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Abstract

We propose a novel fragment assembly method for low-resolution modeling of RNA and show how it may be used along
with small-angle X-ray solution scattering (SAXS) data to model low-resolution structures of particles having as many as 12
independent secondary structure elements. We assessed this model-building procedure by using both artificial data on a
previously proposed benchmark and publicly available data. With the artificial data, SAXS-guided models show better
similarity to native structures than ROSETTA decoys. The publicly available data showed that SAXS-guided models can be
used to reinterpret RNA structures previously deposited in the Protein Data Bank. Our approach allows for fast and efficient
building of de novo models of RNA using approximate secondary structures that can be readily obtained from existing
bioinformatic approaches. We also offer a rigorous assessment of the resolving power of SAXS in the case of small RNA
structures, along with a small multimetric benchmark of the proposed method.
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Introduction

The number of functionally important RNAs of unknown

structure is growing rapidly due to recent advances in transcript

identification [1,2] and expression measurement [3].

The processes for determining the structures of a few RNA

families (ribosomal RNAs, tRNAs, and riboswitches) has devel-

oped to the point where the structures can be identified rapidly;

however, the structures of RNAs from other families are famously

difficult to solve even with state-of-art structure determination

efforts [4,5]. A notable exception are the single-particle cryo-

electron microscopy methods, but these are handicapped by the

relatively small particle size of most expressed RNAs (even after

exclusion of all interfering RNAs), which often falls below the limit

of the method.

There is also an increasing need for in-solution confirmation of

determined structures, which may be done using lower-resolution

approaches [6–9].

We propose a computational procedure that uses small-angle X-

ray solution scattering (SAXS) data to obtain low-resolution

approximations of RNA structures. This process can be used as a

diagnostic tool to help confirm predicted secondary structures with

a higher degree of certainty than chemical footprinting approaches

alone [10,11].

We use the most popular metrics to verify our approach and

compare our results obtained with SAXS data with those from

other approaches to RNA modeling.

Our test targets are stem loop 3 (HP3) and stem loop 4 (HP4) of

7SK RNA, which is one of the most abundant regulatory RNA in

mammals [12,13].

Related Work
RNA modelling approaches. There have been previous

attempts to develop junction-based RNA structure modeling

methods, for example JUMNA [14], because helical regions are

believed to be mostly constrained to near-ideal conformations.

Alternative approaches use motif networks inferred using local

similarity of sequence and secondary structure. Of these, MC-

SYM [15] uses least-squares minimization of cyclic motif

networks, ASSEMBLE [16] allows for hand-picking of the most

appropriate motifs using human knowledge, and RNA-MoIP [17]

uses an integer programming framework in order to scale to larger

RNA molecules.

There have also been several attempts to develop conventional

sequential fragment assembly, which works by copying local

coordinates or angles, similar to the ROSETTA protein modeling

method [18,19].

Monte Carlo simulations of reduced nucleotide-based repre-

sentations guided by statistical potentials have also been used [20]

(released as part of the NAST nucleic acids simulation toolkit). A

computationally efficient reduced model on a triangular lattice was

found to outperform pure secondary structure prediction on

pseudoknots [21].

Modelling with aid of experimental information. Modeling

calls for more experimental information, such as that acquired in
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SAXS experiments, because previous research has shown consider-

able success in elucidating the general shape of RNA structures [22]

and has significantly reduced the dimensionality of the tertiary

structure landscape [23].

Existing approaches can be supplemented by experimental

information from SAXS by adding a final step of filtering

generated models to those best fitting the experimental data, as

in FAST-SAXS RNA [6,24].

Attempts have been made to produce an approximate model of

flexible RNA molecules using residual dipolar coupling (RDC)

data acquired from nuclear magnetic resonance (NMR) experi-

ments to restrain relative angles between helices [25]. This

Figure 1. Schematic complexity of RNA secondary structures for HP4, HP3, and tRNAPhe. Secondary structure elements are represented
as nodes in the graph. Each is given a descriptive name. The top nodes are always hairpin loops, and the bottom nodes correspond to the outermost
helices or external loops.
doi:10.1371/journal.pone.0078007.g001

Figure 2. Tertiary structure elements broken down by topology. Nodes of this graph correspond directly to the nodes within the secondary
structure graph presented in the Figure 1, so that three-dimensional element covers a single secondary structure element.
doi:10.1371/journal.pone.0078007.g002

Modeling RNA with SAXS

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e78007



approach has achieved considerable success for molecules with a

small number of flexible angles [25].

Experimental data may be used not only to drive sampling

process, but also to verify that the structure is not too flexible, and

indeed may correspond to a unique tertiary structure. Particularly

the SAXS data can readily show signs of flexible or disordered

structure on a Kratky plot [26].
Use of RNA secondary structure. Secondary structure is an

important input for most tertiary structure prediction algorithms.

Use of chemical probing methods like SHAPE [11,27] to improve

local secondary structure information is therefore believed to

enhance the success rate of modeling attempts.

Starting from RNA secondary structure prediction might be

expected to cause problems, because any bad pairing would be

propagated to the modeled three-dimensional (3D) structure, and

would possibly generate errors in the selection of 3D orientation.

However, the accuracy of secondary structure modeling is

reported to be more than 73% [28], with a Matthews’ correlation

coefficient of 0.8 [29].

There are two ways to mitigate secondary structure errors: one

is to use a consensus secondary structure prediction, and the

second is to compare models created using a range of different

predictions and to draw conclusions using features of the whole

ensemble.

Similar to previous methods, our method capitalizes on the

accuracy of secondary structure prediction in an attempt to tackle

the more difficult part of the problem, which is full 3D modeling.

Methods

Here we describe a novel fragment assembly method RFR,

which uses a sophisticated, variable-length fragment database, and

insights into RNA secondary structure organization in order to

significantly speed up the conformational search.

Complexity of RNA Tertiary Structure Relative to
Secondary Structure

First we propose a novel way to describe the informational

complexity of an RNA structure at low resolution. This description

will provide the basis for the highly efficient sampling algorithms

outlined in the next section.

Given certain secondary structure information, we may

compute the degree of determinacy of an RNA tertiary structure

as the number of degrees of freedom.

We split RNA secondary structure into helices and non-helical

elements: internal loops, bulges and junctions, which are treated

together and called just ‘‘junctions’’ below. We may observe that

non-pseudoknotted secondary structure forms a tree of non-helical

elements joined by helices. Each subtree may be sampled

separately, and most of the conformational freedom corresponds

to non-helical elements. Although information fully describing

RNA 3D structure may be captured by computing flexible torsion

angles(nflex ) at high resolution [30], we use the number of

junctions (and other non-helical elements) as the number of

degrees of freedom to describe the complexity of the structure at

low resolution. (Example decomposition of an RNA secondary

structure into helices, loops, and junctions that form separate

elements is shown on the Figure 1). Both types of information are

sufficient to fully resolve a 3D model at low resolution, when it is

does not contain long unpaired strands. Using junctions signifi-

cantly reduces search space, which is explicitly constrained by

helices on the ends of the junction.

The nflex measure is used in high-resolution molecular

dynamics modeling in either Cartesian or torsion angle space,

whereas our method uses large-fragment replacement that can

replace many tens of flexible bonds within one step. A fragment

database may occasionally lack coverage; if it does, we resort to

alternative strategies for subdividing secondary structure elements

into strands and perform fine sampling of these subdivided flexible

parts. Because these parts represent minor portions of the

considered structures, we still substantially reduce the number of

necessary sampling steps, while still sampling the difficult parts for

which our database may lack coverage. [31] Theoretical analysis

of the information content of a single SAXS experiment

performed on early-generation beamlines has suggested that there

are no less than 17 to 20 degrees of freedom within acquired data

[32], thus justifying the hypothesis that judicious use of SAXS

information alone may be used to validate the orientation of

helices in structures with no less than 8–10 junctions.

RNA Database
We started our study with the RNAJunction database [33],

which contains only junction structures, and idealized helices

produced by X3DNA [34]. This is not unlike the approach in

[35], where RDC data were used to determine the overall

orientation of the helices to create a coarse-grained model of the

molecule. The results of the modeling were much more accurate

for the full database extracted from the Protein Data Bank (PDB)

containing the conformations of both helices and junctions (data

not shown). We enriched this database with information about

junctions from RNAJunction database, in order to mitigate

omissions in our extraction procedure(see [33] for an analysis of

the completeness of the RNAJunction database). To further ensure

a complete database, we also added fragments from the LIR

database [36,37] that our procedure had not included.

Our database contains tertiary structures of a total of 33,000

secondary structure elements and more than 62,000 strands,

among which there are more than 11,000 loop strands.

Sampling Algorithm
Secondary structure definition provided as an input, is used to

split predicted 3D structure into a tree of separate secondary

structure elements. Thus, replacement of an element in any point

of the tree with a 3D structure would only affect the placement of

elements below it in the tree hierarchy (see Figures 1, and 2).

For each of the secondary structure elements, we perform a

database search to find fragments matching the number and

lengths of the strands. These fragments are then scored in terms of

sequence similarity (see below).

In the rare event when there are not enough fragments found,

we mark this element for sampling using variant B of the

algorithm, and search the database by strands for each strand

within the element.

Then we loop the annealing protocol through about 20 stages of

decreasing temperature (to 80% of the previous value after each

stage), making 100 fragment exchange attempts within each stage.

At each sampling step, the algorithm replaces the structure of a

single 3D element (matching a single element of secondary

structure). Most elements are subject to whole-fragment replace-

ment and then scoring (as explained in the next section), after

which replacement is accepted with a probability Pacc corre-

sponding to a modified Metropolis-Hastings Monte-Carlo criteri-

on [38].
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Pacc~

1:0 when DEscoreƒ0

e{100:0 when DEscore
T

w100:0

e{
DEscore

T otherwise

0
BBBB@

Where DEscore is the difference in scores between the old and

new model (in that order, see details of the scoring function in the

next section). Temperature T is expressed in arbitrary units to

which weights of the scoring function are calibrated. The starting

temperature T is computed as 20% of the initial scoring function

value, or 1.0, whichever is greater, in order to ensure that sampling

can easily jump over reasonable local minima, given that the initial

randomly drawn structure is supposed to represent a bad fit.

Each replacement step consists of superimposing boundary

atoms onto the boundary atoms of the previous element in the

topology of the secondary structures, and then minimizing the 3

last dihedral angles of those boundary elements to assure a

contiguous backbone.

In the case of insufficient fragment coverage, version B of the

sampling scheme replaces all strands within an element instead of

replacing fragments. After such a replacement, an additional term

that corresponds to the consistency of the different strands

(contiguity) is added to the score.

The main contribution to the scoring function Escore is the fit to

the SAXS data valued as x2 fit. Additional components just

increase bias towards the high-resolution integrity of the structure,

while still permitting some variation in physically plausible

geometry, in case the fragment coverage does not suffice for

accurate modeling. Experimental data are acquired by SAXS

experiments and then fitted by scaling intensity so that the best x2

measure is obtained using the CRYSOL program [39].

Eexp~x2~
1

Np

XNp

i~1

½Ie(si){c:I(si,r,dr)

d(si)
�

Where Np is the number of points of experimental data; Ie(s) is

the experimental data curve; I(s,r,dr), a theoretical curve

parameterized by r&1:0+0:04, is the volume displaced by each

atomic group; and dr is the average excess electron density of the

solvation shell layer.

This algorithm benefits from relatively few degrees of freedom

and thus enjoys faster convergence than a conventional fixed-

fragment-size algorithm like ROSETTA for RNA [40].

Scoring Function
The scoring function is a sum of heuristic terms corresponding

to the similarity of database fragment sequences to modeled

sequences, geometric model quality terms, and fit to experimental

data:

Escore~wseqsimEseqsimzwgeomEgeomzwexpEexp

Eseqsim is a fragment match score that takes into account

consistency of the sequence between the fragment and a modeled

sequence.

Egeom is a geometric quality score that is a weighted sum of the

contiguity score Eintegr (measured as a sum of excess bond lengths

in the covalently bound backbone) and a steric clash count Eclash

(measured as a count of clashing atoms, and then multiplying

clashes between phosphorus and backbone by 5 to increase their

contribution).

Eexp is fit to experimental small-angle scattering data.

wseqsim, wgeom, and wexp are weights optimized by regression and

corresponding to the given energy functions.

The first round of benchmark simulations were computed with

only Eexp and with wgeom~1, all other weights being set to 0.

Regression analysis was then performed by using Waikato

Environment for Knowledge Analysis [41] and selecting weights

corresponding to the best match of the linear combination to the

Fidelity Index value (see the next section).

Measurements of Prediction Success
We measured prediction success using both pre-established

methods (the Interaction Network Fidelity index INF , the root

mean square deviation RMSD and the global distance test

GDTTS ) and adaptations of these methods that we believe are

more applicable to RNA structures. We propose a global distance

test with RNA-adapted thresholds GDTTSRNA , and the Fidelity

Index FI , which uses a combination of INF and GDTTSRNA to

compute a score from 0.0 to 1.0, where 1.0 corresponds to perfect

accuracy.

RMSD Root mean square deviation on single backbone atom is standard

superposition quality measured on all atoms of a high-resolution

structure determined by macromolecular crystallography, on

backbone atoms for NMR structures and high-resolution models,

or just on a single ‘‘reference’’ backbone atom for big or low-

resolution models.

RMSD~
X

i~1::N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
( _xxi{€xxi)

2z( _yyi{€yyi)
2z( _zzi{€zzi)

2

q

INF Interaction network fidelity [15] is a Matthews’ correlation

coefficient for a hydrogen-bonding network between a reference

structure and a model.

INF~ MCC(H{bonds) ~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PPV :STY
p

PPV~
TP

TPzFP

STY~
TP

TPzFN

Where:

TP is the true positive rate (number of correctly predicted

hydrogen bonds),

FP is the false positive rate (number of hydrogen bonds that

occur only in the model structure),

FN is the false negative rate (number of hydrogen bonds that

occur only in the reference structure).

Modeling RNA with SAXS
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STY sensitivity of the prediction, measured as a ratio of correctly

detected bonds among all bonds in the native structure.

PPV specificity of the prediction, measured as a ratio of correct

bonds among all bonds in the predicted model.

DI Deformation index is a compound measure of RMSD, and INF

that was suggested by [15] as a more sensitive quality measure

than its component measures alone:

DI~
RMSD

INF

GTDTS
RNA Global Distance Test modified for RNA, with adapted

thresholds of 1.5, 3.0, 6.0, and 12 (instead of the 1, 2, 4, 8 Å used

in protein comparisons, due to the larger average distance between

phosphorus atoms than between C-a atoms) is computed on

backbone phosphorus atoms instead of C-a. To compute this

score, we patched the TMscore program used for computing

protein structure similarity scores for protein models [42] (see

patch in File S3).

GTDTS Global Distance Test on backbone phosphorus atoms, with

traditional thresholds (see patch in File S2).

FI Fidelity Index is a composite score based on the adapted

GDTTSRNA and INF and scaled to deliver GDTTS -like range of

values in the range of 0:::1.

DI~GDT
TSRNA

:INF

2lg 10P(RMSD) is a estimation of likelihood to built a model of

given accuracy given by [?] for simple RNA with known secondary

structure. Where:

P(RMSD)~
1zerf (Z=

ffiffiffi
2
p

)

2

Z~
RMSD{E(RMSD)

sRMSD

E(RMSD)~a:N0:41{b

sRMSD~1:8A

a~5:1

b~15:8

P(RMSD) is probability to build a model for simple RNA with

given number of bases.

E(RMSD) is expected average RMSd for models built by

molecular dynamics approach of [10].

Z is Z-score between a given RMSD and E(RMSD).

a, b, sRMSD are parameters estimated by regression in [10].

N is a length of a modeled RNA in bases.

Sample Preparation
RNA was transcribed at preparative scale (5 ml) from a

linearized pHDV template [43]. This template introduces a 39

co-transcribed HDV ribozyme, which allows cleavage in the

presence of 40 mM MgCl2, thus ensuring a well-defined 39-end.

Preparative gel purification on acryl-urea gels allowed the

ribozyme and uncleaved transcript to be removed. The purified

RNA was eluted from the gel, filtered through glass wool, and then

further purified on a monoQ column in Bis-Tris 20 mM pH 7.0

and a NaCl gradient from 0.1M to 1M. The fractions containing

the RNA of interest were pooled and concentrated (Amicon

Figure 3. RNA sample quality controls. Control of RNA samples with size exclusion chromatography in Superose 6 (buffer Hepes pH 7.2, 20 mM,
KCl 100 mM). Absorption at 254 nm (blue curve) and conductivity (green curve) are shown. A. HP3. Inset: Electrophoresis in native conditions
(agarose 2%, GelRed coloring) of the HP3 sample measured. B. HP4. Inset: Electrophoresis in native conditions (acrylamide 15%, toluidine coloring) of
the HP4 sample before (left) and after (right) thermal treatment (3 min 85uC).
doi:10.1371/journal.pone.0078007.g003
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Ultra-4), then dialyzed into ‘‘SAXS buffer’’ (10 mM sodium

cacodylate buffer, pH 6.5, 6 mM MgCl2, 0.25 mM EDTA, and

100 mM NaCl) for at least 15 hours in Gebaflex-mini dialysis

tubes. In the course of our functional studies involving HP3 and

HP4 from 7SK, we checked that for RNA of that small size, this

process leads generally to monodisperse preparation with one

single conformation. A size-exclusion chromatorgraphy of a

sample HP3 shows indeed a sharp, unique peak, and a single

band on a native gel (Figure 3A). For HP4, we sometimes observed

a small amount of a larger species (Figure 3B). That was attributed

to the duplex form of HP4, since larger molecule does not appear

on denaturing gel. This form was eliminated by a thermal

treatment (3 min 85uC) before to SAXS measurement. Full

conversion into a single conformer was monitored by native

acrylamide gel (Figure 3B).

SAXS Experiments
Samples at concentrations of 2.2–3.8 mg/ml for stem loop 3 of

7SK RNA (HP3) and 0.7 mg/ml to 1.2 mg/ml for stem loop 4 of

7SK RNA (HP4), both in 50 mM cacodylate buffer at pH 6.5,

Table 1. Data parameters.

Data collection parameters HP3 HP4

Instrument X33 (EMBL, DORIS ring, DESY)

Beam geometry 2 mm60.6 mm

Wavelength [Å] 1.5

q range [Å21] 0.0074-0.5

Exposure time [s] 8615

Temperature [K] 283

Concentration range [mg/ml] 2.2–3.8

0.7–1.2

Structural parameters

I(0) [% IBSA(0)] from P(r) 5365 32.25612

Rg

[Å ] from P(r) 31.261.2 18.860.1

I(0) [% IBSA(0)] from Guinier 72.869 31.660.06

Rg

[Å ] from Guinier 29.362 17.862.1

Dmax [Å] from data 117 61.4

Rg

[Å ] Model 1 30 17.4

Rg

[Å ] Model 2 33

Dmax [Å] of model envelope Model 1 112 61.43

Model 2 124

Porod volume estimate [Å] 30230 10950

Dry volume calculated from model [Å] Both models 28900 14100

x2 fit Model 1 0.75 1.07

Model 2 0.93

Molecular-mass determination

Molecular mass Mr from I(0) in P(r) [kDa] 1862 10.763

Calculated monomeric Mr from sequence [kDa] 23.4 10.3

Calculated monomeric Mr from I(0) in Guinier [kDa] 2563 11.6

Software employed

Primary data reduction PRIMUS

Data processing GNOM

Ab initio analysis DAMMIF

Model comparison SUPCOMB

Tertiary structure modelling RFR (this paper)

Computation of model intensities CRYSOL

Three-dimensional graphics representations PyMol

doi:10.1371/journal.pone.0078007.t001
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were measured on the X33 beamline [44] operated by European

Molecular Biology Laboratory at DORIS III storage ring. Each

sample was exposed for 8 frames of 15 seconds each to 1.5 Å X-

ray wavelength at 10uC. Scattered radiation was recorded with a

Pilatus 1M photon-counting detector. Data gathered for all

samples was checked for presence of expanded or disordered

conformations using a Kratky plot. All of these seem to be

compact, monodisperse conformations as indicated in the Figure 4

and 5. Data parameters are given in table 1. The SAXS data for

the concentrations used for structural modeling are included in

File S4 for HP3 and File S5 for HP4.

SAXS Envelope Modeling
Consistency checks between frames were performed automat-

ically by X33 automated processing system [45] using ATSAS

software [46]. The expected molecular masses of the solutes were

estimated from intensity extrapolated to zero angle, and were

found to be consistent with the expected masses for the monomers

(see table 1. The maximum diameter of each particle was

estimated by indirect Fourier transform using GNOM software

[47].

Ab initio structures of the monomers were obtained using the

program DAMMIF [48], which uses Monte Carlo simulated

annealing to build the compact and contiguous bead model of

uniform scattering length density that has the least discrepancy

between experimental and forward-calculated scattering curves.

Calculations for HP4 were performed in the volume of a sphere

with a diameter of 80.3 Å, and for HP3 in the volume of a sphere

with a diameter of 109.7 Å. The calculations were visually

compared between 10 different runs for each concentration to

Figure 4. SAXS data and fit for the models of stem loop 3 (HP3). The plots are: (A) log-log data plot, (B) Kratky plot showing that RNA is
compact and folded, (C) P(r) plot showing approximated distribution of interatomic distances within particle, and (D) Guinier plot with shown Rg , and
I(0) fit. Gathered experimental data is drawn in blue with gray error bars, whereas fits are drawn in red for secondary structure from [12] with x~0:75,
and green for secondary structure from [13] with x~0:93.
doi:10.1371/journal.pone.0078007.g004
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ensure consistency. We show the centroid model of the largest

cluster. Average similarity between all models measured by NSD

was 0.79 for HP4 and 0.70 for HP3.

Model Visualization
Atomic model structures were superimposed over SAXS

envelopes using DAMSUP software [49]. Superpositions between

atomic models were then improved using PyMol [31], to minimize

discrepancy between model best fitting to the envelope, and the

other model.

Secondary structure trees were created using GraphViz [50] out

of three dimensional fragments rendered using PyMol [31].

Results

Benchmark Results
We have tested our method on a set of experimentally

determined RNA molecules of up to 70 nucleotides (including

subset of previous benchmark [10]), as presented in table 2. SAXS

input data of 200 points between 0 Å21 and 0.5 Å21 were

backcalculated for each target by using CRYSOL [39] (data and

models are included in File S6). Scattering intensity was then

perturbed by adding 2% relative noise to each point, and absolute

noise of 5% of the minimal intensity value.

In equational form:

ssim(s)~2%:Isim(s):5%:min
s

(Isim)

Figure 5. SAXS data and fit for the model of HP4. Plots of SAXS data and fit to the model (dashed red line) of stem loop 4 (HP4) against
gathered experimental data (blue line with gray error bars), and fit to the NMR model (green line). The data is shown with log-log data plot (A), Kratky
plot showing that RNA is compact and folded (B), P(r) plot showing approximated distribution of interatomic distances within particle (C), and Guinier
plot with shown Rg , and I(0) fit.
doi:10.1371/journal.pone.0078007.g005

Modeling RNA with SAXS

PLOS ONE | www.plosone.org 9 November 2013 | Volume 8 | Issue 11 | e78007



Iint(s)~R(Isim(s),ssim(s))

Where:

Isim is intensity simulated by CRYSOL;

R(m, s) is a Gaussian random variable with median of m, and

standard deviation of s;

Iint is final intensity used for benchmark;

ssim(s) is apparent error produced in benchmark.

GDTTSRNA , GDTTS , FI , RMSD, INF , P(RMSD), and DI

were used to estimate method success. To facilitate the assessment

of convergence speed, we have added the number of iterations (out

of a maximum of 3000 for all runs) needed before the minimum-

energy structure was found. Length in nucleotides and the number

of different secondary structure elements are also indicated to

facilitate assessment of the structure’s complexity (table 2).

For better comparison we used ROSETTA software, with

postfiltering by CRYSOL to improve on otherwise poor average

decoy scores, which suggest that indeed producing good models is

much harder than estimated by equation used to compute P-value

[10]. For each target, a 100 decoys were generated, and then one

with the best fit to simulated SAXS data was chosen (and included

in File S6). It is worth noting that the method presented in this

paper does usually achieve a slightly better result using just a single

annealing run. This comparison proves that while ROSETTA

computed for a longer time, and produced more decoys, it didn’t

propose better models, even after filtering by fit to the SAXS data.

The comparison of the accuracies and expected RMSD values

from random modeling (table 2) clearly indicate the size and

complexity of molecules that may be successfully modeled without

further restraints. Although the models for the two molecules with

the simplest topologies (1L2X and 1DDY) could theoretically have

models of similar quality generated by chance, provided secondary

structure restraints, the three other models show significant

predictions, as indicated by lg10 P(RMSD)[10], in particular for

the largest molecule – a guanine-responsive riboswitch with a PDB

ID of 1U8D, Figure 6.

The comparison of the number of secondary structure elements

and the SAXS fit seem to indicate a limitation on the maximum

complexity of the modeled structure, at least when conformational

space is not further restrained. As an example of built models, we

show the longest modeled molecule (1U8D), where a 67-

nucleotide model reached an accuracy of RMSD~3:88 Å and

INF~30% (fig. 6).

Comparison of the HP4 Model to the NMR-derived
Structure

SAXS data were measured for stem loop 4 (HP4) of 7SK RNA.

The sequence used for the SAXS analysis (shown in Figure 7) is

similar to that used for the NMR analysis (deposited in PDB as

2KX8 [51]). Both are parts of the Homo sapiens 7SK sequence.

We used a construct encompassing nucleotides 302–332. For the

NMR study, a longer 296–331 sequence was used, with an

addition of 3 G-C base-pairs forcing the structure into a hairpin.

We compared the parameters inferred from the data, our model,

and the NMR structure after cutting the outermost helix which

was added to increase stability of the structure in [51] (see File S1

for secondary structure of HP4). Model shows not only a good

x~1:07 fit to data, but also a very consistent Rg (17.8 Å from

Guinier, and 17.4 Å for the model and 17.5 Å for the NMR

structure without tailing helix) and Dmax (61 Å from data and theT
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‘‘RFR model’’ and 65.7 Å for NMR structure without tail) values

with those estimated from the data.

Due to the elongated conformation of the hairpin and the

relatively small number of degrees of freedom, the model with

SAXS fit of x~1:07 shown in Figure 8 was built with weights of

Eclash~41, and Eintegr~1. Thus, the scoring function was clearly

dominated by SAXS data (see fit on Figure 5). The model was

built without any fragments from the NMR structure (to validate

benchmarking) and for 23 nucleotides in the same structural

context are still within RMSD of 3.7 Å, GDTTSRNA of 0.55 and

INF of 0.54 of the NMR structure (see model in FIle S5). Shape

similarity metric NSD [49] between model and the reconstructed

shape is 1.01.

The SAXS-based shape reconstruction is more difficult than

building a model for NMR structure due to an unpaired

UUUCUUU tail instead of few additional bases that allow to

form the helix that is present in the NMR structure (see Figure 7).

However our model still matches the bend of the main body in the

NMR structure.

HP3 Model Proposal
We also used our method to propose two models for the stem

loop 3 (HP3) of 7SK RNA (fig. 9), in accordance with two

secondary structures of 7SK proposed by either [12] and [13]. The

latter model [13], was based upon evolutionary analysis of 7SK

which suggested a more symmetric secondary structure model

than the earlier study based upon chemical probing experiments

[12]. Both base-pairing schemes give similar stability. Both models

of this longer element closely match SAXS data (first with

x~0:75, and second with x~0:93, see model and data in File S4 ),

and corresponding secondary structures (see model on Figure 9,

and fit on Figure 4). Both models strongly suggest an extended

conformation, with only slight bends in absence of protein

partners. The resolution of SAXS data does not permit us to see

loop details. Experimentally estimated Rg of 29 Å from Guinier or

31 Å from P(r) speaks in favor of the model built on the first

secondary structure with Rg of 31 Å, instead of 33 Å as model

built on second structure. Estimate of Dmax at 117 Å seems to be

in between values for two models: 112 Å, and 124 Å.

Shape similarity metric NSD [49] between DAMMIF recon-

struction and either model is 1.0.

Discussion

We report a novel method for modeling RNA structures using

pre-established secondary structure predictions, SHAPE-based

determination for improved accuracy, and low-resolution tertiary

structure reconstruction using SAXS data.

Used together, these methods show great potential to overcome

the difficulties currently seen in determining RNA structures using

crystallography and NMR.

The accuracy of the method is mostly limited by the

discriminative power of available SAXS data and may be

enhanced by gathering multiple data sets for components of a

larger structure.

Software Availability
Software source is available upon request from corresponding

author as a Python package.

Figure 6. Model of 1U8D against native structure and SAXS envelope. Comparison of the red model, and green native structure for the
longest modeled RNA, 1U8D. Even though shape (grey) would seem a weak restraint, topology and contacts within the model structure correspond
closely to the native (similarity NSD~0:90 between the model to either native, or reconstructed shape).
doi:10.1371/journal.pone.0078007.g006

Figure 7. Sequence comparison for the SAXS (HP4) and NMR
(2KX8) constructs. Different nucleotides have different colors to
facilitate recognition of differences between the sequences. Parenthe-
ses represent nucleotide pairings, and dots represent unpaired
nucleotides. Note that NMR structure has one additional outer helix
to facilitate expression [51].
doi:10.1371/journal.pone.0078007.g007
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Figure 8. SAXS model of stem loop 4 versus the NMR structure. The gray envelope is a shape reconstruction using SAXS data, the red is a
model using SAXS data, and the green is an NMR-based structure deposited in PDB. Tails of the model and the native structure that do not share the
common secondary structure, are marked with shades of grey.
doi:10.1371/journal.pone.0078007.g008

Figure 9. Proposed models of stem loop 3 (HP3). Models (right) depending of input secondary structure (red from [12] corresponding to
secondary structure on the left, and green corresponding to secondary structure plot in the center from [13]). Nucleotides in red are changes made
for facilitating the production of HP3.
doi:10.1371/journal.pone.0078007.g009
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Supporting Information

File S1 Secondary structure of HP4. Secondary structure

diagram of HP4. Base numbering corresponds to the full human

7SK sequence.

(PNG)

File S2 Patch for GDTTS . Patch modifying TMscore [42] to

compute classical GDTTS on RNA backbone.

(PATCH)

File S3 Patch for GDTTSRNA . Patch modifying TMscore [42] to

compute GDTTSRNA .

(PATCH)

File S4 Model and SAXS data for HP3. Archive with a

model of HP3 in.pdb format, and SAXS data used to compute it

in.dat format.

(ZIP)

File S5 Model and SAXS data for HP4. Archive with a

model of HP4 in.pdb format, and SAXS data used to compute it

in.dat format.

(ZIP)

File S6 Benchmark data. Simulated SAXS data, fit plots,

RFR models, and best ROSETTA decoys (by x) for 10 benchmark

targets. Within the archive, simulated SAXS data are named in

benchmark_models/*.dat, fit plots are named benchmark_mo-

dels/*_fit.pdf, RFR models are named benchmark_models/

*model.pdb, and top ROSETTA decoys are named rosetta_de-

coys/*.pdb.

(ZIP)
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