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A new mesopontine structure exerting a strong influence on dopamine systems has recently been defined: the tail of the ventral tegmental
area/rostromedial tegmental nucleus (tVTA/RMTg). This review presents a neuroanatomical, physiological, and behavioral overview of
some of the recent and ongoing research on this brain region and its relationship with dopamine systems. The tVTA/RMTg sends dense
GABA projections to VTA and substantia nigra neurons. The inhibitory influence of tVTA/RMTg on dopamine neurons is supported by
both neuroanatomical and electrophysiology data. The latter studies also reveal the tVTA/RMTg as a substrate for morphine and
cannabinoid action on dopamine cells. In primates, the tVTA/RMTg has been implicated in reward prediction error signals, through a
basal ganglia–lateral habenula–tVTA/RMTg– dopamine– basal ganglia circuit. In rodents, the tVTA/RMTg has been shown to play a
critical role in aversive behaviors, particularly those involving behavioral inhibition, such as freezing and avoidance. These findings
highlight the functional importance of the tVTA/RMTg as a major GABA brake for dopamine systems.

Introduction
In the past, sporadic studies have noted distinctive character-
istics of a brain region (Herkenham and Nauta, 1979; Scam-
mell et al., 2000; Jhou, 2005; Perrotti et al., 2005; Ikemoto,
2007; Olson and Nestler, 2007; Ferreira et al., 2008; Geisler et
al., 2008; Rotllant et al., 2010) that is now recognized as the
“tail of the ventral tegmental area” (Perrotti et al., 2005) or
“rostromedial tegmental nucleus” (Jhou et al., 2009a) (tVTA/
RMTg). However, systematic study of this region was ham-
pered by the lack of a coherent understanding of its anatomical
and functional properties. This situation has now begun to
change (Barrot and Thome, 2011; Lavezzi and Zahm, 2011;
Bourdy and Barrot, 2012).

Anatomically, the tVTA/RMTg region (Fig. 1) has been shown
to express a distinct pattern of afferents and efferents, including

strikingly focused afferents from the lateral habenula and strong
projections to midbrain dopamine neurons, the dorsal raphe,
and pedunculopontine nucleus (Jhou et al., 2009a,b; Kaufling et
al., 2009, 2010a; Gonçalves et al., 2012), all regions that are im-
plicated in motivated behavior. Rostrally, the tVTA/RMTg is bi-
laterally inserted deep into the posterior VTA, in a subregion of
the paranigral nucleus and dorsolateral to the interpeduncular
nucleus. In brain atlases, this part of the tVTA/RMTg is not yet
differentiated from the VTA itself, and the tVTA/RMTg has
strong neuroanatomical and functional links with dopamine sys-
tems, hence the designation as “tVTA.” More caudally, the tVTA/
RMTg resides lateral to the median raphe, and partially
embedded within the decussation of the superior cerebellar pe-
duncle, at least in rats. This caudal half of the structure extends to
the rostral edge of the pedunculopontine nuclei and shares ho-
mology with tegmental structures. Consistent with the nomen-
clature of other mesopontine structures and tegmental nuclei, it
is thus designated as “RMTg.” However, both names refer to the
same tVTA/RMTg continuum, which is proposed as a new
GABAergic master brake for dopamine systems (Bourdy and Bar-
rot, 2012).

The tVTA/RMTg expresses markers that distinguish it from
surrounding regions. It includes high levels of the GABA-
synthesizing enzyme GAD 67 (Perrotti et al., 2005; Olson and
Nestler, 2007; Jhou et al., 2009a; Kaufling et al., 2009, 2010a),
high levels of the �-opioid receptor immunoreactivity (Jhou et
al., 2009a, 2012; Jalabert et al., 2011), a prominent pattern of
psychostimulant-induced Fos-related proteins (Scammell et al.,
2000; Perrotti et al., 2005; Geisler et al., 2008; Jhou et al., 2009a;
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Kaufling et al., 2009, 2010b), and high levels of the neuropeptide
nociceptin (Jhou et al., 2012).

In this review, we present some recent and ongoing work on
the tVTA/RMTg and its links with dopamine systems.

Psychostimulants, aversive stimuli, and motor inhibition
Recent research on the tVTA/RMTg started from observations
related to psychostimulant induction of FosB/�FosB (Perrotti et
al., 2005) and to the control of aversive responses (Jhou, 2005).
The rat tVTA/RMTg showed a neuroanatomically delimited in-
crease in the expression of Fos-related proteins following expo-
sure to psychostimulants (Scammell et al., 2000; Perrotti et al.,
2005; Geisler et al., 2008; Jhou et al., 2009a; Kaufling et al., 2009,
2010a, 2010b; Rotllant et al., 2010; Zahm et al., 2010; Cornish et
al., 2012). This induction was observed with both acute and
chronic exposure to psychostimulants, and with both self-
administration and noncontingent administration. There is a
strong selectivity of this molecular response, as the Fos-related
induction was never observed with non-psychostimulant drugs
(Perrotti et al., 2005; Kaufling et al., 2010b).

Changes in tVTA/RMTg neuron firing rates and/or cFos ex-
pression were also observed after some negative affective stimuli,
such as footshocks, shock-predictive cues, omission of expected
rewards, or food deprivation. Conversely, rewards and reward-
predictive cues predominantly inhibited tVTA/RMTg firing
(Jhou et al., 2009; Hong et al., 2011), a pattern inverse to that of
most dopamine neurons (Schultz, 1998). Dopamine cells are im-
plicated in many aspects of motivated behavior, including motor
performance, cognition, affect, and learning, and the tVTA/
RMTg may be implicated in a similarly wide range of functions.
Fiber-sparing tVTA/RMTg lesions strikingly attenuated at least
three distinct fear- and anxiety-related behaviors: conditioned
freezing, unconditioned freezing, and open arm avoidance (Jhou
et al., 2009b), suggesting a broad role in aversive behaviors, par-
ticularly those involving behavioral inhibition. The three altered
behaviors may be triggered through distinct afferents to the
tVTA/RMTg (for discussion, see Jhou et al., 2009b). Other be-
havioral aspects are being investigated, including a possible role
for the tVTA/RMTg in the aversive properties of cocaine (Jhou et
al., 2010).

The influence that the tVTA/RMTg exerts on behavior is likely
related, at least in part, to the influence that this newly defined
brain region exerts on dopamine systems.

The tVTA/RMTg and dopamine systems
The substantia nigra zona compacta (SNc) and VTA receive in-
hibitory inputs from multiple basal ganglia and basal forebrain
regions (Somogyi et al., 1981; Bolam and Smith, 1990; Gonzales
and Chesselet, 1990; Smith and Bolam, 1990; Fallon and Lough-
lin, 1995; Charara et al., 1996; Geisler and Zahm, 2005). SNc and
VTA dopamine cells also receive inhibitory synapses from neigh-
boring GABA neurons (Omelchenko and Sesack, 2009). Until
recently, the potential inhibitory influence of the tVTA/RMTg on
dopamine cells was unrecognized. Light microscopic observa-
tions, however, indicated that this projection was among the
densest of afferents to the ventral midbrain and literally outlined
the position of dopamine neurons (Ferreira et al., 2008; Jhou et
al., 2009a; Kaufling et al., 2010a). Moreover, tVTA/RMTg axon
varicosities formed multiple close appositions to the soma and
dendrites of dopamine cells immunolabeled for the synthetic en-
zyme tyrosine hydroxylase (TH) (Jhou et al., 2009b; Kaufling et
al., 2010a). These results suggested that dopamine neurons were
the principal targets of tVTA/RMTg efferents.

To test this hypothesis, ultrastructural analysis was performed
on tissue labeled by anterograde tract tracing from the tVTA/
RMTg, and dual immunocytochemistry for tracer and either TH
or GABA, in alternate sections. Within the VTA, �83% of the
synapses formed by tVTA/RMTg axons were onto dendrites im-
munoreactive for TH (Balcita-Pedicino et al., 2011). Despite the
impression formed from light microscopic studies, no axoso-
matic synapses were found. Using postembedding immunogold,
which is more sensitive than pre-embedding for the detection of
GABA in axons, all tVTA/RMTg axons were found to be immu-
noreactive for GABA (Balcita-Pedicino et al., 2011). This finding
was consistent with reports that the tVTA/RMTg represents a
relatively pure GABAergic cell population (Perrotti et al., 2005;
Olson et al., 2007; Jhou et al., 2009a,b; Kaufling et al., 2009,
2010a).

The remaining 17% of tVTA/RMTg synapses within the VTA
were onto dendrites containing no TH signal detectable by the
pre-embedding immunogold procedure used (Balcita-Pedicino
et al., 2011). This finding suggests that some tVTA/RMTg axons
contact non-dopamine neurons in the VTA, most of which are
GABAergic (Nair-Roberts et al., 2008). This hypothesis is cur-
rently being investigated using pre-embedding immunogold,
which is more sensitive than postembedding for detecting GABA
in dendrites. To date, only a few tVTA/RMTg axons synapsing

Figure 1. The tVTA/RMTg. The schema represents the rat tVTA/RMTg (in green) and lists its main afferent and efferent connections. Most afferent structures also innervate the VTA directly.
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onto GABA dendrites have been detected; additional sampling is
needed to confirm these results. Such an outcome might indicate
that the tVTA/RMTg also contacts glutamate-containing VTA
neurons (Yamaguchi et al., 2007; Nair-Roberts et al., 2008). Al-
ternatively, prior results may have included false-negative out-
comes reflecting insufficient detection of low levels of TH. These
possibilities are presently being examined.

Electron microscopy is now also being used to examine the
tVTA/RMTg projection to the SNc. Although the findings are
preliminary, all of the tVTA/RMTg axons observed to date syn-
apse onto dendrites immunolabeled for TH and not onto unla-
beled dendrites. Given that most SNc neurons are dopaminergic
(González-Hernández and Rodríguez, 2000), this finding is not
unexpected. Further investigation will include the dorsal portion
of the SN reticulata, in particular the cell “bridges” where dopa-
mine and non-dopamine cells intermingle. In this zone, it is pos-
sible that tVTA/RMTg axons will synapse onto non-dopamine
neurons, although the density of this input is weak (Jhou et al.,
2009b).

Collectively, these findings indicate that a substantial GABA-
ergic projection from the tVTA/RMTg primarily targets dopa-
mine neurons in the SNc and VTA. The placement of these
synapses is mainly onto intermediate and proximal dendrites,
and less commonly onto distal dendrites. The density of these
synapses and their relatively proximal placement suggests that
the tVTA/RMTg mediates a strong inhibitory influence on dopa-
mine neurons throughout the ventral midbrain.

Dopamine systems are subject to an accelerator/brake control
of their activity (Carlsson et al., 2001), which is critical for finely
shaping dopamine responses. In agreement with neuroanatomi-
cal evidence, electrophysiological studies confirmed that the

tVTA-RMTg constitutes a major brake for dopamine systems:
the inhibition of tVTA increases dopamine cell activity (Jalabert
et al., 2011), and the stimulation of tVTA decreases it (Hong et al.,
2011; Lecca et al., 2011, 2012; Matsui and Williams, 2011). Close
attention was thus given to the tVTA/RMTg involvement in re-
sponses to drugs of abuse, more particularly opiates and canna-
binoids, as well as in the processing of prediction error.

The tVTA/RMTg and opiates
Morphine is a potent opiate analgesic with a high addictive po-
tential in some specific contexts outside medical usage (Shurman
et al., 2010). A broadly accepted circuit model for morphine ac-
tion on dopamine neurons suggests that morphine excites VTA-
dopamine neurons by a disinhibitory mechanism involving
neighboring GABA cells (Johnson and North, 1992). However,
recent electrophysiological evidence has challenged this canoni-
cal model, by proposing an alternative inhibitory source, the
tVTA/RMTg, for the excitatory effect of morphine on VTA-
dopamine neurons (Fig. 2) (Jalabert et al., 2011; Lecca et al., 2011,
2012; Matsui and Williams, 2011; Bourdy and Barrot, 2012). In-
deed, tVTA/RMTg cells express high levels of �-opioid receptors
(Jhou et al., 2009a, 2012; Jalabert et al., 2011), and in vivo, ex vivo,
and optogenetic electrophysiological approaches demonstrated
that morphine excites dopamine neurons by targeting receptors
localized to tVTA/RMTg cell bodies as well as its terminals within
the VTA (Jalabert et al., 2011; Lecca et al., 2011; Matsui and
Williams, 2011; Lecca et al., 2012).

Exploring the sources of inhibitory and excitatory drives onto
dopamine neurons is critical for understanding the impact of
network activity on the integrative properties of dopamine neu-
rons in response to morphine. In addition to potent tonic GABA

Figure 2. The tVTA/RMTg as a GABA brake for the dopamine system. The schema represents the tVTA/RMTg, its main glutamatergic input (lateral habenula, LHb), and its output to the nearby
dopamine systems. Opiates and cannabinoids would recruit dopamine cells (DA) by blocking the GABA brake exerted by neurons of the tVTA/RMTg onto dopamine cells. CB1, cannabinoid receptors
1; MOR, �-Opioid receptors.
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modulation (Paladini and Tepper, 1999), VTA-dopamine neu-
rons receive glutamatergic inputs from diverse brain nuclei (Gei-
sler et al., 2007; Dobi et al., 2010). Evidence indicates a critical
role for VTA glutamate receptors in morphine rewarding prop-
erties (Carlezon et al., 1997; Harris et al., 2004), and the crucial
role of the inhibition/excitation balance for the in vivo effects of
morphine on dopamine neurons has recently been demon-
strated (Jalabert et al., 2011). The influence of tVTA/RMTg in
morphine-induced activation of VTA-dopamine neurons was
assessed by intra-VTA infusion of morphine after selective
inactivation of the tVTA/RMTg (Jalabert et al., 2011). In this
condition, morphine failed to increase dopamine activity, which
demonstrated that tVTA/RMTg tonic activity was necessary for
morphine-induced responses of VTA-dopamine neurons. These
in vivo results were confirmed ex vivo by a study demonstrating
that GABA projections from the tVTA/RMTg were inhibited by
opioids, which consequently disinhibited VTA-dopamine neu-
rons (Matsui and Williams, 2011). However, this GABA-related
disinhibition did not preclude a role for VTA glutamatergic
transmission in the morphine effect. Indeed, blocking VTA
NMDA and AMPA receptors prevented morphine-induced exci-
tation of VTA-dopamine neurons (Jalabert et al., 2011). This
outcome showed that VTA glutamatergic transmission is neces-
sary for the in vivo excitatory effect of morphine.

These recent findings were extended by assessing the func-
tional consequences of increasing the excitatory control of VTA-
dopamine neurons on morphine-induced responses (M.
Jalabert, C. Glangetas, L. Groc, and F. Georges, unpublished
data). Based on previous ex vivo electrophysiological studies
(Ungless et al., 2001), the VTA was assessed 24 h following a
single acute cocaine injection. The results established that cocaine
experience potentiates morphine-induced excitation of VTA-
dopamine neurons in vivo, suggesting that the intrinsic excitabil-
ity of VTA-dopamine neurons may be important for scaling
morphine responses. Given that morphine has a high addictive
potential in specific situations (Shurman et al., 2010), it would be
important to assess whether the excitatory context of dopamine
neurons may tune the addictive potency of morphine.

The critical role of the tVTA/RMTg in opiate action is also
supported by behavioral data. The injection of a �-opioid recep-
tor agonist into the tVTA/RMTg markedly reduced pain re-
sponses to subcutaneous formalin injections (Jhou et al., 2012),
and infusions of �-opioid agonists or GABA agonists into the
tVTA/RMTg supported self-administration and conditioned
place preference (Jhou et al., 2012). These data suggest that tVTA/
RMTg inhibition can be reinforcing. Conversely, activation of the
tVTA/RMTg—as obtained through optogenetic stimulation of
afferents from the lateral habenula— has been shown to promote
behavioral avoidance (Stamatakis and Stuber, 2012).

Interestingly, some functional properties recently attributed
to the tVTA/RMTg have also been ascribed to VTA GABAergic
neurons (Cohen et al., 2012; Tan et al., 2012; van Zessen et al.,
2012), raising questions about whether these two populations are
similar or separate. The insertion of the rostral part of the tVTA/
RMTg within areas that are designated in brain atlases as VTA
may add to the confusion. While most studies have not attempted
to distinguish the tVTA/RMTg from nearby sites, some studies
do show substantial differences. Anatomically, VTA GABA neu-
rons exhibit prominent projections to the forebrain (Van Bock-
staele and Pickel, 1995; Carr and Sesack, 2000a, 2000b) that the
tVTA/RMTg lacks (Jhou et al., 2009a; Kaufling et al., 2010b).
Conversely, the tVTA/RMTg receives an intense lateral habenula
synaptic input that is several-fold greater than the habenular pro-

jection to the VTA (Balcita-Pedicino et al., 2011). Even more
critically, injections of small (nanomolar) quantities of �-opioid
receptor agonist or GABA agonist that produced reinforcement
or analgesia in the tVTA/RMTg did not produce these effects
when injected into the VTA (Jhou et al., 2012). This may seem
surprising considering the prior reports of reward or analgesia
after larger intra-VTA injections of �-opioid receptor agonists
(Morgan and Franklin, 1991; Nader and van der Kooy, 1997;
Zangen et al., 2002), and considering that opiates can act directly
on tVTA/RMTg terminals within the VTA to recruit dopamine
neurons (Jalabert et al., 2011; Matsui and Williams, 2011). How-
ever, very small injections strongly limit the drug spread, affect-
ing a restricted part of the considered structure. Such small
injections into the VTA might affect a subset of cells or terminals
only, which may not be enough to elicit detectable behavioral
consequences. On the other hand, tVTA/RMTg injections would
target GABA cells with widespread projection fields into the VTA
(Jhou et al., 2009a; Kaufling et al., 2010), which may result in the
secondary disinhibition of a much larger population of dopa-
mine cells. These results and the partial inclusion of the tVTA/
RMTg within the posterior aspects of VTA also raise the
possibility that some of the behavioral data from the last decade
showing antero-posterior differences in the behavioral influence
of the VTA might be related to tVTA/RMTg targeting (Ikemoto
et al., 1998, 2006; Zangen et al., 2002, 2006; Rodd et al., 2004,
2008; Shabat-Simon et al., 2008; Linsenbardt and Boehm, 2009;
Hauser et al., 2011). This question may be particularly relevant
concerning the action of opiates, ethanol, and cannabinoids.

The tVTA/RMTg and cannabinoids
Not only opiates, but cannabinoids also are known to activate
dopamine neurons by disinhibition (Lüscher and Ungless, 2006),
i.e., by depressing GABA release and therefore shifting the bal-
ance between excitatory and inhibitory inputs impinging on do-
pamine cells (Marinelli et al., 2006; Lobb et al., 2010; Morikawa
and Paladini, 2011). As mentioned above, the tVTA/RMTg, as a
major source of GABA in the VTA, powerfully contributes to this
balance. Hence, the strength of tVTA/RMTg-induced inhibition
of dopamine cells was correlated with their spontaneous dis-
charge rate (Lecca et al., 2012), and inactivation of the tVTA/
RMTg increased the firing rate of dopamine neurons (Jalabert et
al., 2011). The recent characterization of tVTA/RMTg neurons
also sheds new light onto the mechanisms by which cannabinoids
excite dopamine neurons (Fig. 2). Indeed, these drugs depress
tVTA/RMTg neurons’ activity and strongly reduce the inhibition
exerted by tVTA/RMTg afferents (Lecca et al., 2011, 2012). Patch
clamp experiments also showed that the cannabinoid agonist
WIN55212–2 depressed IPSCs evoked in VTA dopamine cells by
stimulation of tVTA/RMTg afferents through a presynaptic
mechanism (Lecca et al., 2012), suggesting that tVTA/RMTg ter-
minals express cannabinoid receptors 1 (CB1).

The endocannabinoid system plays a major role in mecha-
nisms of addiction: CB1 agonists promoted reinstatement of ex-
tinguished drug-seeking behavior (the equivalent of relapse in
humans) for a number of drugs of abuse (Fattore et al., 2003,
2005; López-Moreno et al., 2004; Spano et al., 2004; McGregor et
al., 2005; Justinova et al., 2008; Gamaleddin et al., 2012). Con-
versely, CB1 antagonists (i.e., rimonabant) reduced the reward-
ing effects of most drugs of abuse (Colombo et al., 1998; De Vries
et al., 2001; Navarro et al., 2001; Cohen et al., 2002; Rigotti et al.,
2009). However, rimonabant was withdrawn from the market for
increased risk of depression and suicide (Christensen et al.,
2007). From this lesson, we learned that CB1 receptor blockade
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decreases the motivation to seek sources of reward, including
natural ones (Horder et al., 2010) and induces states of anhedonia
and enhanced sensitivity to aversive stimuli or punishment,
which might lead vulnerable individuals to depression.

The tVTA/RMTg is in the ideal position, being a possible hub
between aversion- and reward-responding brain regions, to func-
tion as a switch between opposite motivational states and to relay
information to dopamine neurons (Lavezzi and Zahm, 2011;
Bourdy and Barrot, 2012). Under these circumstances, the
tVTA/RMTg terminals on VTA cells might be targets for
endocannabinoid-mediated short- and long-term forms of syn-
aptic plasticity. Electrophysiological evidence supports this hy-
pothesis and indicates that endocannabinoids regulate the
strength of these afferents and ultimately adjust dopamine neu-
ron firing (Pistis et al., unpublished data). Hence, by decreasing
GABA release from tVTA/RMTg terminals, the endocannabi-
noids might sensitize dopamine neurons toward excitatory in-
puts evoked by rewarding stimuli, such as those associated with
drugs of abuse. This might result in enhanced firing activity and
dopamine release in terminal regions (Melis and Pistis, 2012;
Melis et al., 2012), and possibly behavioral sensitization or rein-
statement of drug-taking behavior. Conversely, deficits in the
endocannabinoid tone on tVTA/RMTg synapses are expected to
promote GABA release and depress dopamine cell firing. This
enhanced inhibitory control on dopamine neurons might
dampen their responses to natural rewards or addicting drugs, or
increase those toward aversive stimuli, ultimately leading to re-
duced motivation or to maladaptive responses to aversion and
punishment.

This hypothetical mechanism could also bear relevance for
gender- or strain-specific vulnerability to addictive drugs. It is
noteworthy that the appetitive properties of addicting drugs re-
sult from activation of brain reward pathways and suppression of
responses in neural circuits mediating aversion (Riley, 2011). In-
dividuals susceptible to addiction might experience reduced re-
sponses to the aversive component intrinsic to several addictive
drugs, such as alcohol (Rezvani et al., 2010) and cannabinoids
(Quinn et al., 2008), or to negative consequences of compulsive
drug intake (Riley, 2011). In this regard, experiments in alcohol-
preferring rat strains or in female rats—more vulnerable than
male counterparts to cannabinoid self-administration (Fattore
and Fratta, 2010)—may provide information on the strength of

tVTA/RMTg afferents and of endocannabinoid-mediated synap-
tic depression, and on how these parameters may correlate with
the vulnerability to addiction. These hypotheses concerning the
endocannabinoid system and tVTA/RMTg function are pres-
ently under investigation.

Placing tVTA/RMTg into prediction error pathways
The above-mentioned properties of the tVTA/RMTg suggest
roles in a variety of motivational processes, consistent with
emerging evidence placing it in a critical location among the
pathways processing reward prediction errors (RPEs). Neurons
from the lateral habenula in the monkey are excited by a visual
stimulus that indicates the absence of reward and inhibited by a
stimulus that indicates the presence of reward (Matsumoto and
Hikosaka, 2007). This negative reward signal contributes to the
well known reward coding of dopamine neurons (Christoph et
al., 1986; Matsumoto and Hikosaka, 2007). The suggestion that the
RPE signal in dopamine neurons may come from the lateral habe-
nula triggered research to examine the neural elements of reinforce-
ment learning connected to the lateral habenula and dopamine areas
(Fig. 3A). It was hypothesized that the globus pallidus internal seg-
ment (GPi) could play a critical role, considering the fact that the
major input to the lateral habenula comes from the GPi (Parent et
al., 2001). To test this hypothesis, antidromic stimulation was used
to identify GPi neurons that projected to the lateral habenula, in
combination with a behavioral saccade task known as the one-
direction-rewarded (1DR) to control the level of motivation. The
results showed that lateral habenula-projecting neurons were lo-
cated mainly along the borders of the GPi (GPb) and displayed firing
patterns different from movement-related GPi neurons. A majority
of GPb neurons encoded a negative RPE similar to that observed for
lateral habenula cells, while some other neurons encoded a positive
RPE. A detailed analysis showed that only the negative-RPE-coding
neurons discriminated the reward/no reward meaning of the sac-
cade target earlier than the lateral habenula. These results led to the
suggestion that the GPb-to-lateral habenula projection was excit-
atory (Hong and Hikosaka, 2008a). Consistent with this idea, the
electrical stimulation of the GPb triggered a short-latency excitatory
response in lateral habenula neurons (Hong and Hikosaka, 2008b).

While the suppressive influence of the lateral habenula on the
dopamine system was established, a more detailed circuit hy-
pothesis emerged in the following years from several laboratories.

Figure 3. The tVTA/RMTg as part of the reward prediction error circuit. A, Responses of representative GPb, lateral habenula (LHb), tVTA/RMTg, and dopamine neurons (DA) to the visual target
onset in the 1DR task (Hong et al., 2011). The averaged activity of each neuron, expressed as a spike (spk) density function, is shown separately for the reward trials (red) and no-reward trials (blue)
as the response to the onset of the target. B, Neuroanatomical schematic of the reward prediction error circuit in the monkey. CC, Corpus callosum; GPb, borders of the globus pallidus internal
segment; IC, inferior colliculus; PN, pontine nuclei; SC, superior colliculus; STR, striatum.
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It was suggested that a little-known structure, the tVTA/RMTg,
receives lateral habenula inputs and projects to dopamine neu-
rons in rodents (Jhou et al., 2009a,b; Kaufling et al., 2009, 2010;
Omelchenko et al., 2009; Balcita-Pedicino et al., 2011). To deter-
mine the function of this suggested circuit, antidromic and or-
thodromic recording techniques were used between the lateral
habenula, tVTA/RMTg, and dopamine areas, in combination
with injection of a retrograde tracer into the dopamine cell area in
the monkey. Antidromically and orthodromically activated neu-
rons were recorded while the monkey was performing the 1DR
task. Results showed that tVTA/RMTg neurons were localized in
the paramedian tegmental area, caudal to the VTA, extending
caudally toward the pedunculopontine tegmental nucleus along
the lower border of the superior cerebellar peduncle decussation
(Hong et al., 2011). Physiologically, those neurons receiving in-
puts from the lateral habenula showed a similar activation
pattern to lateral habenula neurons (Fig. 3B) and sent their sup-
pressive signals to dopamine cells. In addition, many tVTA/
RMTg neurons showed tonic responses resembling the “state
value” signals in the dorsal raphe (Bromberg-Martin et al., 2010),
which is one of the targets of the tVTA/RMTg. Interestingly,
about half of the tVTA/RMTg neurons discriminated the re-
ward/no reward conditions earlier than the lateral habenula, sug-
gesting that the tVTA/RMTg may receive some reward-related
inputs originating from areas other than the lateral habenula.

These results support the hypothesis that the negative RPE
signal of the lateral habenula originates from the basal ganglia
and is sent to the tVTA/RMTg. The tVTA/RMTg in turn trans-
lates this negative RPE into a dopamine-positive RPE, while
transmitting additional motivational signals to non-dopamine
networks, therefore reinforcing rewarding actions and discour-
aging actions leading to failure. This hypothesis gains support
from a recent study in mice showing that stimulation of lateral
habenula inputs to the tVTA/RMTg is sufficient to induce behav-
ioral avoidance (Stamatakis and Stuber, 2012). This observation
suggests that the circuit outlined above represents a shared mech-
anism across species.

Concluding remarks
The elucidation of a new brain region is a relatively rare event in
the present age of neuroscience. Such discoveries have the poten-
tial to rapidly advance our knowledge, as evidenced by the speed
with which new data have emerged regarding the tVTA/RMTg
and as evidenced by the importance of these revelations for un-
derstanding the functional operation of reward and aversion sys-
tems. The tVTA/RMTg has proved itself to be a major source of
inhibitory regulation of SNc and VTA dopamine neurons whose
substantial influence was missing from previous models of rein-
forcement learning. This brainstem region and its ascending pro-
jections serve as substrates for activation of dopamine cells by
different drugs of abuse, thus contributing to their rewarding
and/or aversive properties. Furthermore, the tVTA/RMTg pro-
vides a key node in the circuitry by which dopamine neurons
acquire information predictive of reward and punishment. Be-
cause of these essential roles, it is possible that dysfunction of the
tVTA/RMTg contributes to the pathophysiology of mental dis-
orders such as major depression and addiction. Moreover, the
tVTA/RMTg may serve as a potentially useful site for therapeutic
intervention in these conditions. It is hoped that what is learned
in the next few years through advanced study of this critical brain
structure illuminates understanding of how regulatory systems
control motivated behavior.

References
Balcita-Pedicino JJ, Omelchenko N, Bell R, Sesack SR (2011) The inhibitory

influence of the lateral habenula on midbrain dopamine cells: ultrastruc-
tural evidence for indirect mediation via the rostromedial mesopontine
tegmental nucleus. J Comp Neurol 519:1143–1164. CrossRef Medline

Barrot M, Thome J (2011) Discovering a new anatomical structure in the
brain: implications for neuropsychiatry and therapy. World J Biol Psychi-
atry 12 [Suppl 1]:19 –22. CrossRef

Bolam JP, Smith Y (1990) The GABA and substance P input to dopaminer-
gic neurones in the substantia nigra of the rat. Brain Res 529:57–78.
CrossRef Medline

Bourdy R, Barrot M (2012) A new control for dopaminergic systems: pull-
ing the VTA by the tail. Trends Neurosci. Advance online publication.
Retrieved August 29, 2012. doi:org/10.1016/j.tins.2012.06.007. CrossRef
Medline

Bromberg-Martin ES, Hikosaka O, Nakamura K (2010) Coding of task re-
ward value in the dorsal raphe nucleus. J Neurosci 30:6262– 6272.
CrossRef Medline

Carlezon WA Jr, Boundy VA, Haile CN, Lane SB, Kalb RG, Neve RL, Nestler
EJ (1997) Sensitization to morphine induced by viral-mediated gene
transfer. Science 277:812– 814. CrossRef Medline

Carlsson A, Waters N, Holm-Waters S, Tedroff J, Nilsson M, Carlsson ML
(2001) Interactions between monoamines, glutamate, and GABA in
schizophrenia: new evidence. Annu Rev Pharmacol Toxicol 41:237–260.
CrossRef Medline

Carr DB, Sesack SR (2000a) Projections from the rat prefrontal cortex to the
ventral tegmental area: target specificity in the synaptic associations with
mesoaccumbens and mesocortical neurons. J Neurosci 20:3864 –3873.
Medline

Carr DB, Sesack SR (2000b) GABA-containing neurons in the rat ventral
tegmental area project to the prefrontal cortex. Synapse 38:114 –123.
CrossRef Medline

Charara A, Smith Y, Parent A (1996) Glutamatergic inputs from the pedun-
culopontine nucleus to midbrain dopaminergic neurons in primates:
Phaseolus vulgaris-leucoagglutinin anterograde labeling combined with
postembedding glutamate and GABA immunohistochemistry. J Comp
Neurol 364:254 –266. CrossRef Medline

Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A (2007) Effi-
cacy and safety of the weight-loss drug rimonabant: a meta-analysis of
randomised trials. Lancet 370:1706 –1713. CrossRef Medline

Christoph GR, Leonzio RJ, Wilcox KS (1986) Stimulation of the lateral ha-
benula inhibits dopamine-containing neurons in the substantia nigra and
ventral tegmental area of the rat. J Neurosci 6:613– 619. Medline

Cohen C, Perrault G, Voltz C, Steinberg R, Soubrié P (2002) SR141716, a
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