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Left-right patterning and asymmetric morphogenesis arise from a complex set of molecular and cellular interac-
tions that are particularly dynamic and associated with mechanical forces. How do mechanical forces translate
into tissular asymmetries? Are these forces asymmetrical de novo, or do they build up from pre-existing
asymmetries? Advances in developmental genetics, live imaging and cell biology have recently shed light on
the origins of mechanical forces generated at the cell scale and their implication in asymmetric patterning and
morphogenesis is now emerging. Here we ask when and how, molecular asymmetries and mechanical forces
contribute to left-right patterning and organ asymmetries.
© 2016 The Authors. Published by Elsevier Ireland Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Mechanical forces are ubiquitous and can modulate the develop-
mental program of plants and animals (Mammoto and Ingber, 2010;
Mirabet et al., 2011). Mechanical forces are influent in many steps of
embryonic development, from gastrulation to organogenesis
(Hamada, 2015; Heisenberg and Bellaiche, 2013; Mammoto and
land Ltd. This is an open access artic
Ingber, 2010). Gastrulation (Behrndt et al., 2012; Farge, 2003;
Hiramatsu et al., 2013; Maitre et al., 2012), kidney morphogenesis
(Kramer-Zucker et al., 2005), inner ear and otolith formation
(Colantonio et al., 2009; Wu et al., 2011), neuron migration
(Sawamoto et al., 2006), cardiovascular development (Boselli et al.,
2015; Freund et al., 2012; Peralta et al., 2013), haematopoiesis
(Pardanaud and Eichmann, 2009), and left-right symmetry breaking
(Nonaka et al., 1998) are all mediated by mechanical stresses and
force mediated signaling (Zhang and Labouesse, 2012). Prominent me-
chanical forces-related diseases include cancer (Fernandez-Sanchez et
le under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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al., 2015; Fernandez-Sanchez et al., 2010), ciliopathies (Hildebrandt et
al., 2011) and cardiovascular diseases such as atherosclerosis (Hahn
and Schwartz, 2009).

Despite the long recognition of the importance of mechanical forces
in development, an understanding of howmechanical forces impact de-
velopmenthas, until recently, remained elusive. Technological advances
in recent years have allowed researchers to study the effects of physical
forces on cell behaviors at unprecedented resolution (Ladoux et al.,
2016; Lecuit et al., 2011). The results of these studies have led to a par-
adigm, where in its most extreme form, holds the idea that physical
forces, independently of gene expression, can affect tissue development
and growth by directly modulating cell behavior (Savin et al., 2011).
Mechanical forces have also been shown to act as a key component in
the coordination of cell behaviors at the tissue scale, in particular during
tissue folding (Striedter et al., 2015). As a consequence, it is now clear
that mechanical forces constitute an essential element in multiple as-
pects of the morphogenetic program (LeGoff and Lecuit, 2016; Zhang
et al., 2010).

Forces can be sensed at the molecular and cellular scale through
mechanosensitive proteins (Vogel and Sheetz, 2006). A major focus of
research is now to define the molecules and signaling pathways associ-
ated with mechanotransduction and work from many different fields
has now shown that pressure-sensitive membrane proteins, cytoskele-
tal elements, and extracellular matrix (ECM) components can partici-
pate in the interchange between mechanical forces and biochemical
signals at the cellular scale (Mammoto et al., 2012; Vogel and Sheetz,
2006). Althoughmuch has been done in the study of biomechanical sig-
naling at the cellular scale, the effects of forces at a tissue scale level have
emerged only recently (Grill, 2011; Lecuit et al., 2011; Mammoto and
Ingber, 2010). Thefield strongly benefits from concepts and formulation
developed by physicists, which promoted the identification and quanti-
fication of the relevant forces through unifyed approaches (Grill, 2011).
Recent advances in cell biology and live imaging are now allowing re-
searchers to directly assess the distribution of tissue forces, thus helping
them to have a better view of howmechanical forces can impact devel-
opment (Sugimura et al., 2016). This, combined with the discoveries of
novelmechanosensitive proteins and pathways, are consistently chang-
ing our view of how mechanical forces can impact development.

Left-right patterning and asymmetric morphogenesis is one of the
most fascinating aspects of developmental biology. Both the symmetry
and asymmetries of the body plan require a number of processes that
need to be carefully controlled through a genetic program (Capdevila
et al., 2000; Hamada et al., 2002; Pourquie, 2011). Being asymmetric
certainly constitutes an advantage in the process of organ packing and
positioning in a restrained space. Accordingly, most of our internal or-
gans are asymmetrically positionedwithin the body cavity. Recent stud-
ies in the field of the left-right signaling and asymmetric tissue
morphogenesis are now clarifying and reinforcing the interest in the
field ofmechanical forces andmorphogenesis. Examples of tissue asym-
metry can be seen in heart tube loop, brain folding, airway branching
(Yashiro et al., 2007) and gut looping (Savin et al., 2011). Here, we re-
view the molecular and sub-cellular basis of mechanical and biochemi-
cal pathways activated during left-right patterning and asymmetric
morphogenesis. Throughout the review, we discuss the potential
mechanosensors involved and themechanical forces generated at cellu-
lar and tissue scale.

2. Left-right symmetry breaking mediated by cilia mediated flow
forces

Fluid motion is usually mediated by motile cilia in the body. Motile
cilia are organelles that protrude from nearly all vertebrate cells with
typical lengths between 3 and 10 μm in growing tissues (Avasthi and
Marshall, 2012; Ishikawa and Marshall, 2014; Keeling et al., 2016;
Vincensini et al., 2011). In vertebrates, cilia are commonly thought to
function as chemical and/or mechanical sensors. Motile cilia move
fluids, and in doing so they participate in controlling several key devel-
opmental processes, such as chemical gradient formation, biominerali-
zation or tubulogenesis (Cartwright et al., 2009). Left-right (LR)
specification in vertebrates occurs in the left-right organizer (LRO),
which is defined by a group of specialized cells located within the
presomitic mesoderm. The cells delineating the LRO are ciliated and
contain motile cilia that generate a slow-moving flow (the nodal flow)
involved in the initial step of symmetry breaking (Nonaka et al., 1998)
(Fig. 1A). Additionally, an intercellular amplification of the asymmetric
signals occurs through genetic feedback mechanism near and around
the LRO (Nakamura et al., 2006). The prominent models explaining
symmetry breaking within the LRO suggests either an asymmetric
chemical gradient (Okada et al., 2005), or that the LRO cells can me-
chanically sense flow due to a particular type of sensory cilia located
in the periphery of the LRO, dictates the asymmetry (McGrath et al.,
2003; Tabin and Vogan, 2003).While it is possible that these twomech-
anisms work together, a number of elements are still lacking for our
complete understanding of the process (Pennekamp et al., 2015). Im-
portantly, symmetry breakage occurs even in mutant mice with only
twomotile cilia (Shinohara et al., 2012). Experimental data using a mu-
tant of the Notch signaling pathway and simulations of fluid flow dy-
namics in the zebrafish LRO revealed a threshold of approximately 30
motile cilia to get a proper LR symmetry breakage (Sampaio et al.,
2014). This suggests that the flow detection apparatus is extremely effi-
cient.When considering the flow velocities generatedwithin the LRO of
fish,mice and xenopus (Blumet al., 2009; Blumet al., 2014; Schweickert
et al., 2007; Supatto and Vermot, 2011), it appears that they are much
lower when compared to other organs - for example, they are 3 to 10
times lower than the hemodynamics generated in the vascular network
even at its earliest embryonic stages (Anton et al., 2013; Cartwright et
al., 2009; Goetz et al., 2014; Hove et al., 2003; Supatto and Vermot,
2011).

The mechanosensory hypothesis has been favored by the discovery
that Trpp2 (PKD2 or polycystic kidney disease protein 2) is key for LR
patterning (Field et al., 2011; Kamura et al., 2011; McGrath et al.,
2003; Pennekamp et al., 2002; Schottenfeld et al., 2007; Yuan et al.,
2015). Trrp2 is a potent mechanosensory protein (Patel et al., 2010;
Sharif-Naeini et al., 2010) both in kidney and vasculature (Goetz et al.,
2014; Nauli et al., 2003; Nauli et al., 2008) that acts in combination
with Pkd1 at the cell membrane. In zebrafish, Trpp2 is necessary for
the genesis of asymmetric calcium release around the LRO, which is ini-
tiated within cilia (Yuan et al., 2015). Mutant protein of Trpp2 that can-
not bind to the membrane cannot rescue Trpp2 loss of function in the
LRO and lead to LR symmetry defects (Yoshiba et al., 2012). Trpp2 be-
longs to the big family of transient receptor potential proteins (TRP)
that contain a number of mechanosensitive channels. Yet, Trpp2 is not
a ‘canonical’ stretch sensitive channel and its biology is extremely com-
plex and cell type specific (Giamarchi et al., 2006): it is part of a
multiprotein complex involved in transducing Ca2+-dependent infor-
mation. It localizes to primary cilia of renal epithelial cells, where it
seems involved in mechanosensitive transduction signals (Nauli et al.,
2003; Pazour et al., 2002; Yoder et al., 2002), but it has been observed
at the cell membrane and in the ER. Trpp2 has been shown to inhibit
the response of stretch activated cation channels in smooth muscle
cells, suggesting that it can modulate mechanotransduction without
being a mechanosensor itself (Sharif-Naeini et al., 2009). Recently, the
group of David Clapham showed that intraciliary calcium increase is
not observed in the mouse LRO in response to flow forces, suggesting
that the primary function of TRP channels, including Trpp2, is not to
modulate intraciliary calcium in response to cilia bending, and, as a con-
sequence, do not act as mechanosensor in this context (Delling et al.,
2016). In that aspect, it is worth mentioning that Pkd2 mutants do not
present apparent defects in intracellular calcium levels in the node
(Yoshiba et al., 2012). Importantly, Trpp2 frequently acts in combina-
tion with other mechanosensitive proteins such as Trpv4 (Du et al.,
2014; Heckel et al., 2015; White et al., 2016), Pkd1 (Hanaoka et al.,



Fig. 1. Summary of left-right patterning and asymmetric morphogenesis: (A) Left-right (LR) specification in vertebrates occurs in LR organizers (top left:mouse Node; top right: zebrafish
Kupffer's vesicle; down: chick Hensen's node). The cells delineating the mouse and zebrafish LR organizers are ciliated and contain motile cilia that generate a cilia-driven slow-moving
flow(the nodalflow – red arrow) involved in the initial step of symmetry breaking. The chick embryos donot seem to rely on cilia-drivenflowbut onasymmetric cellmigration to break LR
symmetry. During development, the cells around the Hensen's node (bottom left) experiences an asymmetric cell migration with changes in adhesion, thus interfering with the LR
patterning of chick embryos. (B) Asymmetric morphogenesis of internal organs in different model systems required not only LR patterning but also depend on cellular and molecular
chirality, as well as tissue intrinsic properties such as cell-cell adhesion, cytoskeleton components like actin and myosin, among others. In panel B, we summarize gut and heart
looping in the different animal models as well as branchial arch formation in the mouse embryo.
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2000; Nauli et al., 2003) or Pkd1l1 (Grimes et al., 2016; Kamura et al.,
2011) tomediate the calciumflux. During left-right patterning, thepart-
ner of Trpp2 is Pkd1l1, Pkdl1 physically interactswith Trpp2 (Field et al.,
2011) and is necessary for LR patterning in mouse and medaka fish
(Field et al., 2011; Grimes et al., 2016; Kamura et al., 2011). Additionally,
Pkd1l1 might be sensitive to proteoglycan distribution (Superina et al.,
2014) and it is suspected that the ECM can alter Pkd1l1 biological activ-
ity at the cell surface. All in all, these recent results suggest that TRP
channels might act as a mechanosensor in the LRO, yet the mechanism
bywhich they operate remainsmysterious. Along the same line, howdo
cilia sense flow and whether non-ciliary sensory mechanisms are in-
volved in the LR breaking are crucial questions to answer for our under-
standing of the mechanism of symmetry breaking. When considering
the pkd1/trpp2 complex, it seems that the couple Pkd1/Trpp2 also has
non-mechanosensitive signaling properties. For example, it looks like
Pkd1 can act as a prototypical membrane receptor that concordantly
regulates Pkd2 channels and G-proteins in neurons and kidney cells
(Delmas et al., 2004). Interestingly, Pkd1 proteins can be activated by
potent signalingmolecules, such asWnt ligands (Kim et al., 2016), to ac-
tivate intracellular calcium signaling. Considering the multiplicity of
outcomes trpp2/pkd1 interactions and activations can lead to, a better
understanding of the targets of mechanism of action of Trpp2 and
Pkd1l1 at the cellmembrane and ciliawill be key to figure out themech-
anism initiating asymmetric gene expression in the LRO. Most impor-
tantly, it will help to understand if (and how) mechanotransduction is
indeed at work in the LRO.

3. Left-right symmetry breaking mediated via asymmetric cell mi-
gration and adhesion

A few vertebrate species do not seem to rely on cilia mediated flow
(Blum et al., 2009; Gros et al., 2009) but depend on asymmetric cell mi-
gration to break left-right (LR) symmetry. Intrinsically, cells are chiral
and naturally spread with a chiral order when plated on a dish (Chen
et al., 2012; Tee et al., 2015). Additionally, cells tend to migrate with di-
rectionality which is dictated by the substrate (Caballero et al., 2015;
Comelles et al., 2014) suggesting that cell migration directionality is
mechanosensitive. Importantly, the position of the centrosome, which
can be considered as the actin and microtubule organizer of the cells,
is also dictated by cellular force distribution in cell culture (Farina et
al., 2016; Pitaval et al., 2010). A good example of how asymmetric cell
migration and adhesion play a role in the patterning of embryos during
development concerns the cellmovements around theHensen's node. It
was shown that asymmetric cell rearrangements take place within the
node of chick embryos, thus creating a transient leftward movement
of cells around it (Cui et al., 2009; Gros et al., 2009), which later stops
(Fig. 1A). The migration of cells away from the midline to the left side
consequently deform the shape of the node. Thus, these leftwardmove-
ments lead to the asymmetric expression of shh (Sonic Hedgehog) and
fgf8 (fibroblast growth factor 8). Shh is initially expressed bilaterally at
the rostral side of the node and later becomes restricted to the left.
Moreover, the fgf8 bilateral expression in the primitive streak results
in an asymmetric expression on the right side of the node (Cui et al.,
2009; Gros et al., 2009). To understand how the leftward movement
of cells occurs in the chick, Gros and colleagues (Gros et al., 2009) stud-
ied the driving force for cell rearrangements and how they could disrupt
it (and which consequences will arise from it). Their work has shown
that by impairing the myosin-II pathway, as well as, by physically
blocking cell movements in the node, the leftward movement of cells
was no longer seen. Likewise, the chick node lost its asymmetrical
shape on the LR axis, when compared to control embryos (Gros et al.,
2009). In addition to the disruption of the leftward movement of cells,
Gros and colleagues have reported the bilateral gene expression of shh
and fgf8, thus suggesting the leftwards cell movements are required to
initiate the LR asymmetric expression domains in the chick embryo
(Gros et al., 2009). Nevertheless, until recently, there was no answer



74 R.R. Ferreira, J. Vermot / Mechanisms of Development 144 (2017) 71–80
for the question of how this transient leftwardmovement of cells in the
chick nodewas controlled in a time-dependentmanner. In other words,
it was not clear how the transient movement would stop once the
asymmetry has been established. Based on the evidence that N-
cadherin is asymmetrically expressed in a time-dependent fashion in
the node and its inhibition gives rise to heart misplacement (Garcia-
Castro et al., 2000), Mendes and colleagues have recently proposed N-
cadherin as a good candidate to stop the transient leftwardmovements,
possibly via an asymmetric cell-cell adhesion mechanism (Mendes et
al., 2014). This study combined a photoconvertible fluorescent protein
(Kaede) with in vivo microscopy to track single cell movements in the
node of the chick embryo, and in this way investigated the migratory
behaviors in the node region in response to N-cadherin perturbations.
They concluded that N-cadherin is important to stabilize the molecular
asymmetries established earlier in the node, so that the correct asym-
metric information is transferred to the lateral plate mesoderm (LPM)
and the proper asymmetric looping of the heart is achieved
(Garcia-Castro et al., 2000;Mendes et al., 2014). Since cadherin proteins
are known mechanosensitive proteins (Huveneers and de Rooij, 2013;
Ladoux et al., 2010; Lecuit and Yap, 2015; Weber et al., 2012), it
would be interesting to assess if the process of asymmetric cell migra-
tion is in itself driven bymechanical forces or by the intrinsic cell chiral-
ity often observed in vitro.

4. Cell contractility and forces associated with left-right organizer
formation

Recent studies have identified regulators of the actomyosin cyto-
skeleton (Wang et al., 2011; Wang et al., 2012) and components of
the extracellular matrix (ECM) (Compagnon et al., 2014) as mediators
of cell positioning in the zebrafish left-right organizer (LRO) (called
Kupffer's vesicle (KV)), important for the breaking symmetry event.
The ECM is thought not only to provide a structure to support organs
but also to control cell-cell communication, proliferation, differentia-
tion, and migration.

The KV in zebrafish is formed by a group of nearly two-dozen cells,
known as dorsal forerunner cells (DFCs), which migrate deep into the
embryo through development. These cells undergo a mesenchymal-
to-epithelial transition (MET) to form the KV in a vesicle-like structure
with a mono-ciliated epithelium (Essner et al., 2005). Several studies
confirmed the existence of a cluster of ciliated-cells in the anterior-dor-
sal (AD) region of the KV (Kramer-Zucker et al., 2005; Kreiling et al.,
2007; Okabe et al., 2008), suggesting this higher density of cilia (as a
consequence of a higher cell density) can cause the strong directional
flow observed in the KV (Kramer-Zucker et al., 2005; Kreiling et al.,
2007; Okabe et al., 2008; Sampaio et al., 2014; Wang et al., 2011;
Wang et al., 2012) (Fig. 1A).

The knowledge gap about the molecular and cellular mechanisms
regulating the asymmetries in cell density within the KV has only re-
cently started to be filled. Wang and colleagues started by proposing a
model of cell remodeling that would allow an initially symmetric
organ to acquire anterior-posterior (AP) asymmetry. In this model, an-
terior KV cells would be more tightly packed than posterior cells, as a
consequence of the gradient of cell tension in the AP axis (Wang et al.,
2011; Wang et al., 2012). They have identified Rock2b (Rho kinase pro-
tein) as a key regulator of KV remodeling (Wang et al., 2011). Depletion
of the Rock2b-Myosin II pathway resulted in the disruption of the cell
cluster in the AD region, changes in cell morphology and impairment
of the asymmetric cilia-driven flow, which then impacts the proper es-
tablishment of the left-right (LR) axis (Wang et al., 2011; Wang et al.,
2012). Making use of mathematical simulations, they proposed a
model in which the Rock2b-Myosin II pathway regulates cell–cell inter-
facial tension during KV remodeling, by regulating cell contractility and
cell adhesion (Wang et al., 2012).

More recently, by studying endogenous and ectopically induced KV,
Compagnon and colleagues proposed that local differences in the shape
of KV ciliated-cells are the result of localized ECM deposition at the sur-
face of the adjacent notochord. This accumulation of ECMwould restrict
the apical expansion of the lumen-lining KV epithelial cells within the
AD region, in response to lumen growth during the development of
the KV (Compagnon et al., 2014). In this work, they have shown that
laminin and fibronectin strongly accumulate at the axial-paraxial
boundary adjacent to the AD region of the KV highly packed with ciliat-
ed-cells. Furthermore, interfering with these ECM components result in
the impairment of the KV remodeling process important for the break-
ing of LR symmetry, suggesting that ECM-dependent cell shape changes
are critical for KV function (Compagnon et al., 2014).

These studies suggest that a highly regulated organization of the
LRO is dependent on cellular forces. Proper modulation of these
forces is thus crucial for generating an architectural asymmetry
within the organ, thus playing a key role for its function as LRO in
zebrafish.
5. Molecular and subcellular chirality in the process of left-right
patterning

At the molecular scale, asymmetries of sub cellular components has
long been thought to provide the initial asymmetry necessary to initiate
an asymmetric gene cascade (Brown and Wolpert, 1990; Levin and
Mercola, 1998). Interestingly, this hypothesis fits when considering
the molecular architecture of the internal organization of motile cilia,
which is chiral (Figs. 2 and 3). The body of the cilium is made of a chiral
alignement of microtubule (as well as its basal body) such that the di-
rection of cilia rotation has been proposed to be determined by the
structural interaction of their protein building blocks sliding, which
has to be chiral as well (Hilfinger and Julicher, 2008). Flow in the LRO
can thus been considered as a way to convey the molecular chirality
to an asymmetric flow (Levin, 2005). In this model, the obtained cilia
mediated flow allows to scale up the molecular asymmetries to the
LRO (Fig. 2).

However, the direction of cilia motility is not enough to drive a di-
rectional flow. Cilia need to be posteriorly tilted in order to generate
a directional flow, and this in turn depends on the proper positioning
and orientation of the cilia at the posterior side of cell surface of the
LRO (Hashimoto and Hamada, 2010; Supatto and Vermot, 2011). The
molecular mechanisms that set this orientation depends on the Pla-
nar Cell Polarity (PCP) pathway (Borovina et al., 2010; Hashimoto
et al., 2010; Song et al., 2010). This process is dynamic, as it seems
that cilia move towards caudal side of the node in response to the
PCP (Hashimoto et al., 2010). The gradual posterior positioning of
the basal body correlates with increase flow in the node, which sug-
gests that the posterior tilt increases accordingly. Interestingly, it has
been shown that the process of cilia positioning in multiciliated cells
is force dependent - flow itself has been shown to modulate cilia ori-
entation in brain ependymal cilia (Guirao et al., 2010) and is mediat-
ed by Pkd1 and Pkd2 (Ohata et al., 2015). This mechanism, though,
does not seem at work in the node where cells are monociliated,
since pkd2 mouse mutants do have normal nodal flow (Yoshiba et
al., 2012). In addition, exogenous strain polarizes apical microtu-
bules, and align stable components of the PCP pathway orthogonal
to the axis of strain in the developing skin of xenopus (Chien et al.,
2015). Thus, it seems that oriented tissue strain can play a role in de-
termining the global axis of planar polarity in vivo (Chien et al.,
2015). It will be interesting to test if tissue strain is oriented in the
node and if cilia orientation can be affected as a consequence of
strain, and, potentially, mechanotransduction. Furthermore, the
mechanism that position the cilium is thought to be microtubule de-
pendent, but the role of actin might have been understudied. The re-
cent discovery that the centrosome also acts as an actin organizer
might trigger more effort in that direction of research (Farina et al.,
2016).



Fig. 2. Cilia position and orientation is important for cilia-drivenflowgeneration in the left-right organizers (LRO): (A) the ciliumorientation is initially determined by its basal body (green
struture). A cross section on the basal body (inset) shows its nine-fold symmetric organization. The basal body dictates at some extent the degree towhich cilia are tilted at the cell surface
and thus, could be linked to the correct direction of cilia-drivenfluid flow in the LRO. (B) Cilia in LRO rotate in a chiralmanner, depending on theway themotor dyneins crosslinkwith the
set of microtubules inside the cilium (inset). Different structures can be found in themotile cilia of the LRO: in themouse Node, the motile cilia have a typical 9 + 0 structure (absence of
central pair), whereas in the zebrafish Kupffer's vesicle the central pair is present (9 + 2 structure as shown in the inset). Cilia rotation set the forces to generating a chiral fluid flow,
capable to break the symmetry of many vertebrates. Furthermore, cilia-driven flow generated in connection with the cell cytoskeleton (red:actin and green:myosin), and in addition to
an expected contribution of the Planar Cell Polarity pathway, can employ a potent organization on the orientation of the basal body itself.
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6. Cell and tissue chirality in the process of asymmetric
morphogenesis

The translation of molecular asymmetry into mechanical forces is
certainly best known from the work perfomed in cultured cells and,
more recently, in C. elegans under the impulsion of biophysicists.
Their work mainly focuses on the actomyosin network, which corre-
sponds to the key effector of the molecular motors that drive cell
shape and migration. Together, this work suggests that the entire
actin network at the cellular scale can have a chiral behavior in re-
sponse to the rotational forces produced at the focal adhesion of
the cells (Naganathan et al., 2016; Tee et al., 2015). Recent studies
provide new insights on the chiral organization of the actin network
(Chen et al., 2012; Naganathan et al., 2014; Tee et al., 2015). Chen
and colleagues have shown that when vascular mesenchymal cells
grow until confluency on micro-patterned stripes, they align in a
constant chiral fashion, which could be disrupted by drug treat-
ments for myosin II or Rho signaling (Chen et al., 2012) (Fig. 3B).
Also, for single fibroblasts plated onto round micro-patterns, it was
shown that the actin cytoskeleton self-organizes in a chiral pattern,
revealing an unusual transition from a radially symmetric pattern
to another that is chiral (Tee et al., 2015). Interestingly, the handed-
ness of the chiral pattern can be changed by a single protein, the
alpha actinin 1, suggesting that cell chirality can be turned on and
off by a single protein (Tee et al., 2015). In another study using C.
Fig. 3. Different scales of chiral organization: from molecular to tissular level: (A) Cross sectio
arrangement of microtubules (in blue), crosslinked in a chiral fashion by motor proteins calle
dyneins (and other) proteins, that generate internal forces that localy slide the microtubules, l
are chiral and naturally spread with a chiral order when plated on a dish. The chiral organiza
this schematics, confluent vascular mesenchymal cells (in brown) grow until confluency o
dependant fashion. (C) An example of an internal organ whose formation and morphogenesis
elegans, Naganathan and colleagues quantitatively demonstrated
that the generation of active chiral torques by the actomyosin cortex
facilitates chiral symmetry breaking along the antero-posterior axis
of the embryo (Naganathan et al., 2014). Also, they have shown
that active torques are dependent on myosin activity, and can be al-
tered by modulating Rho signaling (Naganathan et al., 2014). Taken
together, these studies argue for the idea that chirality of cells and
tissues might be dependent on the proper alignment of molecular
torques generated by the actomyosin activity. While still early, it is
tempting to extend this concept to chiral morphogenetic rearrange-
ments that have been observed at other stages in C. elegans develop-
ment (Pohl and Bao, 2010) and during the first cleavage (Schonegg
et al., 2014; Singh and Pohl, 2014).

In summary, interesting hypotheses are now emerging in order to
explain the role of subcellular asymmetries at the embryonic scale in or-
ganisms possessing a left-right organizer. An intriguing possibility is
that cell chirality could be used as an additional element to provide
the embryo with handedness, forcing tissue asymmetries independent-
ly of the canonical left-right signaling pathway (McDowell et al., 2016)
(Figs. 1 and 3).

6.1. Gut looping chirality

One of themost striking examples of asymmetric organmorphogen-
esis in response to left-right (LR) positional cues (Burdine and Schier,
n of a motile cilium, characterized by an axoneme, which consists of a regular cylindrical
d dyneins (in dark grey). Inside the axoneme of the cilium, it is the action of crosslinking
eading in turn to the bending of the cilium. (B) At the cellular level, various types of cells
tion of the actin network itself may explain this behavior is then translated to the cell. In
n fibronectin plates (in grey), and then align in a constant chiral fashion, in an actin-
is dependent on cellular and molecular chiralities is the embryonic heart.
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2000; Levin, 2005; Tabin and Vogan, 2003) is the gut, in which the liver
is positioned on the left side, whereas the pancreas remains on the right
side of the body plan. Also the intestine rotates and folds in a complex
pattern to facilitate its packing in the abdominal cavity (Horne-
Badovinac et al., 2003). In vertebrates, the embryonic gut tube forms
the intestines through a characteristic looping after an initial 270° rota-
tion (Savin et al., 2011). Savin and colleagues analyzed the effects of
forces at a tissue scale level during the gut morphogenesis in chick em-
bryos (Savin et al., 2011). They have proposed that homogeneous and
isotropic forces, which arise from the relative growth between the gut
tube and the dorsal mesentery (DM) could be at the origin of the gut
loop formation in the chick embryo (Savin et al., 2011). Based on their
experimental observations, after physical separation of the DM from
the gut, the intestine uncoils into a straight tube, indicating that it was
under compression, whereas the unconstrained DM contracts, indicat-
ing that was under tension. Thus the gut–DM complex is essential to
maintain the mature loops in the gut (Savin et al., 2011). Their theoret-
ical model captured the key properties of the looping patterns, strongly
suggesting the gut looping pattern is established by the balance of forces
induced by the relative growth between the gut-DM complex (Savin et
al., 2011).

Yet, the mechanism that drive asymmetric positioning of the gut is
not only mechanical but follows asymmetric cues acting downstream
of the canonical left-right pathway. Visceral organs are surrounded by
a basementmembrane (specialized ECM) that mediates mesoderm-en-
doderm interactions critical for organogenesis. Work done in chick and
mouse (Davis et al., 2008; Kurpios et al., 2008) has shown that the
looping direction of the gut is established by modifications both in the
ECM and in the adhesion of mesenchymal cells. In silico data proposed
that mesenchymal cells are more densely packed on the left side, and
this can be a consequence of LR asymmetries in both ECM and cell-cell
adhesion (Kurpios et al., 2008). These asymmetries are regulated by
the asymmetrically expressed Nodal-induced transcription factors
Pitx2, Isl1 (both left) and Tbx18 (right) (Davis et al., 2008; Kurpios et
al., 2008). Both Pitx2 and Isl1 up-regulate N-cadherin activity on the
left DM, thus changing themorphology of epithelial cells and increasing
the aggregation level of mesenchymal cells on the left DM (Kurpios et
al., 2008). Both cell changes promote a tilt in the developing midgut
that provides the LR bias needed to later induce the counterclockwise
gut rotation, and failure to do so leads to defects in gut rotation (Davis
et al., 2008; Kurpios et al., 2008). Even though Pitx2 has a major role is
the gut development, its cellular targets that drive asymmetricmorpho-
genesis are not known. Welsh and colleagues have shown that Pitx2-
specific effectors mediateWnt signaling and thatWnt pathway compo-
nentswere asymmetrically expressed according to the LR axis (Welsh et
al., 2013). Their work established a link between actin dynamics and
cadherin-based junctions, which culminate in the asymmetric cell be-
haviors seen during gut morphogenesis in chick embryos (Davis et al.,
2008; Kurpios et al., 2008;Welsh et al., 2013). Also,Mahadevan and col-
leagues have shown that the process of arteriogenesis in the DM begins
during gut rotation and continues strictly on the left side, and is depen-
dent on the Pitx2 target gene Cxcl12. The same work revealed that gut
lymphangiogenesis starts on the left DM, in a process dependent on
gut arteriogenesis. Thus, they have proposed that the Pitx2 LR-pathway
drives arterial and lymphatic vessels development in the gut
(Mahadevan et al., 2014) (Fig. 1B).

In zebrafish, the gut tube originates from a solid rod of endodermal
cells that forms a lumen as the cells polarize (Ng et al., 2005; Ober et
al., 2003; Wallace and Pack, 2003). During the looping of the gut, the
left and right LPM migrate separately, dorsal and ventrolateral to the
gut, respectively (Horne-Badovinac et al., 2003). This asymmetric mi-
gration displaces the gut to the left. It occurs specifically within the
gut-looping region and requires functional LR gene expression and es-
tablishment of epithelial polarity within the LPM (Horne-Badovinac et
al., 2003).Mutations that disrupt the epithelial structure of the LPMper-
turb this asymmetric migration and inhibit gut looping. Asymmetric
LPM migration still occurs when the endoderm is ablated from the
gut-looping region, suggesting that the LPM can autonomously provide
a motive force for gut displacement (Horne-Badovinac et al., 2003).
Work from Yin and colleagues gave new insights about the role of the
ECM remodeling during the asymmetric migration of the LPM during
zebrafish gut looping (Yin et al., 2010). They have shown that a localized
reduction of laminin deposition is necessary for the asymmetric cell re-
arrangements within the LPM, as a consequence of the degradation of
the basement membrane at the LMP-gut boundary. Thus, it was re-
vealed that such LPM-ECM interaction is crucial for the asymmetric mi-
gration of the LPM during gut-looping (Yin et al., 2010). Hochgreb-
Hagele and colleagues continued exploring the role of laminin in this
context (Hochgreb-Hagele et al., 2013). Using lamininmutants, they ob-
served that due to the lack of basement membrane at the LPM-gut
boundary, some LPM cells escape from the LPM and protrude into the
gut. Such cell behavior disrupts the normal communication between
the LPM cells and stops the collective migration of the LPM
(Hochgreb-Hagele et al., 2013). Therefore, there is now enough evi-
dence supporting the important role of the ECM during the establish-
ment of LR axis during the organogenesis of visceral organs.
Furthermore, it is established that the epithelial LPM determines the
chirality of gut looping and thus the asymmetric position of the diges-
tive organs in several vertebrates (Davis et al., 2008; Hochgreb-Hagele
et al., 2013; Kurpios et al., 2008).

In invertebrates, LR asymmetries can be also observed. Several
tissues in the fruit fly Drosophila melanogaster display LR
asymmetries and chiral morphogenesis, like the brain, Malpighian
tubules, genitalia and gut (Geminard et al., 2014). The discovery of
the conservedmyosin ID gene (MyoIC andMyoID) as being a main el-
ement of LR asymmetry revealed a novel pathway involving actin cy-
toskeleton and adherens junctions (Hozumi et al., 2006; Speder et
al., 2006). MyoID is a dextral determinant for the orientation of all
Drosophila LR visceral organs (Hozumi et al., 2006; Speder et al.,
2006). Mutants for MyoID show reversed lateralization of the inter-
nal organs (Hozumi et al., 2006; Speder et al., 2006; Speder and
Noselli, 2007). Furthermore, knockdown of myoID in a specific tissue
lead to abnormal LR phenotypes exclusively in the affected tissue,
without disturbing the laterality of other organs (Speder et al.,
2006). This suggests the existence of additional tissue-specific LR or-
ganizers (LRO) that remain to be characterized. Furthermore, in
these LROs, it was shown that beta-catenin and DE-cadherins (Dro-
sophila E-cadherin homolog) play an important role (Hozumi et al.,
2006; Petzoldt et al., 2012; Speder et al., 2006), since asymmetric
distribution of DE-cadherin dictates the coiling direction of the em-
bryonic hindgut in Drosophila (Taniguchi et al., 2011).

Also, the work of Okumura and colleagues have identified zipper,
which encodes aDrosophila non-musclemyosin II heavy chain, as an es-
sential gene for the biased positioning of the embryonic anteriormidgut
(Okumura et al., 2010). They found myosin II was involved in the two
major events in the LR patterning of the embryonic anterior midgut,
concerning the biased positioning of the circular visceral muscle cells
(that cover themidgut epithelium) and the rotation of themidgut itself.
They have proposed that myosin II is responsible for the generation of
force needed to lead to a LR biased morphogenesis (Okumura et al.,
2010). Later, the work of González-Morales and colleagues showed
that a molecular link between myoID and the Planar Cell Polarity atyp-
ical cadherin Dachsous (Ds). MyoID interacts with the intracellular do-
main of Ds, an essential link for the dextral polarity of neighboring
hindgut progenitors and required for organ looping in Drosophila
(Gonzalez-Morales et al., 2015). Taken together, it was shown in Dro-
sophila that adherens junctions, myosin and PCP are important to con-
nect LR asymmetry and cell and organ polarity. Also, it seems
Drosophila has a unique mechanism to establish the LR through differ-
ent organizers, since in vertebrates it is more or less established that a
single developmental event is sufficient to determine LR patterning for
all internal organs (Geminard et al., 2014).
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6.2. Heart chiral looping

Another example of an internal organwhose formation is dependent
on mechanical forces is the embryonic heart (Forouhar et al., 2006;
Hove et al., 2003; Voronov et al., 2004) (Fig. 1B). Noel and colleagues,
by using an ex-vivo heart culture system, have shown the dextral
heart looping is a tissue-intrinsic process that requires the activity of
actin and myosin (Noel et al., 2013). They have also demonstrated
that Nodal signaling regulates α-actin1b gene expression
asymmetricaly, suggesting that asymmetric Nodal signaling may en-
hance a cytoskeleton-based tissue-intrinsic mechanism of heart
looping. Thus, this work supports the idea that chiral heart looping is a
tissue-intrinsic process that could be controlled by both Nodal-depen-
dent and -independent mechanisms (Noel et al., 2013).

Work done in the developing mouse heart (Linask et al., 2003;
Linask et al., 2002; Lu et al., 2008) has shown that non-muscle myosin
heavy chains IIA and IIB are asymmetrically expressed in the embryonic
heart tube, and also, that their position seems to be strictly correlated
with the direction of heart looping regardless of the expression of
Pitx2. Moreover, when myosin-based tension generation is disrupted
during the initial stages of heart looping, the whole process of cardiac
morphogenesis is impaired (Wei et al., 2002). It does not seem that
the constant variation of tension associated with heart contraction is
important for heart looping as the heart still loops properly in the ab-
sence of contraction (Noel et al., 2013; Sehnert et al., 2002). Thus, it
seems that tissue scale tension generated by differential cell shape is in-
volved in providing the force for proper looping. Additional mechanical
cues provided by the pericardial cavity might also be important
(Bayraktar and Manner, 2014). Studies of heart looping biomechanics
in chick embryos have produced interesting models to explain heart
looping (Bayraktar and Manner, 2014; Shi et al., 2014). Bayraktar and
Männer used a physical model to show that differential growth of the
heart and pericardial cavity could contribute to a compressive load
that provides extrinsic determinants for heart looping mechanics. Sim-
ulations of the growing heart tube constrained within the cavity buckle
into a helical shape consistentwith the shape of the c-looped heart tube
(Bayraktar and Manner, 2014). In contrast to the “growth-induced
buckling hypothesis” suggested by Bayraktar and Manner, Shi and col-
leagues proposed amodel inwhich thedifferential hypertrophic growth
of the myocardium acts as the main force responsible for bending the
heart tube. Furthermore, they explore the fact that other regional
growth and cytoskeletal contractions, as well as external compressive
loads, drive the biased torsion of the heart tube. Here, the bending
would be driven mainly by forces generated within the heart tube,
while torsion would be caused by external loads (Shi et al., 2014).
Even though biomechanical modeling of the embryonic heart is a pow-
erful approach, there are still a number of parameters, such as the con-
tribution of bending and torsion to the looping of the heart tube, that
still remain difficult to assess experimentally making the current
models difficult to validate.

6.3. Forces modulating branchial arch artery system asymmetry

Sometimes altered distribution of mechanical forces can provide
surprising outcomes in the process of asymmetric development. The
work of Yashiro and colleagues probably illustrate this the best. They
showed that ablation of the unilateral asymmetric Pitx2 expression im-
pairs asymmetric remodeling of the branchial arch artery system, caus-
ing the aortic arch to develop with randomized laterality (Yashiro et al.,
2007). They proposed a model in which Pitx2 induces a regional mor-
phological change that consequently generates an asymmetric blood
flow in that region. The uneven distribution of blood flow induces a dif-
ferential response of growth factors, leading to the maintenance of the
left branchial arch artery and regression of its right counterpart, forming
this way a left-sided aortic arch (Yashiro et al., 2007). Considering vas-
cular morphogenesis is dependent on hemodynamics (Boselli et al.,
2015; Freund et al., 2012), it is possible that the same flow responsive
gene network involved in angiogenesis is at work in this process (Fig.
1B). In particular, it seems likely that a feedback loop involving stretch
sensitive channels, such as Piezo 1 (Li et al., 2014; Ranade et al., 2014)
could be involved in modulating endothelial cell response to forces
and alter branchial arches morphogenesis. Interestingly, the homolog
of klf2, a transcription factor whose expression is controlled by shear
stress in vivo (Dekker et al., 2002; Lee et al., 2006), klf2a in zebrafish,
has been shown to control branchial arches morphogenesis in response
to flow forces (Nicoli et al., 2010).
7. Conclusion

It is now clear thatmechanical forces constitute an essential element
to include for our understanding of left-right patterning and asymmet-
ric morphogenesis. At both the cellular or tissue scales, a number of un-
expected asymmetric inputs can be provided by mechanical forces.
They finally translate into asymmetric cell migration, directional flow
mediated by beating cilia or chiral spreading of the cells. Together, it
seems that mechanical forces can be used to balance or modulate the
strong inputs of genetic signals in order to refine or reinforce the cell
or tissuemovements that are associatedwith asymmetric development.
Not surprisingly, a number of these forces depend on cell contractility
and actomyosin modulators. We predict that a lot will be gained from
in vitro studies and biophysical studies aiming for the identification of
the origins of the cellular chirality and how they are connected with
the structural component of actomyosin proteins to generate the rota-
tional forces at the base of the chiral organization of the actin network.
Obviously, identifying the mechanism activating or inibiting chiral
torque generation mediated by the actin cytoskeleton will be necessary
to clarify the role of cytoskeletal chirality during left-right patterning
and morphogenesis. We foresee key inputs coming from studies of self
organising explants systems such as gastruloids, where axis patterning
and nodal function start to be unravelled (Turner et al., 2016). Further-
more, quantifying the asymmetric forces generated within the LRO and
during asymmetric morphogenesis will help to identify what are the
relevant forces andwhat potential mechanosensors are involved. Final-
ly, the array of mechanosensors at work in each system remain to be
studied, and animal models like zebrafish, xenopus and chicken will
help a lot in that quest because of their accessibility to experimentation
and the possibility to directly impose forces on the embryo. Alternatives
including organoids and theuse 3D scaffolds should help in that quest as
well (Clevers, 2016).
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