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Bose-Einstein-condensation dynamics with a quantum-kinetic approach
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The evolution equation of a weakly interacting boson system is derived. The model includes the interaction
between the atoms in the condensate and the surrounding gas of noncondensed particles. The Bogoliubov
transformation is introduced in a full quantum context and the scattering kernel between dressed particles
and the condensate phase is obtained. The final system is expressed by the Boltzmann evolution equation for
noncondensed particles coupled to the Gross-Pitaevskii equation for the condensate. We consider an out-of-
equilibrium situation that induces a fast production of condensed particles. We apply our model to study the
condensation dynamics of positronium atoms by evaporation.
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I. INTRODUCTION

The study of Bose-Einstein condensation has emerged as
a multidisciplinary discipline of theoretical and experimental
physics. The main concept at the basis of the Bose-Einstein-
condensation process is that below a critical temperature, a
macroscopic fraction of bosons collapses into the lowest-
energy state: the zero-momentum state in free space or the
ground state for a system in a confining potential [1]. In
the ideal case of a noninteracting boson gas, the critical
temperature Tc is given by

Tc = 2πh̄2

mkB

(
n

2.612

)2/3

,

where n is the density of the gas, m is the mass of the
particles, and kB is the Boltzmann constant. In contrast, no
simple and general formulas can be derived for the time
necessary to reach the thermodynamical equilibrium and form
the condensate. The condensation time can be estimated only
by analyzing the details of the cooling process of the gas.
The Bose-Einstein-condensation process is usually studied for
stable atoms. Consequently, the value of the time necessary
to reach the condensed state does not have a strong influence
when the condensation experiments are designed.

Since the possibility to create a Bose-Einstein condensate
made of positronium has been addressed [2], an increasing
effort has been devoted to the study of this metastable atom. A
positronium atom consists of an electron and its antiparticle,
the positron, bound together. Positronium possesses a mass
that is considerably smaller than the typical mass of the
atoms usually employed in the condensation experiments.
As a consequence, a positronium gas should condensate at
a temperature several orders of magnitude greater than the
critical temperature of, for example, rubidium. The ground
state of positronium consists of triplet states with total spin
one and a singlet state with total spin zero. The total angular
momentum of the positronium atoms fixes their lifetime and
decay channels. The triplet state, orthopositronium, annihilates
into three photons and has a mean lifetime of 142 ns. The
singlet state, parapositronium, disappears at around 125 ps
by emitting two γ photons. This short lifetime is a strong
limit for the production of a condensate made of positronium.
In this contribution, we explore the possibility to accelerate
the production of a condensate by considering a strongly

out-of-equilibrium situation. We derive the evolution equation
of a weakly interacting boson system. The exact low-energy
spectra is included in the model. The Bogoliubov transforma-
tion is derived in a fully quantum context and the scattering
kernel is derived. We model the evaporative cooling process by
inserting a cutoff in the energy distribution of a uniform particle
gas. The strong nonlinear interaction between condensed and
noncondensed particles leads to an efficient and fast collapse
of the particles in the ground state.

II. MODEL

Here, we derive the evolution equations for the condensed
phase and the noncondensed particles of a weakly interacting
Bose gas in the quantum-kinetic formalism. The quantum-
kinetic formalism constitutes a fully quantum framework
where the semiclassical description of the particle motion
is easily recovered in the limit h̄ → 0. It displays strong
analogies with the classical phase-space description of a sta-
tistical system. In this context, inhomogeneity and scattering
mechanisms are easily included and quasiequilibrium regimes,
such as the hydrodynamic approximation of the diffusive
transport, can be naturally obtained. Technically, in our model,
the dynamics of weakly interacting bosons is described by
combining the quantum Wigner formalism with some general
approximations such as the Markovian assumption and the
Bogoliubov-Popov description of the pseudoparticles. The
collision processes are reproduced by applying the Baliev
many-particle theory [3]. In order to develop a consistent
formalism, we treat separately the particles in the ground
state (forming the condensate) and the quasifree gas of atoms
(which constitute a reservoir of noncondensed particles) [4,5].
The evolution equations are obtained by the application of
the Bogoliubov transformation and the definition of a suitable
set of creation-annihilation operators for quasiparticles. The
new particle fields differ from the original ones by the value
(c number) of the wave function of the many-body condensate,
usually called the “order parameter.” Since the seminal
contribution of Bogoliubov, an in-depth investigation of the
properties of bosons dressed by the condensate interaction has
been performed by various authors. The general properties of
the many-body excitation and renormalization procedures are
known. In Ref. [6], a clear review of this research field is
presented.
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The Boltzmann dynamics in the classical or semiclassical
approximation is a well-established framework for the simula-
tion of nonequilibrium phenomena in diluted gas. Dynamical
models based on the Boltzmann formalism have been applied
to the study of the evolution and thermalization processes
of a gas in the supercritical regime. In the field of polariton
condensation, the Boltzmann phase-space approach was used
to predict many details of the delicate condensation mechanism
of this element [7]. Numerical simulations based on the
Boltzmann dynamics are also used for the study of the
excitation spectra of the condensate [8,9].

The many-body Hamiltonian describing interacting bosons
in the presence of an external potential U is given by (see, for
example, [1,10])

K =
∫

ψ†(r)

[
−h̄2�

2m
+ U − μ

]
ψ(r)dr

+ g

2

∫
ψ†(r)ψ†(r)ψ(r)ψ(r)dr,

where ψ (ψ†) denotes the annihilation (creation) operator of
the bosons and μ is the chemical potential. The elementary
particle-particle scattering event is modeled by the hard-sphere

interaction with collision strength g = 4πh̄2a/m, where a is
the scattering length and m is the mass.

In order to develop a convenient mathematical formulation
of the problem, it is essential to distinguish between the
particles that form the condensate and those belonging to
the surrounding gas. The simplest way to proceed is to
consider the evolution dynamics of the particles, discarding
the quantum-mechanical nature of the condensate. With this
simplification, the condensate is the collection of all of the
particles with zero momentum. The condensation can be easily
described by monitoring the value of the particle distribution
function f (p,t) for p = 0 under the macroscopic scaling:
limN→∞ f (p = 0)/N = n0 > 0, where N is the total number
of particles of the system. This approach is one of the
first methods used to describe the condensation dynamics of
polaritons [7,11].

Here, in contrast, we adopt a fully quantum approach. The
condensate part of the field operator can be separated from the
rest of the particle gas by using the transformation ψ = 〈ψ〉 +
ψ̃ , where the field ψ̃ satisfies 〈ψ̃〉 = 0 and 〈ψ〉 = � is the Bose
macroscopic wave function (order parameter) [6]. The bracket
〈·〉 denotes the expectation value. With this decomposition, the
Hamiltonian becomes

K =
∫ {

�

(
k + g

2
|�|2

)
� + [(k + g|�|2)�]ψ̃ + [(k + g|�|2)�]ψ̃† + ψ̃†(k + g|�|2)ψ̃

+ g

2
(�

2
ψ̃ψ̃ + �2 ψ̃†ψ̃† + 2|�|2 ψ̃†ψ̃) + g

(
� ψ̃†ψ̃ψ̃ + � ψ̃†ψ̃†ψ̃ + 1

2
ψ̃†ψ̃†ψ̃ψ̃

)}
dr,

where an overline denotes conjugation and

k = −h̄2�

2m
+ U (r) − μ.

In this form, the Hamiltonian shows the typical character of a system containing a condensate phase. K contains three-field
terms that do not conserve the number of particles and originate from triplet correlation terms of the form 〈ψ̃†ψ̃†ψ̃〉. They
describe the transfer of an atom into or out of the condensate [12]. Following Ref. [13], we describe the bosonic field in a
reference frame that is at rest with respect to the condensate speed Vc = h̄

m
∇rϕc, where ϕc is the phase of the order parameter

� = √
nc eiϕc(r,t). This is obtained by the unitary transformation

UVc
(t) = e−i

∫
ϕc(r,t)ψ̃†(r)ψ̃†(r)dr.

The Hamiltonian in the new reference system is

UVc
K U†

Vc
=

∫ {(
g

2
n2

c + ncmc

)
+ [

mc + gn3/2
c

]
ψ̃† + [

mc + gn3/2
c

]
ψ̃ + ψ̃†

[(
k + 2gnc + m

2
V2

c

)
ψ̃

]
+ Vc[ψ̃†←→j ψ̃] + g

2
nc(ψ̃ψ̃ + ψ̃†ψ̃†) + g

√
nc(ψ̃†ψ̃ψ̃ + ψ̃†ψ̃†ψ̃) + g

2
ψ̃†ψ̃†ψ̃ψ̃

}
dr, (1)

where we defined

mc ≡ − h̄2

2m
[�

√
nc + i2∇ϕc∇√

nc + i�ϕc

√
nc − √

nc(∇ϕc)2] + √
nc(U − μ),

ψ̃†(r)
←→
j ψ̃(r) ≡ ih̄

2
{[∇ψ̃†(r)]ψ̃(r) − ψ̃†(r)[∇ψ̃(r)]}.

Following Ref. [6], we adopt the so-called zero-gap approximation mc ≡ −gn
3/2
c .
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III. NONCONDENSATE GAS: EQUATION OF MOTION

In this section, we derive the evolution equation for the
noncondensed part of the boson gas. The system is described
by the following 2 × 2 density matrix:

ρ̂(r,r′,t,t ′) = 	(r,t)[	†(r′,t ′)]t

=
(

ψ̃(r,t)ψ̃†(r′,t ′) ψ̃(r,t)ψ̃(r′,t ′)
ψ̃†(r,t)ψ̃†(r′,t ′) ψ̃†(r,t)ψ̃(r′,t ′)

)
, (2)

where we introduce the compact notation 	 = ( ψ̃

ψ̃† ). The form
of the density matrix given by Eq. (2) is quite unusual for the
description of the dynamics of an atomic gas. Since the non-
diagonal terms do not conserve the total number of particles,
they vanish for every statistical ensemble of eigenstates of the
number operator. This is the standard situation for the large
majority of systems that can be encountered in solid-state or
plasma physics. The presence of a condensed phase induces
strong correlations among particles with small momenta. The
ground state is a coherent quantum superposition of states with
different occupation numbers. This makes the analysis of the
particle motion more difficult. The presence of the two-field
terms ψ̃ψ̃ , ψ̃†ψ̃† generates a quite impressive proliferation of
Feynman diagrams. They are generally denoted “anomalous”
terms. Moreover, the 2 × 2 matrix form of the density ρ̂

introduces two dynamical variables (the diagonal elements
are the same except for a commutation) 〈ψ̃ψ̃〉, 〈ψ̃†ψ̃†〉 whose
presence modifies the evolution of the usual probability density
〈ψ̃†ψ̃〉. The exact evolution equation for ρ̂ is generally hard to
solve. The technical difficulties can be considerably reduced
if the density matrix is always maintained approximatively
diagonal. This can be done by exploiting the Bogoliubov
transformation. We introduce the Green function

Ĝ(r,r′; t,t ′) = −iT {	(r,t)[	†(r′,t ′)]t }, (3)

where T denotes the temporal ordering operator. The evolution
equation for G is

σz Ĥt 〈Ĝ(r,t ; r′,t ′)〉 = h̄δ(t − t ′)δ(r − r′) + 〈S Ĝ〉, (4)

where we defined Ĥt = ih̄ ∂
∂t

− σzĤ(r,t) and

Ĥ(r,t) =
(

ĥ gnc

gnc ĥ

)
(5)

with

ĥ = 1

2m
[−ih̄∇r + mVc(r,t)]2 + U (r) − μ

+ 2gnc(r,t) + 2gn(r,t). (6)

Here, σz denotes the spin Pauli matrix ( 1 0
0 −1 ), δ is the Dirac’s

delta function, and S is the self-energy operator. The last term
of Eq. (6) is the Hartree-Fock mean field contribution of the
noncondensed particles (n denotes the density of the gas). The
explicit form of S is given in Appendix B.

Below the critical temperature, the excitation spectra is
more conveniently expressed by the quasiparticle energies
rather than the bare-particle energies [6,14]. Expressing the
equation of motion in terms of the Bogoliubov quasiparticles
leads to several technical difficulties. In Refs. [14,15], the
spectral density is written in terms of the eigenfunctions of

the 2 × 2 Hamiltonian given in Eq. (5). The quasiparticle
approximation (which states that the Bogoliubov excitations
have a infinite lifetime) is adopted. This method is exact
only for uniform systems or, equivalently, up to the zeroth
order in the Planck constant h̄. Here, we adopt a different
strategy. We express the evolution of the system in the quantum
phase-space formalism developed by Wigner and Weyl. We
perform a unitary rotation of the original representation that
can systematically be developed in terms of h̄. This method has
already been applied to other systems [16,17]. In particular, we
recover the Bogoliubov transformation at the leading order of
the h̄ expansion. For the development of the theory, it is useful
to write the equations of motion in a formalism where the time
and space variables are treated symmetrically. We consider the
following two-time Wigner-Weyl transformation:

G(R,p; T ,ω)

≡ W−1[Ĝ(r,t ; r′,t ′)](R,p; T ,ω)

= 1

(2π )4

∫
Ĝ

(
R + h̄η

2
,T + h̄τ

2
; R − h̄η

2
,T − h̄τ

2

)
× e−i(p·η−τω)dηdτ. (7)

The Wigner-Weyl quantization procedure provides a con-
venient representation of a generic quantum-mechanical op-
erator by a function defined in the phase space. This is an
intermediary situation in between the standard position or
momentum representation of the density matrix. One of the
main advantages of introducing the Wigner-Weyl map [Eq. (7)]
is the availability of the so-called Moyal product �,

W−1[Â B̂](r,p; T ,ω) ≡ A � B
= A e

ih̄
2 (

←−∇r·−→∇p−←−∇p·−→∇r)− ih̄
2 (

←−
∂T ·−→∂ω−←−

∂ω

−→
∂T )B.

(8)

Here, Â, B̂ are quantum-mechanical operators and we used
the notation A(r,p) ≡ W−1[Â]. The exponential expressions
contained in Eq. (8) have the meaning of h̄ expansion,

Ae
ih̄
2 (

←−∇r·−→∇p−←−∇p·−→∇r)B

=
∑

n

(
ih̄

2

)n 1

n!
A(r,p)[

←−∇r · −→∇p − ←−∇p · −→∇r]nB(r,p). (9)

The arrows indicate the operators on which the derivatives
act (a similar expression holds for the time-energy term). The
Moyal representation of the Hamiltonian operator is

Ht = W−1{Ĥt } = ω − p · Vc(r,t)

−
(

e(r,p,t) −gnc(r,t)
gnc(r,t) −e(r,p,t)

)
,

where we defined

e(r,p,t) = p2

2m
+ 1

2
mV2

c(r,t) + U (r) − μ

+ 2gnc(r,t) + 2gn(r,t). (10)

From Eq. (4), it follows that

[Ĥt ,〈Ĝσz〉] = 〈σz S Ĝ σz〉 − 〈Ĝ S〉, (11)

where the square brackets denote commutation. We express
the previous equation on the Bogoliubov basis by multiplying
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the evolution equation with a suitable unitary operator �̂ (a
similar projection procedure is explained in detail in [17]). We
multiply Eq. (11) by �̂ (left) and �̂−1 (right). We denote by K
the Hamiltonian written in the Bogoliubov basis,

K(r,p,t) = W−1{�̂Ĥt �̂
−1} = � � Ht � �−1.

The application of the Wigner-Weyl transform to Eq. (11) gives

W−1{[�̂Ĥt �̂
−1,Ĝ]} = [K,G]�

= W−1{�̂〈σz S �̂−1Ĝ〉
− 〈Ĝ �̂ σz S〉�̂−1}, (12)

where we defined G = � � 〈G〉 � σz�
−1 and the subscript

� indicates that the commutators are written in the algebra
of the Moyal product [A,B]� = A � B − B � A. The matrix
� defines the reference used to describe the system. It is
convenient to fix � such that the Hamiltonian symbol becomes
diagonal in the classical limit h̄ → 0. Explicitly, � is written

� = 1√
2E

( √
E + e

√
E − e

−√
E − e −√

E + e

)
, (13)

with

E =
√

e2 − g2n2
c . (14)

In this way, � Ht �−1 = ω − p · Vc − σzE. Equation (12)
provides the evolution of the noncondensed particles at all
orders in h̄ (fully quantum). As explained in Appendix A,
the � transformation extends the Bogoliubov definition of
quasiparticle to higher orders in h̄. The equation of motion is
displayed in a compact way in Eq. (12). Explicitly, it can be
written in a integro-differential form which is quite hard (but
not impossible; see, for example, [18] for a similar system)
to solve numerically. Anyway, in many cases, quantization
effects are not dominant. In the present work, we will limit
ourselves to derive the evolution equation at zeroth order in h̄.
We remark that the use of the Wigner-Weyl formalism allows
one to maintain a strict control of the approximations: the
h̄ expansion is a systematic procedure that we apply to an
evolution system that is, in principle, exact (compare with the
analogous systems derived in [14,15]).

The unknown of the evolution equation (12) is the Green
function, G(R,p; T ,ω). It is a 2 × 2 matrix whose variables
are the mean position R, the momentum p, the mean time T ,
and the energy variable ω. The latter arises from the Fourier
transformation which was performed on the time variables
of the field operators [see the definition given in Eq. (7)].
The operators ψ†(t)ψ(t ′) describe the temporal correlation
between two positions or momenta and the Fourier transform
of the difference t − t ′ provides the excitation spectra of the
system (it is a very general textbook result; see, for example,
[19]). In order to reduce the complexity of the system, we
assume the following quasiparticle approximation:

G≶ = −ih≶(R,p,T ,ω) I+ δ(ω − E(R,p,T ))

− ih≷(R, − p,T , − ω) I− δ(ω + E(R, − p,T )). (15)

Here, h is the new unknown of the problem, the superscripts
≶ indicate the less- and greater-than Green functions [19], and

I+ =
(

1 0
0 0

)
; I− =

(
0 0
0 −1

)
.

Equation (15) accounts for two approximations. First, we
assume that the solution is constituted by the sum of two
long-life excitations with energy ±E. This symmetry is a
general property of the solution and arises because not all
fields that compose the original density matrix given in
Eq. (2) are independent. In fact, by using the definition of the
Wigner-Weyl transform, it is easy to show that the following
property of the function h holds true [6]:

h≷(R, − p,T , − ω) = h≶(R,p,T ,ω). (16)

The second approximation contained in Eq. (15) is that G

is assumed to be always a diagonal matrix. This is justified
in the limit h̄ → 0. When Eq. (12) is written explicitly,
it is possible to verify that the nondiagonal terms of G

vanish at the leading order in h̄. This is analogous to the
situation encountered in similar problems describing particle
evolution in semiconductor or pseudospin systems [16,18].
With Eq. (16), Eq. (15) simplifies to

G≶ = −if ≶(R,p,T )[I+δ(ω − E(R,p,T ))

+ I−δ(ω + E(R, − p,T ))],

where f ≶(R,p,T ) = h≶(R,p,T ,ω). In particular,

i

∫
R+

Tr{G≶}dω = f ≶(R,p,T ), (17)

where Tr denotes the trace. Even though the quasiparticle
ansatz of Eq. (15) is used, Eq. (12) remains extremely complex
to solve. The h̄ expansion provides, systematically, a hierarchy
of approximated models. We derive the leading term of the
ballistic transport defined by the commutator [K,G]�. By using
Eqs. (8) and (9), after straightforward calculations, Eq. (17)
combined with Eq. (12) gives (a similar expression can be
obtained for f >)

∂f <

∂T
+ ∇rE · ∇pf

< − (Vc + ∇pE) · ∇pf
<

= 1

h̄

∫
R+

Tr {O} dω, (18)

where O denotes the less-than expression of
W−1{�̂〈σzS�̂−1Ĝ〉 − 〈Ĝ�̂σzS〉�̂−1}. The term O includes
all of the particle collision processes. Generally speaking,
the particle scattering can be classified in three different
type of processes: collisions among noncondensed particles,
collisions involving condensed and noncondensed particles,
and collisions within the condensate. Since the main interest
of this work is to reproduce the processes through which the
condensate is formed, we limit ourselves to consider the first
two types of collisions. A rich variety of models and studies
have established a quite clear understanding of the particle
collision processes that occur between a low-density gas and
a condensate. In particular, a great effort has been directed
to model cold heavy atoms or short-life systems such as
polaritons (see, for example, [20]). The analyses reveal that
when the conditions for the Bose-Einstein condensation are
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satisfied, namely, when the de Broglie wavelength of a low-
temperature gas is of the same order as the mean interparticle
distance, long-range particle-particle correlations should be
considered. Under this condition, the standard many-particle
expansion of the original Hamiltonian does not apply.

The first theoretical results concerning the many-body
ground state for weakly interacting bosons were given by
Bogoliubov. The main achievement of his approach was
to provide the correct energy dispersion of the elementary
gapless excitation of the system. A powerful and sophisticated
instrument for the analysis of the many-body ground and
excited states is provided by the Baliev theory [3] (see, for
example, [21,22] for a clear review of the main results of
the theory). Based on this theory, various authors extended
the results obtained by Bogoliubov. When all of the second-
order interactions are considered (Hartree-Fock-Bogoliubov
approximation), a gap in the excitation energy is introduced.
As shown by Griffin, this inconsistency can be avoided by
neglecting some nondiagonal terms appearing in the expansion
of the self-energy (gapless approximation: the procedure is
explained in detail in Ref. [10]). We include in our model
the main Hartree-Fock-Bogoliubov scattering processes in
the gapless approximation. The related Feynman diagrams
can be found, for example, in Ref. [6]. They describe
binary collisions between noncondensed particles [Eqs. (B1)
and (B2) below] and the scattering processes where only one
condensed particle is involved [Eqs. (B3)–(B8) below]. As

an example, the second type of processes includes transitions
where one particle is injected in the condensate after collision
with another noncondensed particle, and where an atom is
expelled from the condensate by collision with the surrounding
noncondensed clouds. We do not consider processes where
two or more particles in the condensed phase scatter together.
For low-density systems, these phenomena are expected to be
negligible. They are considered, for example, in Ref. [23].

By performing semiclassical expansion, it is possible to
show that the leading term in the collision kernel of Eq. (18)
can be written in the standard form,∫

R+
Tr{O}dω =

∫
Tr{�>〈G<〉 − �<〈G>〉}dω, (19)

where � is the sum of all of the terms that appear in
Eqs. (B1)–(B8). The main idea is that at the zeroth order,
the Moyal product reduces to the simple matrix product. The
cyclic permutation of the symbols in the curly bracket can be
used to eliminate the � matrix.

The calculations proceed straightforwardly. However, since
various scattering processes are included, the final result is
quite cumbersome. Details of the calculations are given in
Appendix B. The equation of motion for the noncondensed
phase becomes
∂f <

∂T
− ∇rE · ∇pf

< + (Vc + ∇pE) · ∇pf
< = WHF + Wcn,

(20)

where

WHF = 2g2

(2π )5

∫ ∏
j

dpj δ(E(p) + E(p1) − E(p2) − E(p3))δ (p + p1 − p2 − p3)

× [f >(p)f >(p1)f <(p2)f <(p3) − f <(p)f <(p1)f >(p2)f >(p3)]THF , (21)

Wcn = 4g2nc

(2π )2

∫ ∏
j

dpj δ(E(p) + E(p1) − E(p2))δ (p + p1 − p2) [f >(p)f >(p1)f <(p2) − f <(p)f <(p1)f >(p2)]Tcn

+ 2g2nc

(2π )2

∫ ∏
j

dpj δ(E(p) − E(p1) − E(p2))δ (p − p1 − p2) [f >(p)f <(p1)f <(p2) − f <(p)f >(p1)f >(p2)]Tcn. (22)

The explicit form of the scattering matrices THF and Tcn is
given in Eqs. (B9) and (B10) and f > = 1 + f <.

IV. CONDENSATE PHASE: GROSS-PITAEVSKII
EQUATION

The condensate atoms are described by the order parameter
�. Particularly relevant is the norm nc that accounts for
the number of particles in the Bose-Einstein state [10]. The
evolution equation of � is the so-called Gross-Pitaevskii
equation and is a firmly established instrument for the
investigation of the ground-state and dynamical excitations
of a weakly interacting Bose gas. It describes the motion
of the condensate in the presence of the Hartree mean field
produced by the other atoms in the condensate. At higher

temperatures, and in particular during the cooling process, the
interaction with the atoms that are thermally excited out of
the condensate cannot be discarded. Zaremba and co-workers
showed that the Bolzmann-like approach derived in Sec. III is
compatible with the Gross-Pitaevskii (GP) equation, provided
that a non-Hermitian term is inserted in the equation for the
order parameter [24,25,27]. The evolution equation for the
condensate is

ih̄
∂�(r,t)

∂t
=

[
−h̄2�r

2m
+ U (r) + g |�(r,t)|2 + 2gnc(r,t)

− i

nc

∫
Wcn(p)dp

]
�(r,t). (23)

The link between the condensed and noncondensed atoms
is expressed by the term Wcn. It can be easily understood
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in terms of a balance of particles. Since the total number
of particles is conserved, a source-sink term that gives the
number of particles entering or leaving the condensate is
present [26]. We now make a few remarks on the effect of
the Hartree-Fock (HF) potential of the noncondensed cloud on
the solution of the coupled Boltzmann-GP equations. In the
case of a uniform system, the chemical potential of the
condensate (obtained by the standard substitution ih̄ ∂�(r,t)

∂t
→

μ�) equals μ = U + gnc + 2gn. Sometime this expression
is applied also to nonuniform systems, and in this case is
known as the Thomas-Fermi approximation (see, i.e., [6]).
The quasiparticle dispersion relation simplifies

E =
√[

p2

2m
+ 1

2
mV2

c(r,t) + gnc(r,t)
]2

− g2n2
c .

This expression shows that the HF contribution of the noncon-
densed cloud does not appear explicitly in the expression of the
quasiparticle energy. When the Thomas-Fermi approximation
is no longer valid, this term modifies the condensate density
nc and, indirectly, the energy of the noncondensed particle
gas.

A. Numerical applications: Evaporation dynamics

Equations (20) and (23) describe the interaction between
condensed and noncondensed particles. The numerical resolu-
tion of this system proceeds with several difficulties. The main
reasons are the presence of nonlinearity in the collision kernel
and the divergence of the distribution function at p = 0. The
latter is intrinsically related to the Bose-Einstein-condensation
mechanism. The scattering coefficients are strongly nonlinear
functions of the local condensate density. The interactions
among dressed particles are considerably more complicated
than the simple s-wave hard-sphere scattering that charac-
terizes the bare positronium. The numerical implementation
of the dynamics of a boson gas with bare interactions was
already studied [9]. The validity of the model was restricted
to the description of the interaction between a warm gas
and condensate. In fact, the use of the bare bosons instead
of the dressed particles is correct only for large momenta.
The study of the condensation processes should require
a careful modeling of the dynamical processes that take
place in proximity of the condensate energy. As shown in
Eq. (14), in our approach, the Bogoliubov excitation spectrum
is considered. The dispersion relation of the dressed particles is
nonparabolic around p = 0, where it becomes linear (gapless
phononlike behaviors).

We provide a few details concerning the numerical im-
plementation of the evolution equations. The use of the Bo-
goliubov spectrum has the advantage that when the condensate
density changes, the spectrum of the noncondensed particles is
consistently modified. In this case, an energy mesh consisting
of equally spaced points is a natural choice. This contrasts with
the approach described in Ref. [28] where two discretization
meshes are required (a fine and a coarse grid, respectively,
for the condensed and noncondensed band is applied) and,
in Ref. [29], where a suitable energy transformation is
considered. The explicit form of the collision integrals used in
the numerical implementation is given in Appendix C and they

are evaluated by the simple trapezoidal rule. The advantage of
this choice is that the energy conservation is numerically exact.
A fourth-order Runke-Kutta method is used to propagate the
solution in time.

We apply our system of equations to the study of the
condensation dynamics of a positronium gas. The mass of
the atoms is twice the mass of the electron and the bare
positronium scattering length is equal to 0.44 nm [30] (these
are the only two parameters required for the calculation of the
scattering collision kernels). We consider the simple case of
a uniform gas. Despite the drastic reduction of complexity,
the nonlinearly coupled gas-condensate dynamics is far from
trivial. Since an isolated system conserves the total energy, if
we limit ourselves to consider an infinite volume filled with
hot bosons, there is no physical mechanism capable of cooling
down the gas until the condensation temperature is reached. We
propose a simple model that reproduces the particles’ cooling
by evaporation. We assume that the gas is confined in a box
sufficiently large so that all of the spatial variations of the
gas and the condensate may be neglected. The confining box
is modeled by a potential square well with depth �b. The
particles with kinetic energy larger than �b can escape the box.
Since we assume that the density is uniform inside the
confining domain, the parameter �b constitutes a cutoff for
the gas distribution f . The numerical simulations show that the
condensation can be efficiently achieved by using the strongly
out-of-equilibrium dynamics induced by the evaporation. At
t = 0, we assume that a thermal distribution of gas is present
inside the box and no particles are in the condensate. We make
a cutoff in the energy distribution at �b and we let the system
evolve. The basic idea of the evaporation cooling process
is that after each collision, the outgoing particles with high
energy are eliminated. This modifies the standard Boltzmann
shape of the energy probability density. The redistribution of
the energy among the particles promotes the occupation of
low-energy states. The clear disadvantage of this procedure is
that a considerable number of particles is lost.

In Fig. 1, the time evolution of the condensed density
is depicted. In order to illustrate the results, we consider
two different initial temperatures, T = 30 K (continuous blue
curve) and T = 50 K (dash-dotted red curve) and two values
of the cutoff �b: 0.5 meV (left panel) and 0.3 meV (right
panel). The simulations show that the condensation process
is achieved in nearly 100 ps. This time interval is quite
short and could be interesting for short-lifetime atoms such
as positronium. Figure 1 (right panel) shows that decreasing
the parameter �b makes the production of condensate more
efficient in terms of the fraction of the original number of
particles. However, by reducing the value of the cutoff, the
number of particles lost in the process increases. If instead
of relative units, we consider the final density of particles,
then the cutoff at 0.3 meV leads to a condensate with density
equal to 1.2 nm−3 (initial temperature 50 K), while the
cutoff at 0.5 meV (for the same initial condition for the
particle distribution) leads to density around 1.6 nm−3. As a
consequence, a compromise should be found between having
an efficient production of cold particles and the necessity to
preserve a sufficiently high number of atoms. This is illustrated
in Fig. 2, where the evolution of the total density of particles is
depicted (continuous line). The simulations show that nearly
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FIG. 1. (Color online) Time evolution of the density of condensed particles (% of the initial density of particles) for different initial
temperatures of the gas: T = 30 K (continuous blue curve) and T = 50 K (dash-dotted red curve). Energy cutoff: 0.5 meV (left panel) and
0.3 meV (right panel). The inset in the left panel displays the initial fast dynamical evolution of the density corresponding to T = 30 K.

half of the particles are expelled from the system (we remark
that when we use a smaller energy cutoff, the initial density of
particles is consequently reduced). The comparison with the
condensate density (dashed line) shows that the condensate
production is quite efficient and more than 80% of the particles
that remain in the system belongs to the condensate (we remark
that in Fig. 1, we plot the ratio between the condensed density
and the initial density of the gas).

In Fig. 1 (inset), we emphasized the extremely fast
initial production of the condensate. This behavior is due to
the considerable change of the scattering coefficients when
the condensate density is no longer zero. This point is more
clearly illustrated in Fig. 3, where we highlight the importance
of the corrections to the two-particle scattering rate induced
by the quasiparticle description of the noncondensed atoms.
The presence of the condensate alters considerably the simple
hard-sphere scattering process that characterizes the bare
positronium. In our model, the scattering rates are expressed
by the functions Tnc and Tnn of Eqs. (21) and (22). The
dressed interaction effects can be easily removed by setting
Tnc = Tnn = 1. The result is depicted in Fig. 3, where we

compare the evolution of the condensate density in the absence
of any correlation effect (dotted red curve). The simulation
shows clearly that for a low-mass atom such as positronium, the
use of the correct Bogoliubov representation of the atomic gas
leads to a significant modification of the condensate evolution.
Most of the systems considered for BEC are made of heavy
particles and this aspect is usually neglected.

In Fig. 4, we depict the distribution function of the gas
multiplied by the density of states for different times. The
energy cutoff is clearly visible. During the evolution, the
energy gap at �b decreases and nearly vanishes at 500 ps.
We remark that when a cutoff in the particle distribution is
imposed, the stationary state reached by the system is no
longer a Bose-Einstein distribution. For comparison, in Fig. 4
(right panel), we compare the final particle distribution with
a Bose-Einstein distribution with zero chemical potential and
temperature of 2 K (dashed green line). Fitting the particle
distribution with the equilibrium distribution provides an esti-
mate of the temperature reached by the gas (although, strictly
speaking, in this nonequilibrium situation, the temperature is
not a well-defined quantity).
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FIG. 2. (Color online) Evolution of the total density of particles (noncondensed plus condensed particles) (continuous curves) and condensed
density (dashed curves) for different initial temperatures: T = 30 K (blue curves) and T = 50 K (red curves). Energy cutoff: 0.5 meV (left
panel) and 0.3 meV (right panel).
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FIG. 3. (Color online) Modification of the condensate growth
induced by the corrections on the scattering integrals that came
from the correlation between condensed and noncondensed particles
(dressed interaction). The dotted red curve is obtained by considering
only the bare interaction (hard-sphere scattering) and the continuous
blue curve is obtained by taking into account the full model. In the
simulations, we used the same parameters as in Fig. 2 (left panel) and
T = 30 K.

V. COMPARISON WITH OTHER APPROACHES

Various theoretical and numerical approaches have been
developed for the reproduction of the condensation dynamics
for cold atomic gases or collective excitations such as excitons
and polaritons. The first quantitative descriptions of the
condensate growth have been derived by Snoke [31], Semikoz
[32], and Tassone [11]. These approaches were based on
the classical Boltzmann equation. Although we derived our
kinetic model in a full quantum context, the final equations
of motion maintain the mathematical structure of the former
theories and can be directly compared. Major advances on the
theory of the condensate growth have been performed by the
groups of Gardiner [33] and Zaremba [29]. Their numerical
predictions on the sodium condensation dynamics have been
compared with experiments. Although the final set of equations
that we used to simulate the positronium evolution are quite

similar to the analogous set used for sodium, some important
differences should be noticed. The main difference between
our approach and the model described in Ref. [33] concerns
the description of the condensate. In our formulation, the
condensate is treated from the start as a macroscopic quantum
state and the quantum-mechanical nature of the interaction
with the surrounding thermal cloud is addressed explicitly. As
a result, important qualitative modifications to the collision
integrals are obtained. In particular, the scattering rate that
describes the scattering between two particles in the cloud has
a quite complicated form and differs significantly from the
term that describes the collision between one particle in the
condensate and one particle in the noncondensed cloud. This
distinction is not taken into account in Ref. [33], while in the
model given in Ref. [29], it is included only by the modification
of the total collision cross section.

In Gardiner’s approach [33], in order to take into account the
self-consistent mean field of the condensate and its influence
on the evolution of the system with sufficient accuracy,
the particles in the cloud are divided into two subgroups: those
belonging to the condensate band and those belonging to the
noncondensate band. The condensed band groups together
the states whose energy is modified by the mean field of
the condensate. On the contrary, above a certain value of the
energy (which is the lower bound of the noncondensed band),
the particle spectrum is considered as constant. Since in this
approach the condensed band represents the ensemble of the
quasiparticle states, the calculations of the density of states
and the collision integrals should be coherently performed by
using the Bogoliubov excitation spectrum instead of the bare
spectrum. The use of the bare-particle picture is necessary if the
corrections to the total energy of the particle given by the term
g2n2

c are of the same order as the kinetic energy of the free par-
ticle. Since the bare interaction g is proportional to the inverse
of the particle mass, these corrections are important only for
light particles. As showed in Fig. 3, for light mass particles
such as the positronium, such a correction affects the growth
rate and the final value of the number of condensed particles.
Furthermore, the use of the quasiparticle spectrum has the
advantage that the modification of the energy levels induced
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FIG. 4. (Color online) Noncondensed distribution function multiplied by the density of states for different times. Left panel: t = 50 fs (blue
curve) and t = 30 ps (red curve). Right panel: same case for t = 500 ps. For the sake of comparison, the dashed green curve inside the right
panel depicts a Bose-Einstein distribution at 2 K. The initial distribution corresponds to the initial temperature of 50 K.
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by the presence of the condensate is automatically taken into
account [see the definition given in Eq. (14)] and there is no
need to distinguish between particles with energy close to or
far from the chemical potential of the condensate.

Other models where the Bogoliubov dressed particle
approach is used were derived by Kirkpatrick [14] and Griffin
[6]. The main difference with our approach is essentially
technical and concerns the implementation of the Bogoliubov
transformation. In Ref. [14], a local Bogoliubov transforma-
tion is defined. The dressed field operators are expressed
in terms of the free bare-particle operators. They assume
that the expansion coefficients change in space and adapt
themselves to the condensate density present at the same
position. This is equivalent to assuming that the system is
characterized by a macroscopic scale length and that the main
physical quantities change smoothly in space. This relies on a
series of approximations that involve classical, large-scattering
length and low-density limits. All of these assumptions make
it difficult to estimate the exact range of validity of the
approximations. Furthermore, they do not indicate a strategy
that could be applied to overcome these approximations and
obtain more accurate models. A similar procedure is used
in Ref. [15], where the positive and the negative energy
spectrum of the excitations is diagonalized by using the
same kind of approximations. In our approach, we derive the
Bogoliubov transformation in a full quantum regime, and no
approximations are required for the definition of the Wigner
distribution in the Bogoliubov basis. Furthermore, we provide
a systematic procedure (in terms of the h̄ expansion) through
which higher-order corrections to the scattering kernels can be
included.

As a final remark, we discuss some features of the behavior
of the positronium density function when the condensate
starts to form. The dynamical evolution of a Bose gas at the
supercritical regime has been deeply investigated both from
the theoretical and the numerical point of view. The early stage
of the formation of the condensate is a two-step process where
the transition between the two regimes take place at the critical
time tc. During the first stage, the distribution function is char-
acterized by the formation of a divergence in correspondence to
p = 0. Asymptotically, the pole behaves like E−7/6 [34] (this
was also somehow reproduced by the numerical simulations
performed in Ref. [32]). After the critical time, higher-energy
levels start to be populated and a fast increase in the number of
particles in the condensate is observed. On the basis of some
classical considerations, the critical time tc can be estimated
by the mean collision time tc = m

8πa2n
√

2kBT
, where n is the

noncondensate density and T is the temperature [35]. For the
positronium, the typical values used in our simulations lead to
the estimation of tc � 10−1 ps. In our simulations, we observe
that the extremely fast growth of the condensate during the
early stage of the dynamics (see Fig. 1) prevents the formation
of the strong divergence in the distribution function. On the
contrary, this is observed for heavy particles such as sodium,
where tc is of the order of 10 ms, while the condensation takes
nearly 0.1 s (see Fig. 5) [36].

As a benchmark of our theory, we calculate the growth
of a condensate made of 23Na atoms trapped in a harmonic
potential. The theoretical study of this process and the
comparison with experiments were already addressed by other

authors [29,36]. In the experiments described in Ref. [37], a
cloud of sodium atoms is cooled to just above the transition
temperature. The atoms are confined in an axially symmetric
trap with harmonic frequencies equal to 18.0 and 82.3 Hz
along and perpendicular to the symmetry axis, respectively. In
order to simplify the geometry of the system, we approximate
the trap with a symmetric confining potential with an averaged
frequency ω equal to 49.6 Hz. The condensation dynamics is
triggered by applying a radio-frequency signal that removes
the high-energy tail of the distribution. We note that due to
the heavy mass of sodium, the corrections to the scattering
rate between two atoms induced by the presence of the
condensate are negligible and the binary collisions are well
represented by the s-wave scattering (the scattering length is
equal to 2.75 nm). In this case, the atomic energy is given
by the usual parabolic law, E = p2

2m
+ 2μc − U . According to

[29,33], we include the mean-field effects via a Thomas-Fermi
approximation. In this way, the chemical potential of the
condensate in the harmonic potential becomes

μc = h̄ω

2

(
15Nca

√
mω

h̄

)2/5

. (24)

Before the atoms are expelled from the trap, the gas tem-
perature Ti is equal to 1119 nK and the distribution of the
gas is a Bose-Einstein function with chemical potential μ

equal to −100 h̄ω. We then cut the distribution at the energy,
Ecut = 1.4kB Ti .

The results of our calculations are shown in Fig. 5. In
Figs. 5(a)–5(c), we depict the evolution of the gas toward
the final equilibrium state. In agreement with the numerical
results of Ref. [28], the thermalization process takes place
in around 0.6 s. The growth of the number of particles in the
condensate is depicted in Fig. 5(d). After an initial exponential
growth of the condensate, the condensate needs around 0.1 s
to incorporate 106 atoms. The initial number of particles in
the condensate (in our simulation, we set this number equal to
100) does not affect the growth rate of the condensed atoms.

Our calculations are qualitatively in agreement with the
condensate evolution obtained in Refs. [29] and [28]. The
main difference concerns the final number of particles in
the condensate (our computed value is nearly double that
obtained by the other authors) and the time where the
condensation process starts to slow down (in our simulation, it
is around 0.1 s; in [28], it is 0.05 s; and in [29], it is 0.01 s). We
believe that the source of the discrepancy is mainly due to the
fact that in our simulation, we do not use the correct density
of states of the trap. Since the principal aim of our approach
was to describe the modification of the particle energy and
interaction in the presence of a condensate, in our model we
discarded the modification of the particle energy induced by
the confining potential and we considered the density of state
of an isotropic three-dimensional (3D) system. However, the
three-dimensional trap used in the experiments possesses a
relatively small number of isolated levels and the particle
energies rapidly approach the continuum. For this reason,
discarding the correct distribution of the low-energy bound
states does not have a dramatic influence on the final results and
our model is able to reproduce the correct order of magnitude
of the condensation time and number of condensed particles.
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FIG. 5. (Color online) Evolution of the density of the 13Na cloud during the condensation process. The snapshots correspond to the time
(a) 0.2 s, (b) 0.4 s, and (c) 0.6 s. (d) Evolution of the number of particles in the sodium condensate.

VI. CONCLUSIONS

The study of the condensation dynamics was performed
by combining the semiclassical Boltzmann dynamics of
noncondensed particles with the Gross-Pitaevskii equation
for the description of the condensate state. We modeled
the evaporation process by inserting a cutoff in the par-
ticle distribution function. The system shows a strong
out-of-equilibrium dynamics and fast condensation time
(around one-hundred picoseconds). Our results suggest
the possibility of using this technique for the study of
the condensation process of short-lifetime atoms such as
positronium.
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APPENDIX A: BOGOLIUBOV TRANSFORMATION
IN THE WEYL FORMALISM

We show the connection of the basis rotation given
in Eq. (13) and the Bogoliubov transformation. The wave
function related to the basis rotation generated by � is

given by

	 ′(r,t) = 1

(2πh̄)3

∫
�

(
r + r′

2
,p

)
	(r′,t) e

i
h̄

(r−r′)·pdr′dp,

(A1)

	 ′(r,t) = 1

(2πh̄)3

∑
n

1

n!

(
− ih̄

2

)n

×
∫

�(n) (r,p) 	(r′,t) e
i
h̄

(r−r′)·pdr′dp, (A2)

where �(n) (r,p) = ∇(n)
p ∇(n)

r � (r,p). In particular, at the lead-
ing order, the h̄ expansion of Eq. (A2) is the space-dependent
Bogoliubov transformation for the field operators of noncon-
densed particles,(

ψ̃ ′(r,t)

ψ̃ ′†(r,t)

)
= 1

(2πh̄)3

∫ (
u(r,p,t) −v(r,p,t)
v(r,p,t) −u(r,p,t)

)

×
(

ψ̃(r′,t)
ψ̃†(r′,t)

)
e

i
h̄

(r−r′)·pdr′dp + o(h̄),

where

u(r,p,t) =
√

e + E

2E
, v(r,p,t) =

√
e − E

2E
.

The functions e and E are given by Eqs. (14) and (10),
respectively.
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APPENDIX B: EXPLICIT EVALUATION OF THE SCATTERING KERNELS

The scattering processes that we include in our model are the direct and exchange (Hartree-Fock) binary collisions between
noncondensed atoms and collisions between condensed and noncondensed atoms (hereafter, we will refer to the “less-than”
component of the self-energy; the “greater-than” expressions are obtained by interchanging the symbol < with >, and vice
versa). The first type of collisions is expressed by

�<
H (p,ω) = g2

(2π )5

∫
G<(p2,ω2)tr{G>(p3,ω3)G<(p4,ω4)}D, (B1)

�<
F (p,ω) = 2g2

(2π )5

∫
G<(p2,ω2)G>(p3,ω3)G<(p4,ω4)D, (B2)

where

D = δ (ω1 − ω2 + ω3 − ω4) δ (p1 − p2 + p3 − p4)
∏
j

dpj dωj .

The collisions between condensed and noncondensed atoms are expressed by

�<
1 (p1,ω1) = c

∫
G<(p2,ω2)tr{C(p3,ω3)G<(p4,ω4)}D, (B3)

�<
2 (p1,ω1) = c

∫
G<(p2,ω2)tr{G>(p3,ω3)C(p4,ω4)}D, (B4)

�<
3 (p1,ω1) = c

∫
C(p2,ω2)tr{G>(p3,ω3)G<(p4,ω4)}D, (B5)

�<
4 (p1,ω1) = 2c

∫
G<(p2,ω2)G>(p3,ω3)C(p4,ω4)D, (B6)

�<
5 (p1,ω1) = 2c

∫
C(p2,ω2)G>(p3,ω3)G<(p4,ω4)D, (B7)

�<
6 (p1,ω1) = 2c

∫
G<(p2,ω2)C(p3,ω3)G<(p4,ω4)D, (B8)

where c = − g2

2(2π)3 . For the derivation of these scattering kernels and the relative Feynman diagrams, we refer to [15]. Following
Abrikosov [38], we introduced the condensate Green function in a matrix form,

C0(R,p,T ) = −iW−1

(
�(r,t)�(r′,t ′) �(r,t)�(r′,t ′)

�(r,t)�(r′,t ′) �(r,t)�(r′,t ′)

)
.

The simplest approximation is to consider � slowly varying in space and time, so that the Wigner function is concentrated around
p = 0. In this way,

C0(R,p,T ) � −inc(R,T )2πδ(p)δ(ω)J,

where

J =
(

1 1
1 1

)
.

In the previous expressions, the scattering kernels are expressed in terms of integrals of the Green function over the energy
variable ω. The quasiparticle closure hypothesis allows us to recover a closed evolution system for the distribution function f .
Equations (B1) and (B2), as well as (B3)–(B8), show that all of the scattering terms share the following mathematical form:

I (p,ω) =
∫

Ga1
1 (p1,ω1)Ga2 (p2,ω2)Ga3 (p3,ω3)Ga4 (p4,ω4)

× δ (ω1 + ω2 − ω3 − ω4) δ (p1 + p2 − p3 − p4) δ (ω − ω1) δ (p − p1)
∏
j

dpj dωj ,

where the ai take the values > or <. From the closure relationship given in Eq. (15), we have that each Green function can be
expressed as (we adopt the notation that the overbar means the logical NOT operator: < ≡>, > ≡<)

Ga(p,ω) = f a(p)M(p)δ(ω − E(p)) + f a(−p) M⊥(−p)δ(ω + E(−p)),

with the exception [according to Eq. (17), the final integral energy integral is taken only over the positive frequency]

Ga
1 (p,ω) = f a(p)M(p)δ(ω − E(p)).
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We defined

M = �−1 I+ � σz = 1

2E

(
E + eB gnc

gnc eB − E

)
, M⊥ = M − σz.

We remark that the self-energies are expressed in terms of the Green functions on the unperturbed basis 〈G〉 = �−1 � G � � σz.
The condensate propagator C0 can be considered a particular case of Ga(p,ω), with E(p) = 0, M = M⊥ = J, and f a(p) =
−incπδ(p). A long but straightforward calculation shows

I =
∫

{f a1 (p)f a2 (p2)f a3 (p3)f a4 (p4)M(p)M(p2)M(p3)M⊥(p4)

+ f a1 (p)f a4 (p2)f a3 (p3)f a2 (p4)M(p)M⊥
2 (p4)M(p3)M(p2)

+ f a1 (p)f a3 (p2)f a2 (p3)f a4 (p4)M(p)M⊥(p3)M⊥(p2)M⊥(p4)}
× δ(E(p) − E(p2) + E(p3) + E(p4))δ (p − p2 + p3 + p4)

∏
j

dpj dωj

+
∫

{f a1 (p)f a2 (p2)f a3 (p3)f a4 (p3)M(p)M(p2)M(p4)M(p3)

+ f a1 (p)f a3 (p3)f a2 (p4)f a4 (p2)M(p)M⊥(p4)M⊥(p3)M(p2)

+ f a1 (p)f a2 (p2)f a3 (p3)f a4 (p4)M(p)M(p2)M⊥(p3)M⊥(p4)}
× δ(E(p) − E(p2) − E(p3) + E(p4))δ (p − p2 − p3 + p4)

∏
j

dpj dωj

+
∫

f a1 (p)f a2 (p2)f a3 (p3)f a4 (p4)M(p)M(p2)M⊥(p3)M(p4)

× δ(E(p) − E(p2) − E(p3) − E(p4))δ (p − p2 − p3 − p4)
∏
j

dpj dωj .

By using this formula, we can evaluate the scattering kernel. The Hartree-Fock terms are given by Eqs. (B1) and (B2). We obtain

W>
HF =

∫ ∏
j

dpj δ(E(p) + E(p1) − E(p2) − E(p3))δ (p + p1 − p2 − p3)

× [f >(p)f >(p1)f <(p2)f <(p3) − f <(p)f <(p1)f >(p2)f >(p3)]THF ,

where tr denotes the matrix trace and

THF = tr{M(p)M(p2)}[tr{M(p1)M(p3)} + tr{M⊥(p3)M⊥(p1)}]
+ tr{M(p)M⊥(p1)}tr{M⊥(p2)M(p3)} + 2tr{M(p)XF } (B9)

= (upu1u2u3 + vpu1v2u3 + vpu1u2v3 + vpv1v2u3 + upv1v2v3)2,

XF = M(p2)M(p1)M(p3) + M⊥(p1)M⊥(p2)M(p3) + M(p2)M⊥(p3)M⊥(p1).

In the same way, we group together the other terms describing collisions between the noncondensed cloud and the condensate
phase. We obtain

W>
cn = −c16πnc

∫ ∏
j

dpj δ(E(p) + E(p1) − E(p2))δ (p + p1 − p2)

× [f >(p)f >(p1)f <(p2) − f <(p)f <(p1)f >(p2)]Tcn(E(p1),E(p2) − E(p1),E(p2))

− c8πnc

∫ ∏
j

dpj δ(E(p) − E(p1) − E(p2))δ (p − p1 − p2)

× [f >(p)f <(p1)f <(p2) − f <(p)f >(p1)f >(p2)]Tcn(E(p2) + E(p1),E(p1),E(p2)),

where

Tcn(E3,E1,E2) = 2tr{M(p)M(p2)M⊥(p3)J + M(p)JM⊥(p2)M(p3) + M(p)M(p2)JM(p3)}
+ tr{M(p)M(p2)}tr{J[M⊥(p3) + M(p3)]} + tr{M(p)J}tr{M⊥(p2)M(p3)}

= (u1u2u3 + v1v2v3 + u1v2v3 + v1u2v3 − u1v2u3 − v1u2u3)2, (B10)

and Ei ≡ E(pi), ui ≡ u(pi), vi ≡ v(pi).
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APPENDIX C: CONDENSED-NONCONDENSED SCATTERING KERNEL

We derive the explicit form of the scattering kernel used in the simulations. We first consider the collision term Wnc. From
Eq. (20), we see that Wnc has the following form:

S =
∫

F(p0,p1,p2) δ(E(p0) ± E(p1) − E(p2))δ (p0 ± p1 − p2) dp1dp2,

=
∫

F (p0,p1,p ± p1) δ(E(p0) ± E(p1) − E (|p0 ± p1|) )p2
1 sin(θ01)dϕ01dθ01dp1,

where the function F depends on the distance from the center of the sphere, i.e., the projection of the momentum along and
orthogonal to the radial direction ρ̂. In order to simplify the previous integral, it is convenient to define some spherical coordinate
directions. We define by (ρ̂,θ̂ ,φ̂) the reference frame with the z direction along the radius of the sphere and define by (ρ̂pi

,θ̂pi
,φ̂pi

)
the reference frame with the z direction along pi . Moreover, θij are the angles between pi and pj and ϕ01 is the spin angle of p1

on the reference (ρ̂p0
,θ̂p0 ,ϕ̂p0

). By using the monotonicity of E, we have that (considering θ01 as variable) the equation

E (p3) = E(p0) ± E(p1), (C1)

with p3 = p0 ± p1, has one and only one solution if E (p − p1) � E(p) ± E(p1) � E (p + p1). More precisely, since E depends
only on the modulus of the momentum, the previous equation defines a class of solutions parameterized by the angle ϕ01 (when
p1 rotates around p0, Eq. (C1) always gives the same solution). We denote this solution by p±

1 = p±
1 [θ̃±(p0,p1),ϕ01]. θ̃± is given

by |p0 ± p1|2 = p2
0 + p2

1 ± 2p0p1 cos(θ̃±). Explicitly,

cos(θ̃±) = ±
2m

[√
(E(p0) + E(p1))2 + g2n2

c − m
2 V2

c − μ + 2gnc

] − p2
0 − p2

1

2p0p1
(C2)

and p±
1 = p1 cos(θ̃±)ρ̂p0

+ p1 sin(θ̃±)[cos(ϕ01)θ̂p0 + sin(ϕ01)ϕ̂p0
]. These expressions can be written in the original basis by using

ρ̂p0
= ρ̂p0 cos(θ0) + θ̂p0 sin(θ0) cos(ϕ0) + ϕ̂p0 sin(θ0) sin(ϕ0) and similar expressions. This leads to

S = m

p

∫ 2π

0

∫ E±(p0)

0
F(p0,p±

1 ,p±
3 )

p1√
1 + [

gnc

E(p0)±E(p1)

]2
ϑdϕ01dp1,

ϑ = �H [EB(p) ± EB(p1) − EB (p − p1)] �H [EB (p + p1) − EB(p) ∓ EB(p1)] ,

where �H denotes the Heaviside step function, E+ = ∞, E− = E(p), and we use

∂E(|p ± p1|)
∂θ

∣∣∣∣
E(|p±p1|)=E(p)±E(p1)

= ∓pp1 sin(θ )

m

√
1 +

[
gnc

E(p) ± E(p1)

]2

.

Finally, by using the fact that the function E(p) is convex and invertible, we can show that ϑ = 1 always.
The Boltzmann scattering collision term between two noncondensed particles WHF has a more standard form and has already

been studied by various authors (see, for example, Ref. [31]). For the sake of completeness, we review here the main steps of the
expression that can be directly implemented. WHF has the following form:

W =
∫

F [E(p1),E(p2),E(p3),E(p4)] δ (p1 + p2 − p3 − p4) δ [E(p1) + E(p2) − E(p3) − E(p4)] dp2dp3dp4.

Integration with respect to p4 gives

W = 2π

∫
F [E(p1),E(p2),E(|p1 − p̃|),E( |̃p + p2(p2,ϑ2)| )]

× δ [E(p1) + E(p2) − E(|p1 − p̃|) − E(|̃p + p2(p2,ϑ2)|)] p2
2 sin(ϑ2)dϑ2dp2dp̃,

where we denoted p̃ = p1 − p3 and ϑ2 is the angle between p̃ and p2. The integration with respect to ϑ2 gives

W = 4π2
∫

F [E(p1),E(p2),E(|p1 − p̃|),E(p1) + E(p2) − E(|p1 − p̃|)] �H [E(p1) + E(p2) − E(|p1 − p̃|) − E(p̃ − p2)]

× �H [E(p̃ + p2) − E(p1) − E(p2) + E(|p1 − p̃|)] p2p̃ sin(ϑ̃)

2
∣∣ dE

dp2

∣∣
E=Ẽ(p1,p2,ϑ̃)

∣∣dp2dp̃dϑ̃.
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We make the substitution ϑ̃ → p with p2 = |p1 − p̃|2 = p2
1 + p̃2 − 2p̃p1 cos(ϑ̃) and we change the integration order between

p and p̃,

W (p) = 2π2

p

∫ ∞

0

∫ ∞

0
dp2dp1

∫ p+p1

|p−p1|
dp3F [EB(p2),EB(p1),EB(p) + EB(p2) − EB(p1)]

×�H [EB(p) + EB(p2) − EB(p1) − EB(p3 − p2)]�H [EB(p3 + p2) − EB(p) − EB(p2) + EB(p1)]

× p2p1∣∣ dEB

dp2

∣∣
E

−1
B [EB (p)+EB (p2)−EB (p1)]

∣∣ . (C3)

Some calculations show that in the energy variables Ei = E(pi), W takes the form

W (E) = m3 4π2

E
−1
B (E)

∫ ∞

0
dE1

∫ E+E1

0
dE2

×F [E,E1,E2,E + E1 − E2]
(p̃M − p̃m)√

1 + (
gnc

E+E1−E2

)2

1√
1 + (

gnc

E2

)2

1√
1 + (

gnc

E1

)2
,

where

p̃m(E,E1,E2) = max[|E−1(E) − E−1(E2)|, |E−1(E1) − E−1(E + E1 − E2)|],
p̃M (E,E1,E2) = min[E−1(E) + E−1(E2), E−1(E1) + E−1(E + E1 − E2)].
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