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Abstract: This paper proposes an original Object Oriented architecture and an associated 
framework to set-up easily and safely control software. To improve the design process of such a 
software several propositions are given: a multi-application support, a layered model, a 
semantic variable abstraction, a synchronising mechanism and a factoring process. The 
example illustrates how the architecture can be used to build complex applications. A two tanks 
plant is simulated and a supervised controlled application illustrates a multi-worlds system 
with concurrent control and supervision algorithms. 
 
 

I. INTRODUCTION 
 
Building a Control-Command software application 
involves the design of a core software component which 
will be a controller. This controller has to provide 
specific control algorithms and to interact with physical 
systems through input and output devices. Often this kind 
of applications are also connected to supervisors and/or 
diagnosis processes. 
 
Usually, setting up a Control Command process involves 
several steps. First, the system, which must be controlled, 
has to be well known. The model of the system can be 
either a knowledge model, or an identification model or a 
compound model [1]. Next, the controller has to be 
designed according to the system model and the 
constraints of the desired control strategy. Often, the 
controlled system is adjusted and validated using 
simulations. Finally, the controller is implemented in the 
final target. 
 
In this process, two stages can be distinguished: an 
offline design stage using simulations and a real time 
design stage on final targets. These two stages need 
different kinds of skills and point of views and are 
realised by different type of designers with the help of 
different specific tools. The coherence of the designed 
system is hard to maintain; on the one hand it is 
important to reach optimal control performances and on 
the other hand, robust synchronous real time data stream 
must be provided. 
 
From these considerations, three families of approaches 
can be noted.  
 - Designer uses simulation software (Matlab, 
MAPSim, …) to design the application and then to 
generate dedicated code for specific target. 

 - Designer uses simulation software and then makes 
sub-contract work with consultants. 
 - Unified environment, where designing and targeting 
are bound together. In this frame, several related works 
can be cited. Dias et al. propose a methodology to 
develop real time distributed applications [2]. Yacoub 
and Ammar present the benefits of pattern-oriented 
frameworks to develop closed-loop control systems [3]. 
Moore et al. promote intelligent controller architectures, 
which provide functions such as communication abilities, 
task decomposition, functional decomposition using sub-
systems and modules [4]. Maffezzoni et al. demonstrate 
the suitability of an Object Oriented Modelling approach 
for control system in industrial areas [5]. This way of 
solutions shows that intermediate software between 
control algorithms and hardware is required; middleware 
are particularly suited to the design or to the 
implementation of applications in fields of: control-
command, identification, diagnosis, supervision 
processes. Such middleware have to propose the 
unification of the design process in terms of concepts, 
semantics, point of views, tools, etc. They also have to 
hide non-interesting tricky aspects for the designer. 
To respond to such considerations, the middleware 
CoCo’OS (COntrol COmmand Operating System) 
provides the following features: 
 
 - A timing sequence model where data are provided 
according to traditional sampling sequence at the right 
frequency. 
 - The ability to work with either real time clock or 
virtual time clock (simulated time). 
 - Data abstractions, which handle hardware or 
computed values in the sense of control command 
semantics. 
 - A control application can be evaluated on the real 
target or by simulation. In this case, the simulator is set-
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up by another instance of the middleware. It simulates 
the real system and connects its inputs and outputs to the 
hardware of the control application. 
 - The ability to activate, to deactivate, and to replace 
hardware components (a feature quite useful in case of 
failure). Previous works on reconfiguration topics, 
Perronne and Hassenforder, propose a first approach in 
this domain [6]. 
 
 
II. PROPOSED ARCHITECTURE 
 
Such architecture is designed around key concepts; they 
take into account notions described in this paragraph. 
Among them appear a layered architecture, several time 
independent application worlds, synchronous time 
scheduling, a semantic presentation layer providing 
variables, functions and synchronised entities. These 
synchronised entities allow the setting-up of concurrent 
algorithms and applications. 
 
A. Architecture Layers 
 
The CoCo’OS architecture can be separated in two fields. 
The first field is concerned by the hardware and the 
second by the implementation of the application 
(controller, simulator, supervisor …). Each field can be 
divided in two layers as shown in figure 1. Such a 
separation allows an easy replacement of each part. The 
logic in the upper layer (application) represents only 
what must be achieved by the application. The 
presentation layer proposes abstraction to store, to 
synchronise and to manipulate values in the application 
sense. The purpose of the port layer and the hardware 
layer is to propose supports to activate, to deactivate and 
to replace hardware components, in order to drive 
sensors and actuators. These two layers are fully 
described in [7]. 
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Fig. 1: CoCo’OS Architure layers. 
 
The kernel part proposes registration services to the 
layers in order to register, to retrieve components and to 
link them together if necessary. A designed system is 
build with several instances of components belonging to 
the different layers and registered by the kernel and 
realizes what is called in CoCo’OS a World. 
 
B. Structural view 
 
Coco’OS allows a multiple world scheme, thus several 
applications, independently conceived, can run 
concurrently in the same universe. Each application, a 
designer build up, is materialized by a world. Moreover, 
a world can be made with one or several instances of 

layers; worlds can share layers or components. For 
example, a common control-command application 
requests the four layers (hardware, port, presentation, and 
application), while its supervisor application just uses 
two layers (presentation and application). The 
presentation is shared by the two applications as depicted 
in figure 2. 
 

Presentation’ 
Application 

ke
rn

el
 

Port
Presentation
Application 

Hardware

Control-Command 
world 

Supervisor 
world 

Universe  
 

Fig. 2: An example of the universe architecture. 
 
C. Time Scheduling 
 
With a multi-worlds architecture, time scheduling has to 
be carefully designed. Each world can request different 
time schedules, however they have to be synchronised. 
The universe owns the master clock from which a slave 
clock per world is derived according a ratio factor. 
The different scheduled tasks involved in an application 
are depicted in figure 3. Traditional control process is 
divided in three stages: sampling (read input data), 
synchronising (write output data) and solving (evaluate 
functions). 
 

 Solve Write Read 

nT+T/2

Presentation

nT

Port

Hardware

…

…

 
 

Fig. 3: Process scheduling. 
 
In this layered architecture, each layer has to propose 
read and write operations in order to transport data from 
lower to upper layers and from upper to lower layers. 
Read and write operations have to be synchronised too 
across the layers. These tasks must have a reserved slot 
in the scheduled sequence; this is assumed by the world 
with an update operator. For convenience, each layer 
updates its data at its own cadence, via a ratio factor, 
based on the world scheduler frequency. For example, 
with a master clock at 10ms, the hardware can be 
updated every 10ms, whereas the port and presentation 
are updated every 30ms and 50ms respectively. A UML 
collaboration diagram, in figure 4, presents objects, of 
the different layers, involved in this scheme [8]. 
 
The MasterClock object is a component, which provides 
the time reference in the architecture. From a hardware 
clock tick, it generates wall clock time by a simulation 
process or by a real time clock observer according its 



class. This fact allows checking real time behaviour in a 
simulation process without additional efforts. 
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Fig. 4: objects scheduled in layers. 

 
D. Application layer 
 
Semantically, an application can be considered as a set of 
functions, using variables, evaluated at given times. The 
designer uses components proposed by the underplaying 
presentation layer to build up his applications. 
 
E. Presentation layer 
 
The presentation layer provides the abstraction of the 
variable, function and monitoring entities used by the 
application layer (figure 5). 
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Fig. 5: Details of the presentation layer. 

 
The abstraction named variable eases the handling of 
physical values or computed values with an application 
semantic. Three types of variable exist, input or output 
variables connected to input or output ports (relative to 
hardware) or non-connected variables (relative to 
computation). 
 
The variable (figure 6) is able to maintain the current 
value and the history required by the application. So it is 
easy to design any kind of time-delayed system without 
boring with implementation details. The "getValue()" 
method gives the current value, which was sampled. This 
is a non-destructive function; each activation gives the 
same value until an update is achieved. The 
"getPreviousValue(int delay)" gives a previous value 
extracted from the history array. The "setValue(Value)" 
changes the current value. This is also a non-destructive 
operation; it only changes the internal representation, 
which will be applied on the port only after the activation 
of the update function. The private "shift()" function is a 
helper to shift all values in the history array and loses the 
oldest one. The “update()” function read from or write  to 
the connected port and invokes shift(). 

 
 Variable 
-Name : string 
-CurrentValue : Value 
-NewValue : Value 
-Historic : Value [] 
+getValue() : Value 
+getPreviousValue (int) : Value 
+setValue (Value v) : void 
+update () : void 
-shift () : void 

Port 
-Activated : boolean 
+activate() : void 
+deactivate() : void 
#readValue () :Value 
#writeValue (Value v) : void 

InputPort 
#readValue () :Value 

OutputPort 
#writeValue (Value v) : void

Hardware 

Input, Output 

 
 

Fig. 6: Variable class diagram. 
 
The abstraction named function eases the handling of 
relations between variables. A function allows by the 
intermediary of algorithms, the calculation of a set of 
variables from others. With such an abstraction, relations 
(values computations) can be handled as other entities of 
the architecture. A complex relation set can be broken up 
in several functions. Using the variable dependency 
graph through the functions, the architecture allows an 
optimal computation reorganisation. 
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Fig. 7: dependency graph. 
 

In figure 7, the variable v3 is computed by the function 
f3 which uses the two variables v1 and v2 ; v1 and v2 are 
respectively obtained via f1 and f2. These two last 
functions use v0, which has been updated from the port 
p. f1 and f2 can be computed as soon as v0 is updated 
and f3 must wait for v1 and v2. Considering the graph, 
the functions f1 and f2 can be evaluated in a concurrency 
way. By generalisation, each function in the architecture 
can be considered as a process waiting on an event. In 
the above example, f3 is waiting for the event due to the 
updates of v1 and v2. 
 
At this time two kinds of abstraction must be provided by 
the architecture, a process one and a synchronisation one. 
The service abstraction eases the conversion of a 
function into a process. A service waits for a wakeup 
event and invokes the computation behaviour of a 
registered function. The monitor abstraction eases the 
synchronisation of services. A monitor takes in charge 
the registration, the blocking and the releasing 
mechanisms of dependent services. The UML 
collaboration diagram in figure 8 illustrates the entities 



required by the synchronisation between f1 function and 
v0 variable. 
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Fig. 8: collaboration diagram. 
 
The two services are blocked by the wait function of the 
monitor. An update of the variable invokes the signal 
function of the monitor, which releases services. Further 
more, time and processor are allotted to all concurrent 
released services and finally allows the use of the solve 
function of the Function entities.  
 
F. Application factoring 
 
Setting-up an application involves a lot of components. A 
supervised control command application, for example, 
needs several application worlds, acting at different time. 
Each world manipulates variables, functions and 
monitoring entities. The input and output variables have 
to be linked to ports in order to access to the 
corresponding hardware. Two problems appear, in such a 
process, complex dependant components have to be 
created and then bound together.  
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void CreateInputVariable (String Name, Value Initial, int HistorySize) { 
   CreateMonitor (Name); 
   Register ("Variables", new Variable (Name, Name, null, Initial, HistorySize)); 
} 

 
 

Fig. 9: Factory architecture. 
 

The abstraction named factory eases the creation process 
of complex dependant components [9]. Sometimes, the 
creation of an object implies the creation of many others. 
For example, when a user instantiates a variable (such as 
v0 in figure 8), its associated monitor (mv0) is also 
instantiated. Each component is finally registered in the 
appropriate layer registry in the current world (v0 and 
mv0 are registered in the variable and monitor registries 
in the presentation layer). Another aspect of the factory is 
to provide a semantic close to that of the user. The use of 
factory is generalized to all components in the 
architecture as depicted in figure9. 
 
The abstraction named universe eases the setting up of 
applications, which involve several complex worlds. For 

each world a step by step process is adopted, the universe 
abstraction: 
 

1) instantiates the different worlds, 
2) creates the different layers in each world, 
3) populates the different layers with dedicated 

application components, 
4) shares application components between worlds, 
5) establishes links between components in each 

world, 
6) starts the different tasks. 

 
 
III. IMPLEMENTATION ASPECTS 
 
The real time constraints involved in CoCo’OS 
architecture impose a careful implementation design and 
require synchronisation mechanisms and multi-tasks 
entities. The design of the architecture follows an object-
oriented scheme, so the choice of an object oriented 
language seems particularly relevant. In a first approach, 
a validation prototype has been designed and realized. 
The Java language responds to the above constraints 
providing object oriented features, multithreading and 
synchronisation mechanisms. Java threads are used to 
implement concurrent entities: functions, applications. 
An embedded system, which supports a java runtime 
environment with real time features, is naturally adapted 
to the current implementation; in this case, no additional 
efforts must be achieved. In other situations, an 
underlying real time operating system has to be chosen; it 
usually proposes same interfaces: tasks or threads, 
blocking wait function. In this case, the architecture 
remains, the only additional effort resides in a 
transforming process; the java code must be translated in 
another target language. 
 
 
IV. APPLICATIONS 
 
The example is chosen (figure 10) to highlight the 
different features of CoCo’OS and is based on the 
benchmark described by Staroswieky and Gehin in the 
IFAC SafeProcess conference [10]. It is composed of two 
identical connected tanks. Each tank is cylindrical of 
section A. The inflow Qi is provided by pump Pi 
(continuous on a specific range) and is controlled by the 
signal Vi. The flow Qa between the two tanks is 
controlled by an on/off valve Va. Connecting pipe is at 
level 0.3m. The on/off valve Vo is an outlet valve located 
at the bottom of the tank T2. 
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Fig. 10: Two tanks plant. 



 
The two tanks plant will be realized by a simulator build 
with the CoCo’OS architecture. So, three worlds (figure 
11) are going to be set-up in order to evaluate the 
characteristics of the architecture on a supervisor, a 
controller and a simulator. This example is a typical case 
where the design is simplified by the use of several 
independent applications (worlds). The controller is the 
main world. The simulator is connected to the controller 
through a bridge at the hardware level and the supervisor 
observes specific variables of the controller in the 
presentation layer. 
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Fig. 11: Two tanks application worlds. 
 
In fact, in the world of the controllers, there are two 
controllers; the aim of the first one is to maintain h1 level 
at 0.4m acting on Vi with a PI controller. The flow Qa is 
considered as a perturbation. The aim of the second 
controller is to open the valve Vo as soon as the level h2 
equals 0.20m.  
To set-up this world, the entities of the different layers of 
this world have to be created using the factory 
mechanism. The populate function takes in charge this 
process as presented in listing 1. 
To work, this controller world needs h1 and h2 input 
levels and provides vi and vo valves commands as 
outputs. Naturally, h1, h2, vi and vo variables are created 
in the presentation layer as InputVariables or 
OutputVariables and then will be able to be used in the 
different control functions. In order to be connected to 
corresponding hardware associated entities are 
instantiated in the port and hardware layers with the same 
name. The internal mechanism of the architecture 
assumes that entities, which have the same names, are 
linked. In this example, the hardware created allows the 
writing of variables in files. 
 
class Controller extends UserWorld { 
   public void Populate () { 
   // Hardware set-up 
      hardFactory.CreateHardwareOutputFile ("vi", "vi.txt", 100, 50); 
      hardFactory.CreateHardwareOutputFile ("vo", "vo.txt", 100, 50); 
      hardFactory.CreateHardwareOutputFile ("h1", "h1.txt", 500, 50); 
      hardFactory.CreateHardwareOutputFile ("h2", "h2.txt", 500, 50); 
   // Input Ports set-up 
      portFactory.CreateInputPort ("h1"); 
      portFactory.CreateInputPort ("h2"); 
   // Output Ports set-up 
      portFactory.CreateOutputPort ("vi"); 
      portFactory.CreateOutputPort ("vo"); 
   // Free Variables set-up 
      varFactory.CreateFreeVariable ("Kp", new Value (0.001)); 
      varFactory.CreateFreeVariable ("Ki", new Value (5e-6)); 
      varFactory.CreateFreeVariable ("h1ref", new Value (0.40)); 
      varFactory.CreateFreeVariable ("h2ref", new Value (0.20)); 
   // Input Variables set-up 
      varFactory.CreateInputVariable ("h1", new Value (0.4), 20); 
      varFactory.CreateInputVariable ("h2", new Value (0.1), 20); 
   // Output Variables set-up 
      varFactory.CreateOutputVariable ("vi"); 

      varFactory.CreateOutputVariable ("vo"); 
   // Functions set-up 
      funcFactory.CreateFunction (new vi_PIController (), "h1"); 
      funcFactory.CreateFunction (new vo_OnOffController (), "h2"); 
   } 
} 

Listing 1: Controller world 
 
According to the architecture, the control functions take 
into account the separation between the algorithm and the 
activation events. For example, vi_PIController function 
is called when variable h1 is updated 
(vo_OnOffController when h2 is updated). The listing 2 
shows how the vi_PIController function object is 
implemented. 
 
public class vi_PIController extends VariableFunction { 
   private double Kp, Ki, h1ref, h1, vi, integral=0; 
   public vi_PIController () { 
      AddInputVariable ("h1"); AddInputVariable ("h1ref"); 
      AddInputVariable ("Kp"); AddInputVariable ("Ki"); 
      AddOutputVariable ("vi"); 
   } 
   public void Solve () { 
      GetValues (); 
      double error = h1ref - h1; integral += error; 
      vi = Kp * error + Ki * integral; 
      SetValues (); 
   } 
   protected void GetValues () { 
      h1 = GetInputVariable(0).GetValue().GetDoubleValue ();  
      h1ref = GetInputVariable(1).GetValue().GetDoubleValue ();  
      Kp = GetInputVariable(2).GetValue().GetDoubleValue ();  
      Ki = GetInputVariable(3).GetValue().GetDoubleValue ();  
   } 
   protected void SetValues () { 
      GetOutputVariable(0).SetValue (new Value (vi)); 
   } 
} 

Listing 2 : vi_PIController function object 
 
The simulator world follows the scheme prescribed by 
the architecture. In this case, the hardware is imported 
from the controller world through the import mechanism. 
The only one task that remains is the computation of the 
different flows (Qi, Qa, Qo) and the computation of the 
two levels (h1, h2), this is achieved by the according 
functions. To calculate a level, the function needs the 
input and output variable flows, so the function must be 
synchronised by the two variable updates. Listing 3 
illustrates these aspects. 
 
class Simulator extends UserWorld { 
   public void Populate () { 
   // Input Ports set-up 
      portFactory.CreateInputPort ("vi"); 
      portFactory.CreateInputPort ("va"); 
      portFactory.CreateInputPort ("vo"); 
   // Output Ports set-up 
      portFactory.CreateOutputPort ("h1"); 
      portFactory.CreateOutputPort ("h2"); 
   // Free Variables set-up 
      varFactory.CreateFreeVariable ("A", new Value (0.0154)); 
      varFactory.CreateFreeVariable ("S", new Value (3.6e-5)); 
      varFactory.CreateFreeVariable ("h0", new Value (0.30)); 
      varFactory.CreateFreeVariable ("qa"); 
      varFactory. CreateFreeVariable ("qi"); 
      varFactory. CreateFreeVariable ("qo"); 
   // Input Variables set-up 
      varFactory.CreateInputVariable ("vi"); 
      varFactory.CreateInputVariable ("va"); 
      varFactory.CreateInputVariable ("vo"); 
   // Output Variables set-up 
      varFactory.CreateOutputVariable ("h1", new Value (0.40)); 
      varFactory.CreateOutputVariable ("h2", new Value (0.10)); 



 
   // Functions set-up 
      Vector v1 = new Vector (); v1.add ("qi"); v1.add ("qa"); 
      funcFactory.CreateEventFunction ( 
            new ComputeLevel ("Ch1", "h1", "qi", "qa"), v1); 
      Vector v2 = new Vector (); v2.add ("qa"); v2.add ("qo"); 
      funcFactory.CreateEventFunction ( 
            new ComputeLevel ("Ch2", "h2", "qa", "qo"), v2); 
      funcFactory.CreateFunction (new ComputeQa (), "va"); 
      funcFactory.CreateFunction (new ComputeQi (), "vi"); 
      funcFactory.CreateFunction (new ComputeQo (), "vo"); 
   } 
   public void Import () { 
      Add (new Import ("Controller", "Hardware", "vi")); 
      Add (new Import ("Controller", "Hardware", "va")); 
      Add (new Import ("Controller", "Hardware", "vo")); 
      Add (new Import ("Controller", "Hardware", "h1")); 
      Add (new Import ("Controller", "Hardware", "h2")); 
   } 
} 

Listing 3: Simulator world 
 
The supervisor world follows also the same scheme; the 
presentation layer is imported from the controller world. 
The supervisor observes the sign of the time derivative of 
the two tank levels (h1, h2) and defines and registers the 
appropriated functions. 
The figure 12 shows the data written in files by the 
chosen hardware in the different worlds. So simulation 
results allow verifying that each world works well. 
During this simulation, valve Va is opened from 3s to 
13s, the two controllers and the supervisor act as 
previously described. 
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Fig. 12: simulation results. 
 
 
V. CONCLUSION 
 
A key problem in the implementation of applications in 
the fields of control-command, identification, diagnosis 
and supervision, is the complexity of the software design. 
This paper proposes a solution (CoCo’OS) based on a 
layered time independent architecture. An application 
can be break-up in several worlds, which can share 
components from different layers. This feature eases the 
design of complex systems where different processes are 

identified. Layered design brings simplicity and an 
obvious functional separation between components in a 
world. For time considerations, virtual or real schedulers 
and updaters synchronise entities across layers. The 
resulted architecture dramatically simplifies the tasks of a 
final designer. Moreover, the only tasks that remain are 
the applications and algorithms definitions. The data 
propagation from hardware to variables is hidden by the 
architecture. A use case application, build using the 
CoCo’OS architecture, shows how a simulated plant can 
be controlled and supervised. In case of component 
failures, no support is actually provided. Future works 
have to integrate fault detection and reconfiguration 
features such as selection mechanisms and replacement 
strategies. So, the robustness of the control-command 
application made with CoCo’OS architecture will be 
increased. 
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