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1Université de Lyon, Laboratoire de Physique, ENS Lyon, CNRS, 46 Allée d’Italie, F-69007 Lyon, France
2IPCMS, 23 rue du Loess, BP 43, F-67034 Strasbourg Cedex 2, France

(Received 15 November 2010; accepted 7 February 2011; published online 21 April 2011)

The resistive switching phenomenon in MgO-based tunnel junctions is attributed to the effect of

charged defects inside the barrier. The presence of electron traps in the MgO barrier, which can be

filled and emptied, locally modifies the conductance of the barrier and leads to the resistive

switching effects. A double-well model for trapped electrons in MgO is introduced to theoretically

describe this phenomenon. Including the statistical distribution of potential barrier heights for these

traps leads to a power-law dependence of the resistance as a function of time, under a constant bias

voltage. This model also predicts a power-law relation of the hysteresis as a function of the voltage

sweep frequency. Experimental transport results strongly support this model and in particular

confirm the expected power laws dependencies of resistance. They moreover indicate that the

exponent of these power laws varies with temperature as theoretically predicted. VC 2011 American
Institute of Physics. [doi:10.1063/1.3561497]

I. INTRODUCTION

Resistive switching effects1 have been studied since the

1970s in a range of insulating oxides, such as TiO2 or

Al2O3.2–5 This interest has been renewed recently, because

giant and reproducible effects were observed in perovskites,6

for example SrTiO3, doped with chromium. These reproduci-

ble switching effects makes these materials good candidates

for a new generation of memories. Yet, the underlying physi-

cal mechanisms are still unclear and different hypotheses have

been put forward. Electro-migration of dopants or oxygen

vacancies along filaments could reversibly create conducting

paths across the insulating layer.7,8 Another hypothesis1 sug-

gests the accumulation of charges at the electrode/insulator

interface, which depends on the applied bias, and thus on

changing the Schottky barrier height.

The switching effect is in most cases studied on relatively

thick films, on the order of 100 nm, but it has also been

observed in some systems with a thin barrier allowing tunnel

transport.9–14 We showed, for instance, that MgO tunnel bar-

riers with a few atomic layers of chromium14 or vanadium15 at

the MgO interface exhibited reproducible switching effects in

Fe/Cr/MgO/Fe or Fe/V/MgO/Fe systems. This was attributed

to the creation of oxygen vacancies in MgO at the interface

with these “dusting” layers. These defects locally open extra

channels in parallel with the “standard” tunnel transport

through the MgO barrier. Moreover, these systems exhibit an

interesting behavior, with a relaxation of the conductance on

long time scales—on the order of minutes. We indeed observed

logarithmic relaxation of the conductance under a constant bias

voltage U. A strong influence of the voltage sweep frequency

on the hysteresis in IðUÞ curves was also observed.

In a recent article15 we proposed a phenomenological

model accounting for the relaxation of conductance with

time and the effect of sweep frequency on hysteresis in IðUÞ
curves. This model did not discriminate between the two

hypotheses: either electro-migration of oxygen vacancies

could create local conducting paths in the barrier, or the

accumulation of charges inside the barrier could modify its

potential height and thus the tunneling transport. Within the

scope of this general model, both hypotheses could lead to

the same mathematical expressions. In this model, the relax-

ation of conductance with time was expected to be exponen-

tial and not logarithmic.

The present article partly justifies this phenomenological

model and supports the hypothesis of electron trapping as the

microscopic origin of the modification to tunneling conduct-

ance. We indeed observe telegraphic noise in the conductance,

which is interpreted as a sign of electron trapping and untrap-

ping as a result of its low activation energy. We then propose

a double-well model to account for these trapping events. In

this new model, double wells are characterized by a random

barrier height between the two trap states. Assuming an expo-

nential tail for the distribution of these barrier heights, we

obtain a power law dependence of the current hysteresis DI as

a function of the voltage sweep frequency of IðUÞ curves.

Moreover, the exponent of the power law obtained in this

model is proportional to the temperature. We performed sys-

tematic measurements as a function of temperature, which

clearly confirm these theoretical predictions.

II. EVIDENCE OF ELECTRON TRAPPING

A. Telegraphic noise

We present results obtained on a Fe(20 nm)/V(1.2 nm)/

MgO(3 nm)/Fe(5 nm)/Co(15 nm) sample grown by molecu-

lar-beam epitaxy. Details of the growth are given in Ref. 15

together with the details of the micron-sized junction proc-

essing. Electrical measurements are performed with a con-

ventional four-point DC technique. The reference of positive
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voltage was taken as the top electrode (with no vanadium).

IðUÞ curves on such samples were already shown at room

temperature in Ref. 15 and exhibited systematic hysteresis.

At low temperature, the IðUÞ curves are still hysteretic, as

can be seen in Fig. 1. We have to note a threshold (on the

order of þ 170 mV) below which the hysteresis is absent.

Moreover, the junctions behave as a rectifier at low tempera-

ture: The current under negative bias becomes much smaller

than under positive bias. This might be attributed to the

asymmetric potential barrier in the presence of the vanadium

layer. Indeed, tunnel transport through a monocrystalline

MgO barrier is dominated by electrons having D1 symme-

try16 for which vanadium represents a large potential bar-

rier17,18—more than 4.2 eV—as a result of its band structure.

It thus leads to an asymmetric barrier with rectifying charac-

teristics. This point has to be further studied. In the follow-

ing, we will just show results obtained at a positive bias. We

observe, for a low constant bias voltage (less than the thresh-

old value of þ 170 mV), a telegraphic noise [see Fig. 2(a)],

proving a bi-stable conductance of the junction. Provided

that the voltage is lower than the threshold, almost no relaxa-

tion of the conductance value is observed on long time

scales: The average level of conductance remains almost

constant. We have to stress the fact that Fe/MgO/Fe samples,

which do not show resistive switching effects or relaxation

with time,15 do not show this telegraphic noise either. This

supports the idea of a correlation between this observed

noise and resistive switching mechanisms.

B. Energy levels of electronic traps

In the case of samples showing telegraphic noise, by

slightly changing the applied dc bias U, we modify the occu-

pancy rates between the low- and high-resistance states labeled

state 1 and state 2, respectively. This enables us to plot the ra-

tio of occupancy states s2

s1
as a function of U and to fit this ratio

as an exponential dependence on U [see the linearity on the

log plot of Fig. 2(b)]. Supposing that the time occupancy for

both states follows an Arrhenius law,19,20 we obtain that

s2

s1

¼ KeDE=kBT ; (1)

where DE ¼ E1 � E2, K is a constant, kB is the Boltzmann

constant, and T is the temperature. The energy of both states

can moreover be written (see Fig. 3): E1 ¼ E0
1 þ aU and

E2 ¼ E0
2 � aU, where U is the applied voltage and E0

i is the

energy of state i in the absence of applied voltage. Thus,

from the slope of kBT lnðs2

s1
Þ we can extract dDE

dU ¼ 2a which

corresponds to the voltage-dependent part of the energy dif-

ference between the two states. This yields dDE
dU ¼ 135 meV/

V for the measurement made at 80 K. We found similar val-

ues on other junctions of the same sample.

By extrapolating our plot of Fig. 2 to U ¼ 0, we can

have access to E0 � E0
2 � E0

1, provided we make the hypoth-

esis that K ¼ 1. We then find that E0 ¼ �19 meV.

FIG. 1. (Color online) IðUÞ curve measured at 80 K showing hysteresis

above þ 170 mV and a low current under a negative applied voltage.

FIG. 2. (Color online) (a) Resistance measurement at 80K under a constant

voltage U¼þ 120mV showing telegraphic noise. This is characteristic of a

bi-stable single defect oscillating between two states with two different con-

ductance values. Inset: Histogram of the curve showing both populations on

states 1 and 2 with two gaussian fits. (b) (squares) Experimental ratio of resi-

dence times as a function of voltage, calculated from histograms. s2 corre-

sponds to the high resistance state. (full line) Linear fit.
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This value and its voltage-dependant part a are very low

compared to reported values obtained as a result of tele-

graphic noise in other devices:21 for instance E0 ¼ 250meV

in Cu-doped SeGe resistive switching systems.19 This is all

the more striking as our values are obtained in MgO, in

which atomic displacements require high activation ener-

gies22,23 on the order of 2 eV. This is two orders of magni-

tude higher than what we observe. It thus supports the

hypothesis of charge trapping instead of atomic displacement

to explain the resistive switching in our system.

It is tempting to make the same type of measurements as

a function of temperature. Unfortunately, obtaining such a

dataset as a function of T was not possible: In some cases, no

telegraphic noise is observed after increasing the temperature

and stabilizing it, which takes more than 15 min. Moreover,

we can still observe such telegraphic noise for the new tem-

perature, but associated to other metastable states. This prob-

lem is not so crucial when changing the voltage at a given

temperature: this is made rapidly, by small voltage steps,

thus “following” the two states. Notice that the behavior

shown in Fig. 2(b) is an indication that the same two states

are considered when sweeping the voltage. This behavior

was not observed as a function of temperature, suggesting

that the telegraphic noise was associated with different states

when modifying the temperature.

This voltage dependence suggests that charges can be

trapped in the MgO barrier or at the interface; whether they

are trapped or untrapped, the potential height of the tunnel

barrier might be modified, thus influencing the probability of

electrons tunneling from one electrode to another. A similar

phenomenon has already been observed in MOSFET20 chan-

nels below the grid insulating oxide, or in thin Josephson24

junctions. In both cases, oxygen vacancies in the oxide create

charged defects in which charge fluctuates over time, leading

to telegraphic noise in electronic transport, as observed in

our case.

In our case we can suppose that the electric charging of

the barrier locally modifies its potential height as a result of

electrostatic effects and, thus, changes the tunneling proba-

bility of electrons close to this trap, as in the case of Cou-

lomb blockade. This effect might lead to strong conductance

changes when the trap is located on a hotspot: It was indeed

shown25–27 that the tunnel transport through such thin bar-

riers is not homogenous but dominated by some hotspots.

These can, for instance, be due to a locally thinner barrier

FIG. 3. (a) Electronic potential landscape for an electron on two traps, with-

out applied voltage. (b) With an applied positive voltage U.

FIG. 4. (Color online) (a) (dots) Conductance G of the junction at 80 K as a

function of time under a þ 400 mV bias after applying a � 300mV voltage

for 3 min. (squares) Fit corresponding to G ¼ G0 þ at�m where

G0 ¼ 1:2:10�4S is the evaluated nonswitching part of the conductance, a is

a constant and m ’ 0:06. Inset: G� G0 ¼ at�m on a log-log scale, with two

different values for G0 yielding two different exponents m as explained in

the text. (b) Hysteresis in current DI measured at þ 0.4 V at 80 K as a func-

tion of the bias sweep frequency. DI scales as xm0 with m0 ¼ 0:22 6 0:05

(straight line).
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because of the roughness of the oxide. These rare events

explain that a single electronic trapping could lead to 2%

changes of the junction conductance, provided it is located

on such a spot.

Moreover, the value obtained for dDE
dU can be linked with

the position of the defect inside the MgO barrier. Let us

indeed suppose that the involved charged particle is an elec-

tron and that one trap position is at the V/MgO interface and

the other at the MgO/Fe interface. The change of potential

for the electron moving from one trap to another would be

q � U, where q is the electron charge and U the applied volt-

age. The value of dDE
dU should then be 1eV/V, which is higher

than what we observe. This proves that the two traps are not

located at the junction interfaces of the MgO barrier, but

rather at a distance d from each other with

d ¼ dDE

dU
dMgO; (2)

where dMgO is the MgO barrier thickness. We find

d ¼ 0:4nm. This would be consistent with the creation of ox-

ygen vacancies at the lower interface close to the vanadium

layer: 0:4nm gives the order of magnitude of the thickness of

the faulted MgO layer containing traps.

Looking at Fig. 2, we observe that a higher positive volt-

age favors the higher resistance state. Within our polarity

convention, a positive voltage corresponds to electrons mov-

ing from the bottom—with vanadium—interface to the top

interface. In the case of trapping, this suggests that a positive

voltage favors charging the traps inside MgO near the V/

MgO interface, and leads to a decrease of conductance

across the barrier.

Another point has to be stressed: At positive voltage, the

voltage-dependent part of the activation energy of traps and

the constant part have opposite signs. Two regimes can thus

be distinguished relative to

Uth ¼ �E0

dE

dU

� ��1

(3)

which is in this case 140mV. This value should be compared

with the threshold value for hysteresis in IðUÞ curves, close

to 170mV. Above this value, the voltage-dependent term

dominates, leading to a partial filling of MgO traps—and to

an increase in the junction resistance. Below this voltage

threshold value the constant term dominates, the trap states

depopulate, and the hysteresis disappears.

III. RELAXATION WITH TIME AND ROLE OF THE
VOLTAGE SWEEP FREQUENCY

We now turn to a higher voltage regime, i.e, with

U > þ170mV. We showed in a previous article15 that the

relaxation of the resistance under a constant voltage was

nearly logarithmic at room temperature. Here we have per-

formed measurements of this relaxation at low temperature—

from 10K to 200K. As seen in the data of Fig. 3, the behavior

remains the same at low temperature. We have to stress that

no telegraphic noise is observed in this high-voltage regime.

A log-log plot of the conductance G as a function of time

yields a linear plot, corresponding to a power law with an

exponent m� 1. This value strongly depends on the esti-

mated value of G0, which is the constant part of the conduct-

ance, corresponding to the asymptote on G(t) curves. For

instance, as shown on Fig. 3 at 80 K, m ’ 0:06 6 0:01 if we

take G0 ¼ 1:2:10�4S, whereas we obtain m ’ 0:16 6 0:04 if

we take G0 ¼ 3:6:10�4S. Within this range ½0:06�0:16�, all

fits are correct.

Nevertheless, this low value of m indicates that the

curves can be regarded, to the first approximation, as almost

logarithmic as we did in Ref. 15.

Furthermore, in the case of dynamical measurements,

i.e., when making IðUÞ measurements, we have shown15 that

the hysteresis observed on IðUÞ curves depends on the fre-

quency of the voltage sweep: The DIðxÞ curve shows an

increase at low frequency followed by a slight decrease at

high frequency. If we focus on the low-frequency regime

[see Fig. 3(b)], DI follows a power law as a function of x; at

T ¼ 80K, we find an exponent m0 � 0:2260:05.

IV. RANDOM BARRIER DOUBLE-WELL MODEL

A. Definition of the model

The very slow relaxation of conductance indicates that

the system does not possess a single relaxation time scale,

but rather a broad distribution of time scales, suggesting that

disorder effects may play an important role. It has been

known for a long time that the presence of disorder may

strongly affect the electrical properties of materials, for

instance in ionic conductors like hollandite,28 or in amor-

phous insulating materials like As2Se3;29,30 models based on

random distributions of barrier heights have proven useful to

account for the behavior of such systems.31–33 In this section,

we propose a simple double-well model with a random bar-

rier between the two wells in order to describe our experi-

mental data.

We develop this model under the hypothesis of electron

charging of traps in MgO, as suggested by experimental

observations shown above. It would nevertheless give

exactly the same mathematical results under the hypothesis

of atomic drift of atoms, locally modifying the conductance.

The double-well can indeed correspond to two positions of

the involved ion inside the tunnel barrier, yielding two dif-

ferent values of the local tunnel conductance.

We consider that the electronic conductance G results

from many independent parallel conductance channels.

Some of these channels are ‘standard’ and give, altogether, a

contribution G0 to G. The other channels are modeled by

double-well potentials in which electrons can be trapped.

These wells are assumed to be separated by an energy barrier

of random height. In a given channel, the two potential wells

have an energy E1 ¼ E0
1 þ aU and E2 ¼ E0

2 � aU respec-

tively (E0
1 < E0

2), where U denotes the electric potential and

a is an effective electric charge. To each well is also associ-

ated a given tunneling conductance, denoted as g1 and g2,

with g21. For simplicity, we assume that E0
1, E0

2, a, U, g1,

and g2 have the same values in all the channels. In contrast,

the energy barrier varies from one channel to another. With

an appropriate choice of energy reference, we set E0
1 ¼ �S0

083712-4 Bertin et al. J. Appl. Phys. 109, 083712 (2011)



and E0
2 ¼ S0. An electron going from the first well to the sec-

ond one has to cross an energy barrier

DE1 ¼ W þ S0 � aU; (4)

which defines W (see Fig. 4). In the opposite direction, the

energy barrier is

DE2 ¼ W � S0 þ aU: (5)

Hence, W can be interpreted as the average barrier between

the two wells. We consider W as a random variable, and

denote as qðWÞ its probability distribution.

Assuming that a number nc of nonstandard channels are

present in the system, the total conductance at time t is given by

GðtÞ ¼ G0 þ ncp1ðtÞg1 þ nc½1� p1ðtÞ�g2; (6)

where p1ðtÞ denotes the average occupancy rate of the well

of conductance g1 (the average being performed on the dif-

ferent channels, or equivalently, on the statistics of the bar-

rier W). At a temperature T, the mean time to cross the

barrier DEj is given by an Arrhenius law

sj ¼ s0eDEj=kBT ; (7)

where s0 is a microscopic time characterizing the vibrations

at the bottom of the wells. We introduce the occupancy rate

p1ðt; WÞ of the first well, given the barrier W. The average

occupancy rate is then obtained by averaging over the barrier

W, namely

p1ðtÞ ¼ hp1ðt; WÞiW : (8)

The evolution equation for p1ðt; WÞ reads

@p1

@t
ðt; WÞ ¼ � 1

s1

p1ðt; WÞ þ 1

s2

½1� p1ðt; WÞ�; (9)

which can be rewritten, using Eqs. (4) and (5). as

@p1

@t
ðt;WÞ¼ 1

s0

e�W=kBT

� eSðtÞ=kBT�2p1ðt;WÞcoshðSðtÞ=kBTÞ
h i

; (10)

with SðtÞ ¼ S0 � aUðtÞ

B. Response to an electric potential step

The relaxation of p1ðt; WÞ after a step in the electric

potential UðtÞ ¼ U0HðtÞ (where HðtÞ is the Heaviside func-

tion) is readily calculated, yielding

p1ðt; WÞ ¼ pst
1 þ A exp �cte�W=kBT

� �
; (11)

with pst
1 , A, and c given by

pst
1 ¼

1

1þ e�2ðS0�aU0Þ=kBT
(12)

A ¼ 1

1þ e�2S0=kBT
� 1

1þ e�2ðS0�aU0Þ=kBT
(13)

c ¼ 2

s0

cosh
S0 � aU0

kBT

� �
: (14)

Averaging over the barrier W yields

p1ðtÞ ¼ pst
1 þ Ahexpð�cte�W=kBTÞiW : (15)

The average of the exponential term reads

hexpð�cte�W=kBTÞiW ¼
ð1

Wmin

dWqðWÞ

� expð�cte�W=kBTÞ (16)

where Wmin is the minimum value of the barrier W. In order

to compute explicitly this last average, we need to choose a

specific form for qðWÞ. Following the standard literature on

trap and barrier models,33,34 we consider a distribution qðWÞ
with an exponential tail,

qðWÞ 	 Ce�W=W0 ; W !1; (17)

where C > 0 is a constant. Such a form can be justified, for

instance, on the basis of extreme value statistics.35 If qðWÞ is

purely exponential, C is given by

C ¼ W�1
0 eWmin=W0 : (18)

Making the change of variable z ¼ cte�W=kBT , we obtain for

large time t

hexpð�cte�W=kBTÞiW �
CCðlÞkBT

ðctÞl (19)

with l ¼ kBT=W0, and where CðxÞ ¼
Ð1

0
dyyx�1e�y is the

Euler Gamma function. Accordingly, we have

p1ðtÞ ¼ pst
1 þ

ACCðlÞkBT

ðctÞl : (20)

From Eq. (6), we thus find that the conductivity GðtÞ relaxes

as a power law t�l to its asymptotic value, with an exponent

l proportional to the temperature. If the temperature is small,

namely l� 1, then the relaxation is approximately logarith-

mic over a significant time window. We emphasize that,

within our model, the evolution of resistance with time is

driven by the populations of states 1 and 2, which vary con-

tinuously with time. Because the fluctuation of resistance

with time is being averaged on a large number of defects, no

telegraphic noise is expected.

C. Response to a periodic excitation

We now turn to the case of a small periodic excitation

UðtÞ ¼ u0 cosðxtÞ, such that au0 � kBT. We first consider a

single channel, with a fixed barrier W. Starting from Eq.

(10), we look for a solution of the form

p1ðt; WÞ ¼ p0
1 þ

au0

kBT
p1

1ðt; WÞ (21)

and we linearize Eq. (10) with respect to the small parameter

au0=kBT. The zeroth order equation yields

083712-5 Bertin et al. J. Appl. Phys. 109, 083712 (2011)



p0
1 ¼

1

1þ e�2S0=kBT
: (22)

At first order in au0=kBT, we get

s0eW=kBT @p1
1

@t
¼� 2p1

1ðt; WÞ cosh
S0

kBT

� cosh
S0

kBT

� ��1

cosðxtÞ: (23)

We look for a sinusoidal solution of the form

p1
1ðt; WÞ ¼ < BðWÞei½xtþuðWÞ�

h i
; (24)

with a real BðWÞ > 0. Inserting this form in Eq. (23) yields,

for u and B

tan uðWÞ ¼ � xs0eW=kBT

2 coshðS0=kBTÞ ðcos u < 0Þ

BðWÞ ¼ ½coshðS0=kBTÞ��1

½4 cosh2ðS0=kBTÞ þ ðxs0Þ2e2W=kBT �1=2
:

(25)

We now wish to quantify the hysteresis observed in the plane

½IðtÞ; UðtÞ�. We choose a value U1 of the electric potential,

such that 0 < U1 < u0. In the time interval �p=x < t < p=x,

there are two times, t1 < 0 and t2 ¼ �t1 such that

Uðt1Þ ¼ Uðt2Þ ¼ U1. Then the current intensity difference

DI � Iðt2Þ � Iðt1Þ is a measure of the time variation of the

conductance, since DI ¼ U1DG, with DG � Gðt2Þ � Gðt1Þ.
From Eq. (6), DG is given by

DG ¼ ncðg2 � g1Þ½p1ðt1Þ � p1ðt2Þ�: (26)

To compute this last expression, we start by considering a

single channel, that is, a fixed value of W. The difference

Dp1ðWÞ � p1ðt1; WÞ � p1ðt2; WÞ can be easily determined:

Dp1ðWÞ ¼
Bau0

kBT
½cosðxt1 þ uÞ � cosðxt2 þ uÞ�: (27)

Taking into account the relation t2 ¼ �t1, we get

Dp1ðWÞ ¼
2BðWÞau0

kBT
sin uðWÞ sin xt2: (28)

Evaluating sin u from Eq. (25), we obtain

Dp1ðWÞ ¼
2BðWÞau0xs0eW=kBTð1� U2

1=u2
0Þ

1=2

kBT½4 cosh2ðS0=kBTÞ þ ðxs0Þ2e2W=kBT �1=2
: (29)

To obtain the current difference for the whole sample, we

need to average over the energy barrier W:

DI ¼ U1ncðg2 � g1ÞhDp1iW : (30)

With the notations

b ¼ 2 coshðS0=kBTÞ (31)

D ¼ 2au0

kBT coshðS0=kBTÞ 1� U2
1

u2
0

� �1=2

(32)

we have

hDp1iW ¼ D

ð1
Wmin

dWqðWÞ xs0eW=kBT

b2 þ ðxs0Þ2e2W=kBT
: (33)

Introducing the change of variable x ¼ xs0eW=kBT , we find

hDp1iW ¼ D

ð1
xsmin

dx

bx
q kBT ln

x

xs0

� �
x

b2 þ x2
(34)

with smin ¼ s0eWmin=kBT . For x� s�1
0 , kBT lnðx=xs0Þ is typi-

cally large, and one can use the asymptotic expression (17)

of qðWÞ, yielding

hDp1iW ¼
DC

b
ðxs0Þl

ð1
xsmin

dx

xlðb2 þ x2Þ : (35)

If l < 1, the integral converges to a finite value when its

lower bound goes to zero, and we get that hDp1iW scales as

xl. The remaining integral can be computed exactly, and we

eventually obtain for the average current variation

DI � paC

21þl cos
pl
2
½coshðS0=kBTÞ�2þl

� U1u0 1� U2
1

u2
0

� �1=2

ncðg1 � g2Þðxs0Þl (36)

so that DI also scales as xl, in the regime x� s�1
0 and

l < 1 of experimental interest.

D. Comparison between model and measurements

Both calculations, in the case of a constant applied

voltage and in the case of a varying voltage, lead to a

power-law dependence of the conductance as a function of

time in the first case and of frequency in the second. The

model is therefore in qualitative agreement with our obser-

vations shown on Fig. 3 of a power law dependency. The

experimental values obtained for the exponents m and m0

should, according to the model, be equal, whereas they

slightly differ (see Fig. 3). Nevertheless, the large error

bars on these experimental values mean that they are still

compatible with our model.

Moreover, the model supposes that the exponent l is

equal to kBT=W0, i.e., proportional to the temperature T.

Indeed, we find a linear relation between the exponent m0

and temperature (see Fig. 5).

From our experimental observations we thus can

roughly evaluate W0, the “typical” value of the barrier height

in the double-well model. Indeed, we have l ¼ kBT=W0, so

equating l to m0 gives W0 ¼ 57meV. This value is on the

order of magnitude of the Coulomb blockade energy for one

electron in a tunnel barrier,36 which is yet another argument

in favor of a microscopic origin for conductance modifica-

tions in terms of trapping and untrapping of electrons on

defects in the barrier. This would be the origin of the resist-

ance switching observed in our tunnel junctions.

We have to notice that the hypothesis made in the calcu-

lations, in the case of a periodic excitation, i.e., au0 � kBT,
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is not experimentally justified: au0 ¼ 54meV if we assess a
at 0:135eV=V and if we take u0 ¼ 0:4V. This value is larger

than kBT in the studied temperature range, which means that

the linearized expression of Eq. (23) should be regarded as

an approximation.

We cannot extract more quantitative information from

the comparison with experimental observations: Our model

does not predict the absolute value of the resistance relaxa-

tion with time, which would require, for instance, knowledge

of g1, g2, and s0.

To be complete, we note that, on the one hand we

observe telegraphic noise, thus associated to one defect, and

on the other hand we model the junction in terms of a large

distribution of defects, which could look contradictory. In

fact telegraphic noise is observed at low temperature and low

voltage, i.e., below 170mV. For these values, we can suppose

within our model that state 1 is dominant. It means that the

traps inside the MgO barrier are empty, all but one. This

leads to the telegraphic noise. It is sometimes observed with

several levels, thus involving different defects, yielding the

addition of two telegraphic noise signals. On the contrary, at

higher voltage or higher temperature, both populations, i.e.,

electrons in states 1 and 2, are present and the telegraphic

noise is smeared out due to contributions of many defects.

This explains why we observe a continuous relaxation of

conductance with time, without telegraphic noise.

V. CONCLUSION

In conclusion, we showed here that a simple statistical

model of electron trapping inside the MgO barrier could

explain the resistance switching effects in MgO-based tunnel

junctions. It also explains the long time relaxation of con-

ductance according to power-law behavior. In addition, the

temperature dependence of the theoretical exponent is con-

sistent with experimental observations. Our model supposes

a change of the tunneling probability of electrons due to a

local charging of the barrier: in that sense, it differs from

usual hopping models through traps.

We have to stress that this statistical model is in qualita-

tive agreement with the phenomenological model that we

proposed in Ref. 15: in this model, inspired by memristor

models,37 we introduced an electromigration term that makes

the tunnel barrier height or thickness change as a function of

the applied voltage, as well as an additional term which is

voltage independent. This second term makes the conduct-

ance relax toward a given value, independently of the

applied voltage bias. Roughly speaking, this extra term plays

a role analogous to that of thermal excitations in our present

statistical model: thermal excitations indeed tend to equalize

the populations of trapped and untrapped defects, and thus

also tend to bring back the conductance to a given value,

whatever the applied voltage.

Our present approach is quite general for resistance

switching effects in tunnel junctions: Many resistance switch-

ing effects attributed, for instance, to ferroelectricity in the

barrier—see, for example, Ref. 38—could perhaps be inter-

preted in terms of electron trapping on defects in the barrier.
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