eg
aðtÞ and Eh

aðtÞ (for a ¼ x; y) denote the complex

amplitudes of the a–component of the fields detected in the

ellipticity and the rotation measurement, respectively. In

Figs. 3(II) and 3(III), we have represented gðtÞ and hðtÞ as

functions of the time t. Due to the long duration of the exci-

tation, all these curves reach again a steady-state value. We

observe that for a high-field amplitude (curves (b) and (d) in

Figs. 3(II) and 3(III)), the ellipticity and the rotation tend to

zero. This is in agreement with the fact that for a strong field

excitation, the population difference q22 � q11 disappears.

Curves (a) and (c) have been calculated with the same weak

field amplitude but, as mentioned above, for different field

frequencies. We note that the corresponding plateau values

of the ellipticity are of the same order, contrary to the plateau

values of the rotation. This clearly appears in Fig. 3(III),

where the values of the plateau of the curves (a) and (c)

differ by one order of magnitude. This point can be easily

understood by drawing in Fig. 4 the value of the plateau for

both ellipticity and rotation as a function of the detuning

resonance of the laser field, and for a field amplitude set to

unity. We recover that the ellipticity and the rotation are

related to the real and imaginary part of the refractive index.

The variations represented in Fig. 4 explain why the rotation

vanishes at the resonance and why the ellipticity is decreas-

ing when the detuning of the laser frequency increases. For

the non resonant situations considered in this work, we have

chosen the frequency corresponding to the crossing-point

where the ellipticity and the rotation are equal. This choice

leads to signals of the same amplitude for weak field

amplitude.

B. Steady-state behavior

The previous simulations enable us to analyze the

steady-state behavior of the ellipticity and the rotation. In

Figs. 5 and 6, we present the value of the plateau reached at

long times by the ellipticity and the rotation, respectively, as

a function of the field amplitude. Curves (a) and (c) stand for

a resonant excitation, in contrast to curves (b) and (d), where

a resonance detuning of Dx ¼ 0:025xeg has been chosen. In

order to analyze the influence of the system dynamics,

the curves (a) and (b) have been calculated by setting

c31 ¼ c32 ¼ c21 ¼ 0:01 fs�1 as the population relaxation

rates, and c2 ¼ c3 ¼ 0:1 fs�1 as the coherence decay rates. In

curves (c) and (d), the relaxation parameter values have been

fixed to c31 ¼ c32 ¼ c21 ¼ 0:03 fs�1 and c2 ¼ c3 ¼ 0:3 fs�1.

We have chosen a logarithmic scale for the x-axis in order to

facilitate the comparison with experimental results.10 We

notice that the variations of the calculated curves are consist-

ent with those observed in the experiment. For small ampli-

tudes of the exciting field, the ellipticity and rotation are

amplitude-independent, while they exhibit a monotonously

decreasing behavior for stronger fields. These variations are

FIG. 3. MO response and magnetization. (I) Temporal evolution of the aver-

age value hMzi. (II) Temporal evolution of the ellipticity g. (III) Temporal

evolution of the rotation h. Curves (a) and (b) correspond to a resonant

excitation, while curves (c) and (d) are obtained in the case of a non-

resonant excitation. The field amplitude in curve (b) (respectively, (d)) is

seven times greater than in curve (a) (respectively, (c)). The pulse duration

has been chosen as 3 ps in all cases.

FIG. 4. Plateau value of the ellipticity and the rotation as a function of the

resonance detuning. The field amplitude is set to unity.
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related to that of the system populations. The ellipticity and

the rotation provide a signature of the difference of popula-

tion between the states j1i and j2i. From another standpoint,

this population difference leads to a demagnetization of the

system, as it can be seen on Fig. 7, where the value of the

plateau reached by the magnetization at long times is pre-

sented as a function of the field amplitude. Given our choice

of parameter values, for one set of coherence and population

decay rates (black curves or red curves), the differences

between the simulations calculated for a resonant excitation

(solid lines) and the ones obtained in the non-resonant case

(dashed lines) are not significant. Nevertheless, this differ-

ence decreases as the coherence decay rates increase.

The medium magnetization at long times depends of the

field amplitude, as shown previously in Fig. 3(I), and it is

also related to the system dynamics. This last point is recov-

ered in Fig. 7, where the black and the red curves are clearly

distinct, showing that the vanishing of the ellipticity and of

the rotation for strong field amplitudes also depends on the

system dynamics. Our calculations enable us to settle the

correlations between the magnetization and the ellipticity or

the rotation measured in a single-pulse experiment. In partic-

ular, using the data of Figs. 5–7, we have plotted the elliptic-

ity and the rotation as a function of the magnetization in

Figs. 8 and 9.

We show in Fig. 8 that the steady-state values of the

ellipticity and the rotation are proportional to the magnetiza-

tion, and that this relation is directly related to the dynamics

of the system. Indeed, the slopes of these straight lines

depend on the population and coherence decay rates. We

note the decrease of the slopes when the latter increase. The

steady-state values of the ellipticity or of the magnetization

can be analytically calculated, but they lead to involved

expressions and are not simple functions of the system

dynamics or of the field amplitude. Therefore, it is difficult

to give a simple interpretation of the decrease of these

slopes. These remarks are also valid for the magneto-optical

rotation, as it can be seen in Fig. 9.

FIG. 6. Value of the plateau of the rotation as a function of the field ampli-

tude. All parameters are identical to those of Fig. 5.

FIG. 7. Value of the magnetization plateau as a function of the field ampli-

tude. All parameters are identical to those of Fig. 5.

FIG. 8. Value of the ellipticity plateau as a function of the average magnet-

ization value hMzi. The cases (a) and (c) (solid lines) correspond to a

resonant excitation, while curves (b) and (d) (dashed lines) represent a

non-resonant excitation. The dynamic parameters for the black curves are:

c31 ¼ c32 ¼ c21 ¼ 0:01 fs�1 and c2 ¼ c3 ¼ 0:1 fs�1, while the values taken

for the red curves are: c31 ¼ c32 ¼ c21 ¼ 0:03 fs�1 and c2 ¼ c3 ¼ 0:3 fs�1.

FIG. 5. Value of the plateau of the ellipticity as a function of the field ampli-

tude. The cases (a) and (c) (solid lines) correspond to a resonant excitation,

while curves (b) and (d) (dashed lines) represent a non-resonant excitation.

The dynamic parameters for the black curves are: c31 ¼ c32 ¼ c21 ¼
0:01fs�1 and c2 ¼ c3 ¼ 0:1 fs�1. The values considered for the red curves

are: c31 ¼ c32 ¼ c21 ¼ 0:03 fs�1 and c2 ¼ c3 ¼ 0:3 fs�1.
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C. Short-time response and influence of the pulse
duration

In this last section, we consider a situation where the

pulse duration is of the same order than the time evolution

of the system dynamics. The magnetization illustrated in

Fig. 3(I) shows that, in the case of short pulse excitation, the

steady-state behavior will not be reached whatever be the

field amplitude. This comment also applies to the ellipticity

and the rotation presented in Figs. 3(II) and 3(III). If we

compare Fig. 3(I-a) with Fig. 3(II-a), we note that, at short

times, the magnetization increases monotonically in contrast

with the ellipticity, which exhibits a maximum before

decreasing and reaching the plateau at long times. In the

Rabi regime, Figs. 3(I-b) and 3(II-b) show both an oscilla-

tion, but without an obvious phase relation among them. In

other words, the analysis of these time variations points to

the conclusion that for short times there is no simple relation

between the magnetization and the ellipticity. The relation of

proportionality previously found at long times no longer

applies. This point has already been noted in the litera-

ture,12–16 but in the present work we arrive at this conclusion

by modeling the experimental signals.

Moreover, the ellipticity can be calculated even if its

correlation with the magnetization is not clearly defined. In

order to establish a more precise comparison with the experi-

mental results, we plot in Fig. 10 the ellipticity as a function

of the absorbed energy Uabs, which is proportional to the

square of the field amplitude and to the pulse duration.17,32 It

must be noted that the ellipticity has been calculated follow-

ing the relation (20), where the integration time of the detec-

tors is taken into account. Figure 10 shows the ellipticity as a

function of the absorbed energy for different pulse duration

and for different dynamics parameters. Curves (a), (b), and

(c) denote, respectively, a pulse duration of 200 fs, 100 fs,

and 50 fs. The black curves correspond to c3 ¼ c2 ¼ 0:1 fs�1

and the red ones to c3 ¼ c2 ¼ 0:3 fs�1. The excitation is res-

onant and the values c31 ¼ c32 ¼ c21 ¼ 0:01 fs�1 have been

chosen. For the ease of reading, we only present the elliptic-

ity, since as shown in Section III B, the rotation behavior is

similar to that of the ellipticity. These variations are

consistent with the measured ellipticity in a single-pulse

experiment10 and show that our model can be used to inter-

pret experimental results. In order to clearly illustrate the

effect of the pulse duration, we did not normalize our results

in contrast to what is usually done for experimental curves.

It is important to analyze whether the decrease of the

ellipticity is a feature of the medium dynamics. Towards this

goal, we considered the interval Uabs 2 ½500; 1000�, where

all the calculated ellipticities are close to straight lines. In

addition to the previous simulations presented in Fig. 10, we

calculated the ellipticity as a function of the absorbed energy

for other pulse durations (s ¼ 150 fs; s ¼ 50 fs; s ¼ 25 fs,

and s ¼ 15 fs), and for other dynamical parameters

(c3 ¼ 0:5 fs�1 and c3 ¼ 0:05 fs�1). The corresponding curves

are not presented in this paper, but with this sample of 24

curves we have calculated the slope of each one in the inter-

val Uabs 2 ½500; 1000�. The results are presented in Fig. 11,

where we plot the slopes of the straight lines as a function of

the pulse duration. The black, red, green, and blue curves

correspond to c3 ¼ 0:05 fs�1; 0:1 fs�1; 0:3 fs�1, and 0:5 fs�1,

FIG. 9. Value of the rotation plateau as a function of the average value

hMzi. The parameters are identical to those of Fig. 8.
FIG. 10. Ellipticity as a function of the absorbed energy Uabs. Curves (a),

(b), and (c) correspond, respectively, to a pulse duration of 200 fs, 100 fs,

and 50 fs. For the black curves, we have fixed c3 ¼ c2 ¼ 0:1 fs�1 and the

values c3 ¼ c2 ¼ 0:3 fs�1 have been chosen for the red ones.

FIG. 11. Derivative of the ellipticity with respect to the logarithm of the

absorbed energy as a function of the pulse duration. The slopes are calcu-

lated for Uabs 2 ½500; 1000�. The black, red, green, and blue curves corre-

spond to c3 ¼ 0:05 fs�1; 0:1 fs�1; 0:3 fs�1, and 0:5 fs�1, respectively.
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respectively. For each coherence decay rate c3, the calculated

curves exhibit a similar behavior. We show that, after a criti-

cal pulse duration, the decrease of the ellipticity as a function

of the absorbed energy does not depend any more on the

pulse duration, and then, is a characteristic of the system.

However, even in this latter case, the correlation between the

magneto-optical ellipticity and the magnetization is not as

simple as the one previously observed in the steady-state

regime. Thus, a detailed study of the magnetization dynam-

ics needs a theoretical description of a pump-probe experi-

ment or an analysis of a four-wave mixing experiment. This

latter can lead to a better understanding of the influence of

dephasing processes, while a pump-probe can characterize

the role of the population relaxation in the demagnetization

process. These issues will be the subject of a future work.

IV. APPROXIMATIONS

It is important to make some comments about the

approximations made in this work. They concern the use of a

square pulse, the difference with the non-degenerate case,

and the influence of the temperature.

As already mentioned, a square pulse has been used

previously to model the time envelope of the pulse. Indeed,

this assumption does not change our physical conclusions,

but emphasizes the physical mechanisms which, in these

conditions, are not convolved with the pulse envelope. To

verify this point, we have considered a Gaussian pulse and

our simulations show that for a duration much longer than

any characteristic time of the system dynamics, the varia-

tions that we have presented in Fig. 5 or in Fig. 6 explain the

time variations of the ellipticity or of the rotation calculated

in this case. If we consider a pulse duration shorter, or of the

same order than the time evolution of the system dynamics,

we find again the results presented in Fig. 10. This behavior

is not surprising, since the field intensities are calculated by

a time integration to take into account the integration time of

the photodiodes.

We would like to make some remarks on a situation

where the initial and final states, j1i and j2i, are non-

degenerate. This situation should indeed be considered if the

experiment is done on a ferromagnetic sample. It is impor-

tant to note that from a point of view of physics, our previous

results do not depend on the energy difference D between the

states j1i and j2i. Indeed, let us first consider a non-

degenerate case, and let us assume that D is greater than the

radiative width of these states. In this case, the j2i ! j3i
transition is not resonant and the steady-state populations

can be analyzed by a simple kinetic model. In this work, we

have assumed that c21 ¼ c32, hence, in the steady-state,

there is no population difference between the states j2i and

j3i independently of the value of D.

Let us consider now the degenerate case. There is no dif-

ference with the previous case, since the field absorption

from the state j2i is balanced by the field-induced emission.

We can now consider a situation where c21 6¼ c32. In this

case, we have a steady-state population difference between

the states j2i and j3i, but the coherence between these two

states is very small provided that the j2i ! j3i transition is

non resonant. Therefore, this situation is quite similar with

the non-degenerate previous case where c21 ¼ c32. The mag-

netization will be different than before but the ellipticity will

be the same. The variations described in Fig. 8 still remain

valid, and the only changes are on the slopes of the straight

lines. This situation does not depend on D if the j2i ! j3i
transition is non resonant. If we consider the resonant case,

in contrast to the situation where c21 ¼ c32, there is now a

coherence between the states j2i and j3i and the ellipticity

decreases with respect to the non-degenerate case, but the

magnetization remains. It must be noted that this situation

can be induced from the non-degenerate case by a shift

of the levels due to AC Stark effect,33–36 and ellipticity

variations should be observed.

Finally, we remark that Lefkidis and H€ubner18 have also

analyzed the influence of the temperature in their model.

They have shown that the induced material polarization aver-

aged over a thermal distribution becomes weaker, but it does

not disappear. As a consequence, the measured signal in an

experiment does not vanish for finite temperatures.

V. CONCLUSION

We have investigated the relation between the magnet-

ization and the MO response of a magnetic material after

interaction with a short laser pulse. One of the goals of this

work was to specify the role of the system dynamics.

Towards this end, we have calculated the rotation and

ellipticity angles in a single-femtosecond-pulse Faraday

experiment, where the medium is modeled by a three-level

K system, including population relaxation and dephasing

processes. This system is a basic model which can lead to

magneto-optical effects. Contrary to a pump-probe experi-

ment, our work considers the Faraday rotation of the optical

waves that simultaneously causes spin flip. By solving

numerically the Lindblad equation, we calculate the MO

response and the magnetization of the system.

We first have considered the steady-state regime where

the pulse duration is much larger than any characteristic time

of the system dynamics. By analyzing the steady-state values

of the magnetization, the magneto-optical rotation, and

ellipticity as a function of the field amplitudes, we have

established that these quantities are directly related to the

population of the system. We have retrieved that the MO

response is proportional to the medium magnetization, and

we have shown that the constant of proportionality is directly

related to the population and coherence decay rates. We

have shown that this constant of proportionality decreases

when the latter increase.

We have then considered a non-equilibrium situation

where the duration of the light pulse is shorter, or of the

same order, as the time evolution of the system dynamics. In

this case, the proportionality relation between the magnetiza-

tion and the MO response no longer holds. Our theoretical

model recovers the shape of a recent experimental study per-

formed on a single-Faraday experiment which has measured

the ellipticity angle as a function of the absorbed energy.10

The dependence of the MO response with respect to the loss

of coherences, and with respect to the pulse duration, is
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clearly shown. On the other hand, we observe that, after a

critical pulse duration, the decrease of the ellipticity as a

function of the absorbed energy becomes independent of the

pulse duration and can then be used to characterize the

system.
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