
A MIDDLEWARE FOR CONTROL APPLICATIONS.

D. Renaud, JM. Perronne, C. Petitjean, M. Hassenforder

ESSAIM/MIPS
Université de Haute Alsace
12, rue des frères Lumière
F-68093 Mulhouse Cedex
{D.Renaud, JM.Perronne, C.Petitjean, M.Hassenforder}@uha.fr

Abstract: This paper proposes an original Object Oriented architecture and an associated
framework to set-up easily and safely control software. To improve the design process of such a
software several propositions are given: a multi-application support, a layered model, a
semantic variable abstraction, a synchronising mechanism and a factoring process. The
example illustrates how the architecture can be used to build complex applications. A two tanks
plant is simulated and a supervised controlled application illustrates a multi-worlds system
with concurrent control and supervision algorithms.

I. INTRODUCTION

Building a Control-Command software application
involves the design of a core software component which
will be a controller. This controller has to provide
specific control algorithms and to interact with physical
systems through input and output devices. Often this kind
of applications are also connected to supervisors and/or
diagnosis processes.

Usually, setting up a Control Command process involves
several steps. First, the system, which must be controlled,
has to be well known. The model of the system can be
either a knowledge model, or an identification model or a
compound model [1]. Next, the controller has to be
designed according to the system model and the
constraints of the desired control strategy. Often, the
controlled system is adjusted and validated using
simulations. Finally, the controller is implemented in the
final target.

In this process, two stages can be distinguished: an
offline design stage using simulations and a real time
design stage on final targets. These two stages need
different kinds of skills and point of views and are
realised by different type of designers with the help of
different specific tools. The coherence of the designed
system is hard to maintain; on the one hand it is
important to reach optimal control performances and on
the other hand, robust synchronous real time data stream
must be provided.

From these considerations, three families of approaches
can be noted.
 - Designer uses simulation software (Matlab,
MAPSim, …) to design the application and then to
generate dedicated code for specific target.

 - Designer uses simulation software and then makes
sub-contract work with consultants.
 - Unified environment, where designing and targeting
are bound together. In this frame, several related works
can be cited. Dias et al. propose a methodology to
develop real time distributed applications [2]. Yacoub
and Ammar present the benefits of pattern-oriented
frameworks to develop closed-loop control systems [3].
Moore et al. promote intelligent controller architectures,
which provide functions such as communication abilities,
task decomposition, functional decomposition using sub-
systems and modules [4]. Maffezzoni et al. demonstrate
the suitability of an Object Oriented Modelling approach
for control system in industrial areas [5]. This way of
solutions shows that intermediate software between
control algorithms and hardware is required; middleware
are particularly suited to the design or to the
implementation of applications in fields of: control-
command, identification, diagnosis, supervision
processes. Such middleware have to propose the
unification of the design process in terms of concepts,
semantics, point of views, tools, etc. They also have to
hide non-interesting tricky aspects for the designer.
To respond to such considerations, the middleware
CoCo’OS (COntrol COmmand Operating System)
provides the following features:

 - A timing sequence model where data are provided
according to traditional sampling sequence at the right
frequency.
 - The ability to work with either real time clock or
virtual time clock (simulated time).
 - Data abstractions, which handle hardware or
computed values in the sense of control command
semantics.
 - A control application can be evaluated on the real
target or by simulation. In this case, the simulator is set-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by univOAK

https://core.ac.uk/display/249987085?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

up by another instance of the middleware. It simulates
the real system and connects its inputs and outputs to the
hardware of the control application.
 - The ability to activate, to deactivate, and to replace
hardware components (a feature quite useful in case of
failure). Previous works on reconfiguration topics,
Perronne and Hassenforder, propose a first approach in
this domain [6].

II. PROPOSED ARCHITECTURE

Such architecture is designed around key concepts; they
take into account notions described in this paragraph.
Among them appear a layered architecture, several time
independent application worlds, synchronous time
scheduling, a semantic presentation layer providing
variables, functions and synchronised entities. These
synchronised entities allow the setting-up of concurrent
algorithms and applications.

A. Architecture Layers

The CoCo’OS architecture can be separated in two fields.
The first field is concerned by the hardware and the
second by the implementation of the application
(controller, simulator, supervisor …). Each field can be
divided in two layers as shown in figure 1. Such a
separation allows an easy replacement of each part. The
logic in the upper layer (application) represents only
what must be achieved by the application. The
presentation layer proposes abstraction to store, to
synchronise and to manipulate values in the application
sense. The purpose of the port layer and the hardware
layer is to propose supports to activate, to deactivate and
to replace hardware components, in order to drive
sensors and actuators. These two layers are fully
described in [7].

Port
Presentation
Application

Hardware

Application
Field

Hardware
Field

ke
rn

el

Fig. 1: CoCo’OS Architure layers.

The kernel part proposes registration services to the
layers in order to register, to retrieve components and to
link them together if necessary. A designed system is
build with several instances of components belonging to
the different layers and registered by the kernel and
realizes what is called in CoCo’OS a World.

B. Structural view

Coco’OS allows a multiple world scheme, thus several
applications, independently conceived, can run
concurrently in the same universe. Each application, a
designer build up, is materialized by a world. Moreover,
a world can be made with one or several instances of

layers; worlds can share layers or components. For
example, a common control-command application
requests the four layers (hardware, port, presentation, and
application), while its supervisor application just uses
two layers (presentation and application). The
presentation is shared by the two applications as depicted
in figure 2.

Presentation’
Application

ke
rn

el

Port
Presentation
Application

Hardware

Control-Command
world

Supervisor
world

Universe

Fig. 2: An example of the universe architecture.

C. Time Scheduling

With a multi-worlds architecture, time scheduling has to
be carefully designed. Each world can request different
time schedules, however they have to be synchronised.
The universe owns the master clock from which a slave
clock per world is derived according a ratio factor.
The different scheduled tasks involved in an application
are depicted in figure 3. Traditional control process is
divided in three stages: sampling (read input data),
synchronising (write output data) and solving (evaluate
functions).

 Solve Write Read

nT+T/2

Presentation

nT

Port

Hardware

…

…

Fig. 3: Process scheduling.

In this layered architecture, each layer has to propose
read and write operations in order to transport data from
lower to upper layers and from upper to lower layers.
Read and write operations have to be synchronised too
across the layers. These tasks must have a reserved slot
in the scheduled sequence; this is assumed by the world
with an update operator. For convenience, each layer
updates its data at its own cadence, via a ratio factor,
based on the world scheduler frequency. For example,
with a master clock at 10ms, the hardware can be
updated every 10ms, whereas the port and presentation
are updated every 30ms and 50ms respectively. A UML
collaboration diagram, in figure 4, presents objects, of
the different layers, involved in this scheme [8].

The MasterClock object is a component, which provides
the time reference in the architecture. From a hardware
clock tick, it generates wall clock time by a simulation
process or by a real time clock observer according its

class. This fact allows checking real time behaviour in a
simulation process without additional efforts.

MasterClock

clockTick() // 10ms

PortUpdater

PresentationUpdater

v2 : Variable v1 : Variable

p1 : Port p2 : Port

2.1 :clockDivide()
// modulo5

1.1 :clockDivide()
// modulo3

1 : do() 2 : do ()

1.2 :update() 1.3 :update()

2.3.1 :get()

2.2 :update()

2.2.1 :get()

2.3 :update()

Presentation Layer

Port Layer

Fig. 4: objects scheduled in layers.

D. Application layer

Semantically, an application can be considered as a set of
functions, using variables, evaluated at given times. The
designer uses components proposed by the underplaying
presentation layer to build up his applications.

E. Presentation layer

The presentation layer provides the abstraction of the
variable, function and monitoring entities used by the
application layer (figure 5).

 Variable Function Monitoring

Fig. 5: Details of the presentation layer.

The abstraction named variable eases the handling of
physical values or computed values with an application
semantic. Three types of variable exist, input or output
variables connected to input or output ports (relative to
hardware) or non-connected variables (relative to
computation).

The variable (figure 6) is able to maintain the current
value and the history required by the application. So it is
easy to design any kind of time-delayed system without
boring with implementation details. The "getValue()"
method gives the current value, which was sampled. This
is a non-destructive function; each activation gives the
same value until an update is achieved. The
"getPreviousValue(int delay)" gives a previous value
extracted from the history array. The "setValue(Value)"
changes the current value. This is also a non-destructive
operation; it only changes the internal representation,
which will be applied on the port only after the activation
of the update function. The private "shift()" function is a
helper to shift all values in the history array and loses the
oldest one. The “update()” function read from or write to
the connected port and invokes shift().

 Variable
-Name : string
-CurrentValue : Value
-NewValue : Value
-Historic : Value []
+getValue() : Value
+getPreviousValue (int) : Value
+setValue (Value v) : void
+update () : void
-shift () : void

Port
-Activated : boolean
+activate() : void
+deactivate() : void
#readValue () :Value
#writeValue (Value v) : void

InputPort
#readValue () :Value

OutputPort
#writeValue (Value v) : void

Hardware

Input, Output

Fig. 6: Variable class diagram.

The abstraction named function eases the handling of
relations between variables. A function allows by the
intermediary of algorithms, the calculation of a set of
variables from others. With such an abstraction, relations
(values computations) can be handled as other entities of
the architecture. A complex relation set can be broken up
in several functions. Using the variable dependency
graph through the functions, the architecture allows an
optimal computation reorganisation.

provides
uses

p v0 v3
v1 f1

f3

v2 f2

Fig. 7: dependency graph.

In figure 7, the variable v3 is computed by the function
f3 which uses the two variables v1 and v2 ; v1 and v2 are
respectively obtained via f1 and f2. These two last
functions use v0, which has been updated from the port
p. f1 and f2 can be computed as soon as v0 is updated
and f3 must wait for v1 and v2. Considering the graph,
the functions f1 and f2 can be evaluated in a concurrency
way. By generalisation, each function in the architecture
can be considered as a process waiting on an event. In
the above example, f3 is waiting for the event due to the
updates of v1 and v2.

At this time two kinds of abstraction must be provided by
the architecture, a process one and a synchronisation one.
The service abstraction eases the conversion of a
function into a process. A service waits for a wakeup
event and invokes the computation behaviour of a
registered function. The monitor abstraction eases the
synchronisation of services. A monitor takes in charge
the registration, the blocking and the releasing
mechanisms of dependent services. The UML
collaboration diagram in figure 8 illustrates the entities

required by the synchronisation between f1 function and
v0 variable.

v0 : Variable mv0 : Monitor

sf1 : Service

sf2 : Service f2 : Function

f1 : Function

4 :solve()

4 :solve() 1 :wait()

1 :wait() 3 :signal() 2 :update()

Fig. 8: collaboration diagram.

The two services are blocked by the wait function of the
monitor. An update of the variable invokes the signal
function of the monitor, which releases services. Further
more, time and processor are allotted to all concurrent
released services and finally allows the use of the solve
function of the Function entities.

F. Application factoring

Setting-up an application involves a lot of components. A
supervised control command application, for example,
needs several application worlds, acting at different time.
Each world manipulates variables, functions and
monitoring entities. The input and output variables have
to be linked to ports in order to access to the
corresponding hardware. Two problems appear, in such a
process, complex dependant components have to be
created and then bound together.

 Factory
+ Register (String registry, Object o)

VariableFactory
+CreateInputVariable ()
+CreateOutputVariable ()
+CreateFreeVariable ()
…

World

*
Registry

FunctionFactory
+CreateFunction ()
…

MonitorFactory
+CreateMonitor ()
… …

void CreateInputVariable (String Name, Value Initial, int HistorySize) {
 CreateMonitor (Name);
 Register ("Variables", new Variable (Name, Name, null, Initial, HistorySize));
}

Fig. 9: Factory architecture.

The abstraction named factory eases the creation process
of complex dependant components [9]. Sometimes, the
creation of an object implies the creation of many others.
For example, when a user instantiates a variable (such as
v0 in figure 8), its associated monitor (mv0) is also
instantiated. Each component is finally registered in the
appropriate layer registry in the current world (v0 and
mv0 are registered in the variable and monitor registries
in the presentation layer). Another aspect of the factory is
to provide a semantic close to that of the user. The use of
factory is generalized to all components in the
architecture as depicted in figure9.

The abstraction named universe eases the setting up of
applications, which involve several complex worlds. For

each world a step by step process is adopted, the universe
abstraction:

1) instantiates the different worlds,
2) creates the different layers in each world,
3) populates the different layers with dedicated

application components,
4) shares application components between worlds,
5) establishes links between components in each

world,
6) starts the different tasks.

III. IMPLEMENTATION ASPECTS

The real time constraints involved in CoCo’OS
architecture impose a careful implementation design and
require synchronisation mechanisms and multi-tasks
entities. The design of the architecture follows an object-
oriented scheme, so the choice of an object oriented
language seems particularly relevant. In a first approach,
a validation prototype has been designed and realized.
The Java language responds to the above constraints
providing object oriented features, multithreading and
synchronisation mechanisms. Java threads are used to
implement concurrent entities: functions, applications.
An embedded system, which supports a java runtime
environment with real time features, is naturally adapted
to the current implementation; in this case, no additional
efforts must be achieved. In other situations, an
underlying real time operating system has to be chosen; it
usually proposes same interfaces: tasks or threads,
blocking wait function. In this case, the architecture
remains, the only additional effort resides in a
transforming process; the java code must be translated in
another target language.

IV. APPLICATIONS

The example is chosen (figure 10) to highlight the
different features of CoCo’OS and is based on the
benchmark described by Staroswieky and Gehin in the
IFAC SafeProcess conference [10]. It is composed of two
identical connected tanks. Each tank is cylindrical of
section A. The inflow Qi is provided by pump Pi
(continuous on a specific range) and is controlled by the
signal Vi. The flow Qa between the two tanks is
controlled by an on/off valve Va. Connecting pipe is at
level 0.3m. The on/off valve Vo is an outlet valve located
at the bottom of the tank T2.

Tank T1 Tank T2

Va / Qa

Vi / Qi

Vo / Qo

h1

h2

Fig. 10: Two tanks plant.

The two tanks plant will be realized by a simulator build
with the CoCo’OS architecture. So, three worlds (figure
11) are going to be set-up in order to evaluate the
characteristics of the architecture on a supervisor, a
controller and a simulator. This example is a typical case
where the design is simplified by the use of several
independent applications (worlds). The controller is the
main world. The simulator is connected to the controller
through a bridge at the hardware level and the supervisor
observes specific variables of the controller in the
presentation layer.

Presentation
Application

Port
Presentation
Application

Hardware

Controller Supervisor

Port
Presentation
Application

Hardware

Simulator

Fig. 11: Two tanks application worlds.

In fact, in the world of the controllers, there are two
controllers; the aim of the first one is to maintain h1 level
at 0.4m acting on Vi with a PI controller. The flow Qa is
considered as a perturbation. The aim of the second
controller is to open the valve Vo as soon as the level h2
equals 0.20m.
To set-up this world, the entities of the different layers of
this world have to be created using the factory
mechanism. The populate function takes in charge this
process as presented in listing 1.
To work, this controller world needs h1 and h2 input
levels and provides vi and vo valves commands as
outputs. Naturally, h1, h2, vi and vo variables are created
in the presentation layer as InputVariables or
OutputVariables and then will be able to be used in the
different control functions. In order to be connected to
corresponding hardware associated entities are
instantiated in the port and hardware layers with the same
name. The internal mechanism of the architecture
assumes that entities, which have the same names, are
linked. In this example, the hardware created allows the
writing of variables in files.

class Controller extends UserWorld {
 public void Populate () {
 // Hardware set-up
 hardFactory.CreateHardwareOutputFile ("vi", "vi.txt", 100, 50);
 hardFactory.CreateHardwareOutputFile ("vo", "vo.txt", 100, 50);
 hardFactory.CreateHardwareOutputFile ("h1", "h1.txt", 500, 50);
 hardFactory.CreateHardwareOutputFile ("h2", "h2.txt", 500, 50);
 // Input Ports set-up
 portFactory.CreateInputPort ("h1");
 portFactory.CreateInputPort ("h2");
 // Output Ports set-up
 portFactory.CreateOutputPort ("vi");
 portFactory.CreateOutputPort ("vo");
 // Free Variables set-up
 varFactory.CreateFreeVariable ("Kp", new Value (0.001));
 varFactory.CreateFreeVariable ("Ki", new Value (5e-6));
 varFactory.CreateFreeVariable ("h1ref", new Value (0.40));
 varFactory.CreateFreeVariable ("h2ref", new Value (0.20));
 // Input Variables set-up
 varFactory.CreateInputVariable ("h1", new Value (0.4), 20);
 varFactory.CreateInputVariable ("h2", new Value (0.1), 20);
 // Output Variables set-up
 varFactory.CreateOutputVariable ("vi");

 varFactory.CreateOutputVariable ("vo");
 // Functions set-up
 funcFactory.CreateFunction (new vi_PIController (), "h1");
 funcFactory.CreateFunction (new vo_OnOffController (), "h2");
 }
}

Listing 1: Controller world

According to the architecture, the control functions take
into account the separation between the algorithm and the
activation events. For example, vi_PIController function
is called when variable h1 is updated
(vo_OnOffController when h2 is updated). The listing 2
shows how the vi_PIController function object is
implemented.

public class vi_PIController extends VariableFunction {
 private double Kp, Ki, h1ref, h1, vi, integral=0;
 public vi_PIController () {
 AddInputVariable ("h1"); AddInputVariable ("h1ref");
 AddInputVariable ("Kp"); AddInputVariable ("Ki");
 AddOutputVariable ("vi");
 }
 public void Solve () {
 GetValues ();
 double error = h1ref - h1; integral += error;
 vi = Kp * error + Ki * integral;
 SetValues ();
 }
 protected void GetValues () {
 h1 = GetInputVariable(0).GetValue().GetDoubleValue ();
 h1ref = GetInputVariable(1).GetValue().GetDoubleValue ();
 Kp = GetInputVariable(2).GetValue().GetDoubleValue ();
 Ki = GetInputVariable(3).GetValue().GetDoubleValue ();
 }
 protected void SetValues () {
 GetOutputVariable(0).SetValue (new Value (vi));
 }
}

Listing 2 : vi_PIController function object

The simulator world follows the scheme prescribed by
the architecture. In this case, the hardware is imported
from the controller world through the import mechanism.
The only one task that remains is the computation of the
different flows (Qi, Qa, Qo) and the computation of the
two levels (h1, h2), this is achieved by the according
functions. To calculate a level, the function needs the
input and output variable flows, so the function must be
synchronised by the two variable updates. Listing 3
illustrates these aspects.

class Simulator extends UserWorld {
 public void Populate () {
 // Input Ports set-up
 portFactory.CreateInputPort ("vi");
 portFactory.CreateInputPort ("va");
 portFactory.CreateInputPort ("vo");
 // Output Ports set-up
 portFactory.CreateOutputPort ("h1");
 portFactory.CreateOutputPort ("h2");
 // Free Variables set-up
 varFactory.CreateFreeVariable ("A", new Value (0.0154));
 varFactory.CreateFreeVariable ("S", new Value (3.6e-5));
 varFactory.CreateFreeVariable ("h0", new Value (0.30));
 varFactory.CreateFreeVariable ("qa");
 varFactory. CreateFreeVariable ("qi");
 varFactory. CreateFreeVariable ("qo");
 // Input Variables set-up
 varFactory.CreateInputVariable ("vi");
 varFactory.CreateInputVariable ("va");
 varFactory.CreateInputVariable ("vo");
 // Output Variables set-up
 varFactory.CreateOutputVariable ("h1", new Value (0.40));
 varFactory.CreateOutputVariable ("h2", new Value (0.10));

 // Functions set-up
 Vector v1 = new Vector (); v1.add ("qi"); v1.add ("qa");
 funcFactory.CreateEventFunction (
 new ComputeLevel ("Ch1", "h1", "qi", "qa"), v1);
 Vector v2 = new Vector (); v2.add ("qa"); v2.add ("qo");
 funcFactory.CreateEventFunction (
 new ComputeLevel ("Ch2", "h2", "qa", "qo"), v2);
 funcFactory.CreateFunction (new ComputeQa (), "va");
 funcFactory.CreateFunction (new ComputeQi (), "vi");
 funcFactory.CreateFunction (new ComputeQo (), "vo");
 }
 public void Import () {
 Add (new Import ("Controller", "Hardware", "vi"));
 Add (new Import ("Controller", "Hardware", "va"));
 Add (new Import ("Controller", "Hardware", "vo"));
 Add (new Import ("Controller", "Hardware", "h1"));
 Add (new Import ("Controller", "Hardware", "h2"));
 }
}

Listing 3: Simulator world

The supervisor world follows also the same scheme; the
presentation layer is imported from the controller world.
The supervisor observes the sign of the time derivative of
the two tank levels (h1, h2) and defines and registers the
appropriated functions.
The figure 12 shows the data written in files by the
chosen hardware in the different worlds. So simulation
results allow verifying that each world works well.
During this simulation, valve Va is opened from 3s to
13s, the two controllers and the supervisor act as
previously described.

0

0,1

0,2

0,3

0,4

0,5

0 2 4 6 8 10 12 14 16 18 20

-1,5

-1

-0,5

0

0,5

1

1,5

h1(m)

h2(m)

sign(dh2/ dt)

time (s)

0

0,01

0,02

0,03

0,04

0,05

0,06

0 2 4 6 8 10 12 14 16 18 20

qa (dm3/s)

qo(dm3/s)

qi(dm3/s)

time (s)

Fig. 12: simulation results.

V. CONCLUSION

A key problem in the implementation of applications in
the fields of control-command, identification, diagnosis
and supervision, is the complexity of the software design.
This paper proposes a solution (CoCo’OS) based on a
layered time independent architecture. An application
can be break-up in several worlds, which can share
components from different layers. This feature eases the
design of complex systems where different processes are

identified. Layered design brings simplicity and an
obvious functional separation between components in a
world. For time considerations, virtual or real schedulers
and updaters synchronise entities across layers. The
resulted architecture dramatically simplifies the tasks of a
final designer. Moreover, the only tasks that remain are
the applications and algorithms definitions. The data
propagation from hardware to variables is hidden by the
architecture. A use case application, build using the
CoCo’OS architecture, shows how a simulated plant can
be controlled and supervised. In case of component
failures, no support is actually provided. Future works
have to integrate fault detection and reconfiguration
features such as selection mechanisms and replacement
strategies. So, the robustness of the control-command
application made with CoCo’OS architecture will be
increased.

VI. REFERENCES

[1] Hassenforder M, Gissinger GL. “Relations between

variable granularity and object oriented models.
Application to a diesel engine”. In proceedings of
IEEE-AVCS'98 conference, pp 81-86.

[2] Dias O.P., Teixeiras I.M., Teixeiras J.P., Becker
L.B., Pereira C.E. “On identifying and evaluating
object architectures for real-time applications”.
Control Engineering Practice, 2001, v9, pp403-409.

[3] Yacoub S.M., Ammar H.H. Toward pattern oriented
frameworks. Journal of Object Oriented
Programming, 2000, v12, n8, pp25-35.

[4] Moore M.L., Gazi V., Passino K.M., Shackleford
W.P., Proctor F.M. Complex control system design
and implementation. IEEE Control systems, 1999,
V19, n6, pp12-28.

[5] Maffezzoni C., Ferrarini L., Carpanzano E. “Object-
Oriented models for advanced automation
engineering”. Control Engineering Practice N7, pp
957-968.

[6] Perronne J.M, Hassenforder. CoCa, object
architecture for controller reconfiguration.
Proceedings of SafeProcess, 2000, V2 pp751-755.

[7] Perronne J.M, Hassenforder. An object architecture
for advanced controller software. Proceedings of
ACIDCA 2000. 2000, Vol SE pp37-42.

[8] Muller P.A (1997), Modélisation objet avec UML,
Eyrolles, Paris.

[9] Gamma E., Helm R., Johnson R., Vlissides J.
Design patterns, elements of reusable O.O.
software. Addison wesley.

[10] Staroswieki M. Gehin A.L. From Control to
supervision. SafeProcess. Proceedings of
SafeProcess, 2000, Volume 1 pp312-323.

