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In-line digital holography (DH) and lensless microscopy are 3D imaging techniques used to reconstruct the
volume of micro-objects in many fields. However, their performances are limited by the pixel size of the sensor.
Recently, various pixel super-resolution algorithms for digital holography have been proposed. A hologram with
improved resolution was produced from a stack of laterally shifted holograms, resulting in better resolved
reconstruction than a single low-resolution hologram. Algorithms for super-resolved reconstructions based on
inverse problems approaches have already been shown to improve the 3D reconstruction of opaque spheres.
Maximum a posteriori approaches have also been shown capable of reconstructing the object field more accurately
and more efficiently and to extend the usual field-of-view. Here we propose an inverse problem formulation for
DH pixel super-resolution and an algorithm that alternates registration and reconstruction steps. The method
is described in detail and used to reconstruct synthetic and experimental holograms of sparse 2D objects. We
show that our approach improves both the shift estimation and reconstruction quality. Moreover, the recon-
structed field-of-view can be expanded by up to a factor 3, thus making it possible to multiply the analyzed
area ninefold. © 2016 Optical Society of America

OCIS codes: (090.1995) Digital holography; (100.3190) Inverse problems; (100.6640) Superresolution; (100.3010) Image

reconstruction techniques.

https://doi.org/10.1364/AO.56.000069

1. INTRODUCTION

Since in-line holographic imaging was proposed by Gabor [1],
followed by digital holographic (DH) imaging [2,3], it has
become a method of choice for a wide variety of applications
including fluid mechanics, mechanical inspection, and bio-
medical imaging. The method, also known as lensless imaging
[4], relies on a relatively inexpensive and easy to implement con-
figuration in which no collection optics is needed to perform
imaging. The role of the collection optics is advantageously
replaced by data processing approaches aimed at simulating
light backpropagation from the sensor plane to the plane where
the objects to be investigated are located [5–7], thus enabling
3D imaging from the recording of one 2D hologram. Its
cost-effectiveness associated with the democratization of high-
resolution, and high-definition imaging sensors made it
possible to develop on-chip wide-field holographic microscopes
[8] suited for the detection of bacteria and viruses [9,10], cy-
tometry [11], or the characterization of protein aggregates [12].

In this case, the resolution of the lensless microscope is driven
by the pixel pitch of the chosen sensor, but can be enhanced
using pixel super-resolution (SR) strategies [13].

Simulation of light backpropagation is still often used for
hologram reconstruction because it is simple, although it is
prone to border effects and twin image noise, which dramati-
cally reduce the reconstruction signal-to-noise ratio (SNR) and
consequently the accuracy of the reconstruction. Holographic
reconstruction is also possible based on another paradigm.
Instead of transforming the acquired hologram, the aim is to
find the object transmittance that best matches the measure-
ments. This inverse problem (IP) approach extracts more in-
formation from the hologram and has been shown to solve
two major problems in digital holography: (i) the need to
improve the accuracy of the reconstruction, (ii) the need to en-
large the field-of-view beyond the physical limit of the sensor
[14–18]. It also leads to almost unsupervised algorithms (only
a few tuning parameters are required). These approaches are
sometimes referred to as compressive sensing methods [19–21].
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To overcome the limitation caused by the pixel pitch of the
hologram, in 2010, Ozcan’s team introduced pixel SR [13],
which was already used in other modalities [22,23]. These
authors suggested to recover a higher-resolution hologram us-
ing a stack of rigidly shifted lower-resolution holograms and to
reconstruct them by backpropagation. Recently, it was shown
that coupling IP with pixel SR can improve the accuracy of
hologram reconstruction even more [24,25]. In this IP ap-
proach, a high-resolution hologram is no longer computed;
instead the reconstruction is performed directly from the
hologram stack. However, despite their accuracy, these new
DH-SR algorithms are based on a parametric reconstruction
limited to the reconstruction of parametric objects (i.e., relying
on a few parameters). For arbitrary shaped objects, the object
3D space can be sampled and a transmittance value estimated
at each voxel. The image-hologram formation model can then
be inverted using an a priori on the objects by means of a
prior on the 3D object. This maximum a posteriori (MAP)
reconstruction has been shown to reduce twin images and to
extend the usual field-of-view under sparse prior [17] or total
variation prior [14,18,20,26,27].

We propose to combine pixel SR with IP approaches to
perform optimal high-resolution hologram reconstruction of
arbitrary sparse objects from a stack of shifted holograms. This
approach has already been used for conventional imaging [23],
and we apply it to DH. The specificity of DH makes the results
unique: high-accuracy registration, out-of-field reconstruction.
In the first part of the paper, the pixel super-resolution issue is
presented from an IP point of view. Then, an algorithm that
alternates registration steps and transmittance reconstruction is
detailed. Finally, the approach is validated with both synthetic
and experimental data resulting in high SNR transmittance
reconstruction over an enlarged field-of-view. Here the proof
of concept is limited to the reconstruction of a 2D plane, but
can be extended to 3D sparse objects.

2. SR RECONSTRUCTION PROBLEM AS AN
INVERSE PROBLEM

Pixel SR algorithms in DH attempt to extract a high-resolution
opacity distribution (real or complex valued) from a sequence
of low-resolution holograms. This issue can be solved using an
IP because the imaging model (direct model) is well known.
In this section, we first describe the direct model and then
mathematically formalize the reconstruction problem.

A. Direct Model
The direct model gives a mathematical expression of the hologram
intensity as a function of the object opacity. Let us consider the
simple case of sparse semi-opaque objects located in a plane and
illuminated by a collimated coherent beam of wavelength λ. This
object is described by its opacity distribution ϑ, which is assumed
to be real. A sensor positioned at a distance z from the object plane
(Fig. 1) records the intensity of the wave diffracted by the object.

Assuming the holographed object l is narrow in width and
satisfies πl 2∕�4λz� ≪ 1, the hologram intensity I�x; y� can be
approximated as an incoherent summation of diffraction pat-
terns created by each point of the object plane characterized by
its opacity ϑ:

I�x; y� ∝ �1 − 2:ϑ � hz ��x; y�; (1)

where hz stands for the real part of the free-space propagation
impulse response, � for the 2D spatial convolution operator,
and ∝ is the proportionality sign.

In the Fresnel diffraction regime [28] (i.e., z3 ≫ πl4∕�64λ�),
hz is given by

hz�x; y� �
1

λz
sin

�
π�x2 � y2�

λz

�
: (2)

Accounting for pixel integration [29], a transversal shift of the
sensor Δi � �Δxi;Δyi� and the sensor sampling, the intensity
model of the ith hologram can also be expressed in a linear
form:

I i�xp; yp� ∝ �1 − 2:ϑ � hz � Π � δΔi ��xp; yp�; (3)

where �xp; yp� is the center of the pth pixel, Π is the 2D rec-
tangular function representing the photosensitive area of a
pixel, δΔi is the Dirac distribution centered on �Δxi;Δyi�.

This expression can be rewritten as

I i�xp; yp� ∝
�
1 − ϑ � hΠz;Δi

��xp; yp�; (4)

with

hΠz;Δi � 2:hz � Π � δΔi : (5)

In a pre-process step the holograms are divided by a back-
ground image (image with no object in the field), so that
the proportionality factor is removed.

In the following, we use matrix notation as a simpler math-
ematical expression of the direct model. Bold notations are used
to indicate a vector or a matrix. The image is represented in
vector form by considering the 2D image as a 1D vector by
stacking all columns of the image. The convolution of the
kernel hΠz;Δi with the sampled opacity ϑ is thus expressed as
the multiplication of a large discrete convolution matrix HΔi

with the vector corresponding to the object opacity ϑ. The
matrixHΔi is made of pixel-shifted replications of hΠz;Δi put into
a vector form.

The direct model mi representing the intensity of the ith
hologram is in matrix notation:

mi � 1 −HΔiϑ; (6)

where 1 represents the offset and is a vector of n “ones,” HΔi

models diffraction and takes into account the relative displace-
ment of the object with respect to the camera �Δi� and ϑ is the
unknown opacity distribution of the object, common to all
holograms.

Fig. 1. Illustration of the in-line hologram formation model.
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Considering a centered model mi and a centered diffraction
matrix H , the expression of the model is simplified [17] to

mi � HΔiϑ; (7)

with mi � mi − 1
n 11

tmi and H � −H � 1
n 11

tH .
From the point of view of implementation, to evaluate this

model, the convolutions are computed in the Fourier space
using the fast Fourier transform (FFT). The sampling of the
model is thus given by the opacity distribution sampling. A
super-resolved opacity distribution leads to a super-resolved
model:

mi;SR � HΔiϑSR : (8)

B. SR Reconstruction
In an IP framework, the cost function enforces a certain fidelity
of the final solution to the measured data. For the SR issue, the
goal is to jointly reconstruct the super-resolved opacity from
the whole hologram sequence. The fidelity term is thus com-
posed of a sum of individual cost functions with a common
super-resolved object opacity. Modeling the error between the
modeled intensity and the measured hologram as white and
Gaussian, the negative log-likelihood is proportional to

1

N

XN
i�1

‖HΔiϑSR − d i;SR‖2w ; (9)

where

• N is the number of holograms.
• d i is the ith centered hologram.
• The exponent (SR) indicates that data sampling is the

same as opacity sampling ϑSR ; in practice zeros have been in-
serted in d i;SR at the position of missing pixels [e.g., for a super-
resolution factor of 2, one column out of two are considered as
missing (Fig. 3)].

• w is the weight vector that accounts for missing data
(for pixels that are missing the weight is 0, otherwise it is 1).
More generally, it can also account for non-uniform noise
variance [15,30].

• ‖ · ‖2w is the weighted L2 norm defined as ‖u‖2w �
hu; uiw � �Pn

p�1 wpu2p�∕�
Pn

p�1 wp�.
This inverse problem is ill-posed. In order to stabilize the

inversion process, a regularization penalty function ρ, which
enforces an a priori on the object to reconstruct, is added.
This regularization is applied to the reconstructed super-
resolved object opacity ϑSR.

The expression of the cost function becomes

C�ϑSR ; fΔig� � 1

N

XN
i�1

‖HΔiϑSR − d i;SR‖2w � τρ�ϑSR�;

(10)

where the coefficient τ indicates the weight of the regulariza-
tion term.

Reconstructing a super-resolved opacity using an IP frame-
work is equivalent to solving the minimization problem,

ϑ̂SR � argmin
0≤ϑSR≤1

n
min
Δi

C�ϑSR ; fΔig�
o
; (11)

where bound constraints are imposed on the opacity ϑ to ac-
count for the physics of absorption: the opacity of semi-opaque
objects being between 0 (transparent) and 1 (opaque).

This IP formulation provides a rigorous mathematical frame-
work for the SR problem. Indeed, the shifted holograms of the
sequence are modeled using the image formationmodel and con-
sequently, no arbitrary interpolation function is used. The inter-
polation is implicitly made by the image formation model.
Furthermore, the penalty function (based on an a priori on the
objects) acts as a denoising step in the reconstruction. In the fol-
lowing section, we detail how the minimization in Eq. (11) is
achieved.

3. ALTERNATING OPTIMIZATION ALGORITHM

The joint minimization of Eq. (11) consists of optimizing two
different quantities ϑSR and fΔigi�1…N . It can be performed
iteratively by alternating minimization [31]. The cost function
is minimized with respect to the high-resolution object opacity
ϑSR and the shift parameters fΔigi�1…N alternatively until con-
vergence of the algorithm. Figure 2 represents the kth step of
the alternating optimization. The two minimization steps are
detailed below.

A. Registration Step
It is widely accepted that the accuracy of the shift estimation in
the image sequence is of paramount importance for the effi-
ciency of SR algorithms [32]. The shifts are usually estimated
relative to a reference image (e.g., the first one of the sequence).
The estimation is then performed by minimizing the square
difference between the first image and a shifted version of the
ith image. As the accuracy of the estimate is subpixel, interpo-
lation functions have to be used. Whatever the choice of the
interpolation function (linear, cubic spline function, etc.), it is

Fig. 2. Illustration of the kth step of the alternating optimization algorithm.
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arbitrary. The use of the IP approach fixes this issue, as interpo-
lation is implicitly performed by the image formation model.

The transverse coordinate system �O; x; y� of the first holo-
gram is considered as reference. The opacity distribution is
reconstructed relatively to this coordinate system. The shift
Δi of the ith hologram relative to the first one is also the shift
between the ith hologram and the image formation model
HϑSR . Thus, the problem is to minimize the residual between
the shifted model and the ith hologram:

bΔi � argmin
Δi

‖HΔiϑSR − d i;SR‖2w : (12)

An illustration is given in Fig. 3. The support of the model is
larger than the data because of the diffraction and out-of-field
reconstruction of the opacity. Provided the opacity is well re-
constructed, the shift estimate can be expected to be more ac-
curate than by performing the registration on noisy holograms.
Indeed, in our approach, the problem is equivalent to register-
ing a large noiseless model with a hologram (which consists of a
noisy shifted model), whereas in the state-of-the-art approach,
holograms are registered 2 by 2. The noise variance in our regis-
tration step is theoretically divided by two. It theoretically
decreases the standard error on the shifts by a factor

ffiffiffi
2

p
the

standard error on the shifts. Furthermore, there are no cropping
effects, because the model is much larger than the holograms.

Direct minimization of this cost function is computationally
too expensive because it involves the computation of a large
model for each model evaluation (e.g., 6 times the width of
the data if the SR factor is 2 and the field-of-view extension
ratio is 3) and 6 FFT to compute the weighted centered cor-
relation. In practice, the shift estimation can be performed in a
sampled space of the shifts. Equation (12) can be rewritten as a

maximization of the weighted normalized centered cross corre-
lation [16]:

bΔi � argmax
Δi

hHΔiϑSR ; d i;SRiwffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‖HΔiϑSR‖2w

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‖d i;SR‖2w

q : (13)

To avoid calculating multiple subpixel shifted models, the cor-
relation is calculated on a map corresponding to integer shifts.
The maximum of the correlation map is then positioned with
subpixel accuracy by fitting parabolas (vertical and horizontal)
on the correlation peak. The first guess concerning the shifts is
obtained by correlation-based registration of the holograms.

B. Opacity Reconstruction Step
In the second optimization, the shifts are fixed and the opacity
is estimated using a penalized maximum likelihood. Regulari-
zation may differ depending on the a priori on the object (e.g.,
total variation for objects with piecewise-constant opacity and
sharp edges). Here, we assume a sparse semi-opaque object.
A natural constraint is thus the L1 norm of the opacity:
ρ�ϑSR� � ‖ϑSR‖1. ϑSR is also assumed to be positive and less
than 1. The reconstructed opacity then corresponds to the sol-
ution of the following minimization problem:

bϑSR � arg min
0≤ϑSR≤1

1

N

XN
i�1

‖HΔiϑSR − d i;SR‖2w � τ‖ϑSR‖1: (14)

Under positivity constraints, the L1 norm corresponds to the
sum of the opacities: ‖ϑSR‖1 �

P
jϑ

SR
j .

The minimization problem (14) is a smooth optimization
problem under bound constraints that can be solved efficiently
using a limited-memory quasi-Newton method with bound
constraints, such as variable metric limited memory bounded
(VMLMB) [33]. Proximal algorithms are also widely used
for L1 minimization. Use of the FISTA algorithm [34] (an
accelerated proximal method) to the problem (14) leads to
Algorithm 1. We found that it converges slightly more slowly
than VMLMB, but is useful because of its straightforward im-
plementation, and could easily be accelerated by implementa-
tion on the graphics processing unit (GPU) [35].

Algorithm 1: Reconstruction of a sparse distribution of
opacities

input: holograms d i;SR and shifts Δi

output: reconstructed opacity distribution ϑSR

initialization:
initial opacity distribution ϑSR

0 (can be set to zero)
η1 ← ϑSR

0 ,
t1 ← 1
for k � 1; 2;…

ϑSR
k ← S�τ;1

�
ηk �

2

N

XN
i�1

H�
Δi · diag�w� · �d i;SR −HΔiηk�

�
; (15)

tk�1 ←
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4t2k

q
2

; (16)

ηk�1 ← ϑSR
k � tk − 1

tk�1

�ϑSR
k − ϑSR

k−1�; (17)

where the positive soft-thresholding operator is applied
coordinate-wise:

Fig. 3. Illustration of the shift estimation step for a SR factor of 2.
The unshifted and super-resolved hologram model (HΔiϑSR) is shown
in the background. The shifted and low-resolution captured holo-
grams d i are superimposed. The gray pixels correspond to missing data
in the super-resolved space. The white pixels correspond to the mea-
sured gray levels. The pixel size and the shift lengths are enlarged for
the purpose of illustration.

72 Vol. 56, No. 1 / January 1 2017 / Applied Optics Research Article



S�τ;α�u� �

8><
>:

u − τ
2 if α� τ

2 > u > τ
2

0 if u ≤ τ
2

α if u ≥ α� τ
2

; (18)

and H�
Δi represents the adjoint operator HΔi.

The soft-thresholding operator is simply generalized by
considering a spatially varying threshold τ 0. This is useful to
account for the difference between the norms of each line
of H . To avoid over-penalizing elements with a small norm,
we define τ 0i � τ

P
jwjH 2

i;j∕
P

jwj. This normalization can be
negligible in the field-of-view but is mandatory for out-of-the-
field reconstruction.

4. EXPERIMENTS

Compared to reconstructions based on a single low-resolution
hologram, the MAP-SR is expected to recover higher-frequency
information in the hologram space, thereby leading to (i) better
resolved reconstructions, and (ii) an enlargement of the recon-
structed field-of-view. Demonstrating the two improvements
requires different experimental configurations. To reconstruct
an enlarged field-of-view (ii), a large recording distance is
needed to capture the fringes coming from objects that are out-
side the field-of-view (due to pixel integration, the out-of-field
signal is filtered out when the recording distance is too short).
At the same time, large recording distances imply that high-
frequency fringes from in-the-field objects fall outside the
sensor area. The performance of the present method is demon-
strated on both simulated and real holograms. The improve-
ment in resolution (i) is demonstrated in the field-of-view of
simulated holograms. The accuracy of shift estimation and the
quality of the reconstruction are quantitatively compared with
state-of-the-art approaches. The second expected improvement
(ii) is shown on a stack of experimental holograms with a
deliberately very low SNR in order to demonstrate that the
proposed reconstruction is also efficient with noisy data. The
quality of the reconstruction is compared with state-of-the-art
reconstructions.

A. Synthetic Data
Knowledge of the opacity distribution of the synthetic object
and of the virtual relative shifts of the object with respect to the

camera is used to quantify the errors in the reconstruction and
in shift estimates.

1. Simulated Holograms
In order to compute synthetic holograms, a plane transmittance
object is simulated (Fig. 5). The wave amplitude on the sensor
is computed by propagating the amplitude wave of the trans-
mittance plane to the sensor and considering a plane reference
wave. The complex Fresnel free-space propagation model is
used. Finally, the intensity is calculated by the square modulus
of the complex amplitude. This simulation, in contrast to the
direct model used in the reconstruction (see Section 2.A), is
closer to the optical model but is non-linear (which is why
it was not used to derive the algorithm). It consists of comput-
ing a high-resolution complex amplitude of the propagated
wave on the sensor and then computing its intensity (square
modulus of the complex amplitude). The pixel integration
effect is simulated by convolving the intensity by a 2D rectangle
function of the final pixel size. To simulate a shifted hologram,
the Fresnel kernel, which is calculated from its analytical ex-
pression, is shifted with random shifts in the x and y directions.
To model a low-resolution sensor, an under-sampling step
by the same factor f SR is applied (see Fig. 4). Lastly, white
Gaussian noise is added to simulate the electronic noise and
a 12 bit quantization is applied on the holograms.

To simulate the hologram stacks, a 512 × 512 sampled trans-
mittance distribution with a dot pitch of 3.7 μm is used (see
Fig. 5). The wavelength is set to 662 nm and the object-sensor
distance to z � 16.5 mm. Holograms of 256 × 256 pixel with a
pitch of 7.4 μm and a fill factor (i.e., active area over the total area
of the pixel) of 0.5 are simulated. Stacks ofN � 50 holograms are
generated with shifts uniformly distributed in the range �−2;�2�
pixels. The SNR (ratio of the magnitude of the signal to the stan-
dard deviation of the noise) is set to 5 in order to be close to an
experimental value. The hyperparameter τ is set by minimizing
the mean square deviation between the reconstruction of simu-
lated holograms and the true transmittance.

2. Accuracy of the Hologram Stack Registration
The first advantage of the MAP-SR method is a more accurate
estimation of the shifts. In state-of-the-art approaches, a holo-
gram is registered to another hologram [13,23], whereas in the
proposed approach, registration is between a noiseless model
and the noisy data, as discussed in Section 3.A. Assuming a

Fig. 4. Illustration of the holograms simulation pipeline to generate the stack.
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perfect reconstruction and ignoring boundary effects, a theore-
tical gain of

ffiffiffi
2

p
in precision for the estimated shifts is expected.

In contrast to conventional methods which only consider the
overlapping area between two holograms to perform registra-
tion, our approach exploits all the pixels of the holograms thus
avoiding boundary effects. Nevertheless, incorrectly estimated
opacities in our model may cause registration errors.

To check the improvement of the shift estimations in the
reconstruction, simulations were run on 100 stacks of 50 holo-
grams with the same random shifts and SNR as described in
Section 4.A.1. The first shift guesses are obtained by correlation-
based registration of the ith hologram with the first hologram.
The errors in the shifts are shown in Fig. 6. They decrease
during the course of the opacity reconstruction process. At the
fifth iteration, the accuracy gain is 7.0 in the y direction and
10.6 in the x direction, which is a significant improvement in
shift estimation.

3. Quality of the Reconstruction
Four reconstructions were performed (Figs. 7 and 8): (a) back-
propagation of a super-resolved hologram obtained with a state-
of-the-art algorithm [6,23], (b) MAP reconstruction using one

Fig. 6. Illustration of the refinement of x and y shift estimation
throughout the opacity reconstruction process. The size of error bars
represents 2 times the standard deviation on the shifts.

Fig. 7. Qualitative comparison of the reconstructions: (a) Back-
propagation reconstruction using a super-resolved hologram [6,13],
(b) MAP reconstruction using one hologram [17], (c) MAP recon-
struction using the same super-resolved hologram as in (a), (d) IP-MAP
SR reconstruction using a stack of 50 holograms. The super-resolved
hologram used for (a) and (c) is computed from the stack of 50 holo-
grams with a state-of-the-art pixel super-resolution algorithm.

Fig. 5. Transmittance used to simulate holograms.

Fig. 8. Zoom on the reconstructions displayed in Fig. 7. Colors
indicate the zoomed areas.
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image [17], (c) MAP reconstruction using the same super-
resolved hologram as in (a), and (d) the proposed IP-MAP
SR reconstruction.

Figure 7(a) shows that the backpropagation reconstruction
suffers from twin image noise. Figure 7(b) shows that the
reconstruction using a single hologram is worse than the recon-
structions using a stack of holograms displayed in Figs. 7(c) and
7(d). To better visualize the difference between Figs. 7(c) and
7(d), zoomed versions are provided in Fig. 8. The SR MAP
reconstruction (d) is the best reconstruction. For a quantitative
comparison, the peak signal-to-noise ratio (PSNR) was com-
puted for each reconstruction: (a) 16.2 dB, (b) 24.1 dB, (c)
28.0 dB, (d) 39.2 dB. It can be seen that the PSNR was im-
proved by a factor of 2.4 from reconstruction (a) to (d).

B. Experimental Data
Using IP-MAP SR reconstruction, the simulations showed an
improvement in the reconstruction in the field-of-view. For
experimental holograms, we demonstrate the improvement
in the reconstruction outside the usual field-of-view using
experimental holograms. To check the robustness of the pro-
posed approach versus noise, the SNR of experimental holo-
grams was deliberately reduced by spraying water on the
light path. The setup is shown in Fig. 9. Sprayed water droplets
create a realistic disturbance that decreases the SNR of the
object signal. Between each of the N recordings, the object
was randomly shifted transversely (versus x and y). The test
object is a metric crossed reticle (Edmund Optics), which
has a sparse binary transmittance. The camera used for the
experiments was a Prosilica GE 4900 camera. Its pixel pitch
is 7.4 μm and its fill factor is around 1. The recorded holo-
grams are 1024 × 1024 pixels. The wavelength of the laser is
662 nm. The camera was positioned at z � 283 mm from
the object plane to record fringes of objects located outside
the field-of-view.

Reconstruction was performed using a SR factor of 2 (the
dot pitch of the opacity plane is 3.7 μm). The hyperparameter
τ was set empirically. The width of the field-of-view increased

by a factor of 3 leading to a 2.3 cm wide field-of-view and a
surface of 5.2 cm2.

In Fig. 10, the same four reconstructions, as in the synthetic
data case, are displayed for the purpose of comparison. It can be
seen that the proposed reconstruction in Fig. 10(d) makes it

Fig. 9. Experimental holograms acquisition: (a) Experimental setup, (b) illustration of a stack of captured holograms.

Fig. 10. Qualitative comparison of experimental hologram recon-
structions: (a) Backpropagation reconstruction using a super-resolved
hologram, (b) MAP reconstruction using one hologram [17], (c) MAP
reconstruction using the same super-resolved hologram as in (a),
(d) IP-MAP SR reconstruction using a stack of 15 holograms (see
Visualization 1, Visualization 2, Visualization 3, and Visualization 4).
The super-resolved hologram used for (a) and (c) was computed from
the stack of 15 holograms with a state-of-the-art pixel super-resolution
algorithm. The blue square in the center of the image represents the
sensor borders. The green rectangle shows the zoomed areas displayed
in Fig. 11.
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possible to reconstruct an object 3 times wider than the sensor,
whereas using the backpropagation reconstruction method,
it is difficult to reconstruct beyond the sensor field. This
out-of-field reconstruction not only enables enlargement of
the field-of-view but also renders shift estimation more accu-
rate. Figure 11 shows that the in-field reconstruction is less
noisy using MAP-SR reconstruction (d). The supplementary
material (Visualization 1, Visualization 2, Visualization 3,
Visualization 4) makes it possible to zoom in to check the
reconstruction of the border of the reticle. It should be noted
that because the holograms are better registered with the
MAP-SR approach (d), the hyperparameter is smaller in (d)
than in (c) and hence easier to tune. In the example, the
reconstruction (d) was obtained with a hyperparameter 2 times
smaller than in (c).

5. CONCLUSION

An inverse problem approach was successfully applied to the
super-resolved reconstruction of holograms. Starting from a
collection of unregistered holograms, the proposed method
alternates between a step of sub-pixel registration of the holo-
grams and a step of joint inversion of all holograms. This
method differs from recent super-resolution methods applied
in digital holography and lensless imaging in two major aspects:
(i) sub-pixel hologram registration is performed by matching
holograms with a (noiseless) model obtained from the previous
reconstruction, rather than by matching holograms to a refer-
ence (noisy) hologram; (ii) the reconstruction method inverts
the hologram formation model by including prior knowledge
(bound constraints, sparsity), rather than by light backpropa-
gation. Those two modifications result in better reconstruc-
tions with reduced artefacts (twin images, border effects), an
extended field-of-view, a better signal-to-noise ratio, and im-
proved spatial resolution. These improvements come at the cost
of increased computational complexity compared to existing
pixel super-resolution approaches. We believe the improvement

in the reconstructions outweighs the drawback of this higher
computational cost. In applications where reconstruction time
must be kept short, special effort should be invested in accel-
erating the Fresnel propagator, using GPU implementations,
and refining the minimization strategy, for example, using con-
tinuation schemes.
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