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Abstract

This paper presents a two-dimensional model to study the sediment deposition from marine
outfall jets. The introduced unidirectional coupling (fluid-sediment) is an appropriate choice
in the case of low-concentrated particle-laden jets such as municipal wastewater discharge,
where the concentration of particles is small enough and does not affect the hydrodynamic
development of the jet in the nearfield. The sedimentation model takes advantage of the
preferential concentration phenomenon. The deposition criterion states that the deposition of
sediments begins when the vertical component of the entrainment velocity becomes smaller
than the settling velocity. Once the deposition process begins, it is controlled by the settling
velocity, entrainment velocity, volume flux, and sediment concentration. The deposition
along the jet trajectory is expressed by an ordinary differential equation coupled with the
liquid phase equations. Experiments of Lane-Serff and Moran (2005), Cuthbertson and
Davies (2008) and Lee (2010), chosen from bibliography, are used to validate the model.
These experiments cover the cases of horizontal and inclined buoyant jets in stationary
ambient, horizontal buoyant jets in co-flow current and non-buoyant horizontal jets in
stationary ambient. Good agreement between the experiments and the obtained simulations is
revealed.
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Wastewater is an important source of anthropogenic pollution in coastal waters and the
suspended solids present a significant part of this pollution [1, 2, 3]. For guidance, the
variation interval of the concentration of Total Suspended Solids (TSS) in the raw municipal
wastewater (The values indicated are the values after the preliminary treatment “screening,
grit removal, flotation”) is from 150 to 500 mg/l in France [4]. However, the European
Directive 91/271/EEC, determines the requirements for discharges from the secondary
treatment as 35 mg/l of TSS or a minimum percentage of reduction of 90% in relation to the
TSS load of the influent.

The study of suspended solids deposition from low concentrated particles-laden jets as
municipal wastewater discharge has been performed for only few scenarios in nonstratified
ambient. Neves and Fernando [5] performed an experimental study with dimensional analysis
on the deposition of particles from vertical round jets in stationary ambient. Ernst et al. [6]
developed a theoretical model for deposition from vertical jets and plumes. McLarnon [7]
performed a detailed experimental study to investigate the sedimentation from horizontal
buoyant jets in stationary ambient. Bleninger and Carmer [8] performed an experimental
study followed by an analytical solution for the deposition from horizontal nonbuoyant round



jets in stationary ambient. Lane-Serff and Moran [9] performed an experimental study and
developed an integral model for deposition from horizontal and inclined buoyant round jets in
stationary ambient. Cuthbertson and Davies [10] performed an experimental study with
scaling arguments on the deposition from horizontal buoyant round jets in stationary and
coflowing ambient. Li [11] studied experimentally the deposition from horizontal buoyant jets
in stationary ambient and adopted a Lagrangian approach to model the phenomenon.
Cuthbertson et al. [12] performed an experimental study on deposition from plane buoyant
jets in stationary ambient followed by a Computational Fluid Dynamics (CFD) modelling.
Lee [13] performed an experimental study followed by particle-tracking model in addition to
CFD modelling in order to study the deposition from horizontal nonbuoyant round jets in
stationary ambient.

The common point between these research works is considering the concentration of solid
particles small enough in the discharge so that the presence of these particles has no
significant influence on the jet trajectories over a wide range of forcing conditions. This
concentration criterion is defined by Cuthbertson and Davies [10] as a volumetric source
concentration of (~0.1%); while Lane-serff and Moran [9] indicated that a concentration of 10
gr/l of solid particles has negligible impact on the flow. Other common considerations for
deposition in the nearfield are considering the solid particles noncohesive, and monodisperse
having the same size and shape and thus having one terminal fall velocity w, which is the
velocity value for the ambient fluid density [8, 9, 10, 12]. However, Cuthbertson et al. [12]
studied numerically the dependence of wsupon local fluid density and compared a w; value
that varied with the local fluid density with a constant w, value for the ambient fluid density
and found that the two cases give indistinguishable deposition profiles due to the rapid
dilution of the buoyant jet following release. Finally, all the above experiments and
simulations consider that the upper surface of the receiving ambient is free and the seabed is
considered as flat and horizontal solid boundary.

The objective of this work is to present a simple model that accurately predicts the deposition
from low-concentrated particle-laden turbulent jets in different scenarios. Our proposed
model is a Lagrangian model that takes advantage of the preferential concentration
phonemene. The unidirectional coupling (fluid-sediment) is used in the modeling because the
concentration of solid particles in the municipal wastewater discharge is small enough and
does not affect the hydrodynamic developement of the jet. The obtained model is validated
using the results of experiments done by Lane-Serff and Moran [9], Cuthbertson and Davies
[10] and Lee [13].

The hydrodynamic model for the nearfield zone

The high momentum turbulent jet creates a zone of low pressure that aspirates the ambient
water. In the case of buoyant jets, the momentum flux, in addition to the buoyancy flux, draw
the effluent trajectory. When the jet reaches the free surface or the neutral level, it spreads
horizontally creating the surface gravity current. In the case of non-buoyant jets “neutral jet”
there is no presence of the buoyancy forces.

In this work, we treat jets in stationary ambient and in presence of coflow current. The
velocity vector V'is located in the x-z plane and it is horizontal or inclined with an angle ¢ on
the x-axis, so it has two components # and w. Considering the coflow current and regarding
the absence of other external forces, the jet axis remains in the x-z plane as shown in Figure 1.



a7 .

K step (o,m,V,$,Q,b,h,x,2)

e

— @D —

<

Aspiration entrainment

Figure 1. Lagrangian model for buoyant jet in two-dimensional space. Using a fixed time
step, we note that the first slices are longer than the last slices because the jet velocity
decreases with time.

Integral methods are used to convert the governing partial differential equations
(hydrodynamic model presented by the continuity equation and the momentum conservation
equation) to a series of ordinary differential equations. These methods were found to produce
very good approximations to fluid behaviors as long as the boundary effects do not enter the
problem. Integral methods require that appropriate distribution profiles be assumed for
velocity, temperature, and concentration. The origins of integral methods are the works of
Hirst [14], and Schatzmann [15]. The continuity equation and Navier-Stokes equation are
reduced to the following forms [16]:

Conservation of mass

d

=-E (M
dt

where m is the mass and ¢ is the time. Equation (1) indicates that the change in the flow rate
within the jet equals to the fluid entrained E. The entrainment E can be divided to the
aspiration entrainment and forced entrainment. In the stationary ambient, or in a very weak
current, the aspiration entrainment (Figure 1) presents the dominant entrainment while the
forced entrainment is neglected.

Conservation of scalar product

dmC_C dm
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Where C is the concentration of scalar product in time ¢. C, is the product concentration in the
ambient fluid.

Conservation of momentum along the trajectory

dmV _  dm p,—p
dr P, )



where V is the jet centerline velocity, u, is the current velocity, p is the density in the jet, and
pa 1s the ambient density.

In the nearfield modeling, we present a two-dimensional version of the Lagrangian integral
model presented by Lee and Cheung [17]. The cross-sectional slice of the jet is considered
with the Lagrangian formulation as having a coordinate system that moves with the jet.
Integration is with time and the calculation takes place at discrete time steps. The slice that is
followed is usually in the shape of a section in a bent cone as shown in Figure 1. Properties
within the slice are assumed to be uniform (top-hat profiles) but they vary along the trajectory
with time. The size and shape of the slice vary as a result of the plume bending, entrainment,
and plume growth. The calculation stops when the jet reaches the free surface (in the case of
a buoyant jet) or a prescribed distance (in the case of a horizontal nonbuoyant jet). In the
literature, we find different formulas for calculating the entrainment [17, 18, 19]. However, in
this work only the aspiration entrainment is considered. This entrainment flux (mass/time)
into a slice (k) is the entrainment velocity multiplied by the ambient density and the slice
surface

Eq, = Ve -Pa-2.7.by .y 4)

The ambient water entrainment velocity Ve is proportional to the centreline velocity via the
entrainment coefficient a. Following Lee and Chu (2003), o. = 0.057.V2 which is the classical
value reported for top-hat profiles in round jets.

Ve=|V|_ =aV (5)

Ve is the entrainment velocity, V' is the centerline velocity, b is the jet half-width, o is the
entrainment coefficient and 4 is the slice length.

In each time step &, we calculate the slice mean density p, mass m, velocity V, inclination ¢,
flow Q, half width b and length 4. The slice properties calculation is based on the previous
slice properties and the loop stops when zb2(k) < zsea, where zb2(k) is the upper boundary of
the jet and zsea is the free surface height above the discharge point. In the case of nonbuoyant
horizontal jets, the loop stops when x(k) < xa, where xa is the prescribed distance from the
point source. The model is explained in the following equations [20]. The authors put here
briefly the liquid phase equations to avoid repetition. However, the following equations can
be revealed from a simple forward discretization of Equations (1), (2), and (3) using a
constant time step:

The mass in the new slice

k+1

m, =m +E, A (6)
The mass difference between the two slices £ and k+1
Am, = E, At (7)

The density in the new slice
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The horizontal velocity
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The length of the new slice
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The half-width of the new slice
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The inclination of the jet axis in the new slice,
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The distance from the source to the new slice along the jet axis
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The coordinates of the center of the upper surface in the new slice
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The coordinates of the boundaries of the upper surface in the new slice (inferior point 1 and

high point 2):
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The ambient fluid entrainment into the new slice

E =a,V,.p27b,.h (19)
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The first slice (Slice 0) characteristics can be deduced from the initial conditions of the jet as
follows

(u, w)o = (Vo cos ¢,,Vosing,) (20)
The half width by and the length 4,

(b,h)o=(0.5D, 0.5D) (21)
Where D is the nozzle diameter and ¢y is the initial inclination of the jet.

The initial time step, which is taken as a constant in the calculation

h
At=01-— 22
v (22)

The coordinates of the first slice

(x,2)0= (0, 0) (23)

For horizontal nonbuoyant jets, this routine can be modified because the vertical velocity w is
eliminated from all equations and the calculation stops after the prescribed distance xa. In this
case, Equation (8) is eliminated because there is no density difference between the two fluids.
Equation (10) is eliminated because there is neither initial vertical velocity nor buoyancy
forces, and the same for Equations (14), and (17). Basing on these eliminations, Equations
(11), (13), (18), and (20) are modified.

The sediment deposition model for the nearfield zone

The preferential particles concentration in turbulent flow is the formation of concentration
inhomogeneity that is related to the fact that the particles, which are more dense than the flow,
have the tendency to accumulate in the weak vorticity zones because of the centrifugal force
that trains them towards the periphery of the turbulent structures [21, 22, 23, 24]. This
phenomenon of preferential concentration or correlation between the instantaneous
distribution of solid particles and the fluctuations of fluid velocity results in the existence of
solid particles agglomerations that move with turbulence big structures.

In turbulent jets, the vorticity is highest in shear layers. In stationary ambient and in the
presence of coflow, these shear layers are located at the boundaries of turbulent jets. The



Digimage tracking measurements of particle-laden buoyant jets discharging into initially
stationary ambient and coflowing ambient body, made by Cuthbertson and Davies [10] shows
clearly the maximum vorticity located at the jet boundaries. However, in the presence of cross
flow, the interaction of the jet momentum results in a complicated turbulent shear flow.
Vortices of various kinds are being generated close to the source, in particular a pair of twin-

vortices in the bent-over phase of the buoyant jet. A simple pair of vortex eyes can be seen
[20].

According to these observations, and to the fact that solid particles will accumulate in the
low-vorticity areas, two different deposition patterns can be revealed for turbulent free jets in
homogenous ambient. The first is for deposition from turbulent jets in stationary and coflow
ambient and the second is for deposition from turbulent jets in cross flow. In the context of
our study (deposition from low-concentrated particles-laden jets), the first pattern is the one
studied so far in the available literature, experimentally and numerically. Depending on the
experiments of Lee [13], and the experiments of Bush et al. [25] on particle cloud that initially
assumes the form of a turbulent thermal, this pattern results in localized deposition [13, 25].

Considering the above researches, we assume that solid particles deposit from the inferior
central part of the jet, as Figure 2 shows.
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Figure 2. Up- Indicative schema for the vorticity field in the cross-section of turbulent jets in
stationary or co-flow ambient (Left), and in cross-flow (Right). Middle- The preferential
concentration of solid particles in low vorticity areas, in the inferior parts the jet. Down:
Localised deposition (Left) and Ring deposition (Right).

The following hypotheses are made in order to build the sediment deposition model basing on
the preferential concentration phenomenon:

1- We consider that the solid particles begin to deposit when their settling velocity is greater
than the vertical component of the entrainment velocity

w >aV .cosg (24)
Thus, the vertical velocity of the solid particle depositing from the jet will be:
w =w —-aV cose, (25)

We would like to mention that a similar term is used by Lane-Serff and Moran [9]. But
wour adopted in the model of Lane-Serff and Moran [9] is taken on the axis of the



entrainment velocity, perpendicularly on the jet axis (The criterion Equation (24) is
written in this case: wy . cos ¢ > oy Vx); while in our model we considered the projection,
on the z-axis, of the result of the two acting velocities. However, several tests were
performed to investigate the effect of the choice of projection axis, in the cases of
horizontal buoyant jets and slightly-inclined buoyant jets (17° and -15°), we found that in
practice, the two choices give very close predictions of the longitudinal deposition,
because the criterion is met in a distance too near to the nozzle, where the trajectory does
not bent yet under the effect of buoyancy but it still rather horizontal and cos¢y = 1 which
makes no difference between the two formulas. However, further investigations on more
inclined jets will help in determining which choice is the more convenient in the
Lagrangian modeling.

2- The zone of deposition does not spread on all the width of the jet cross-section, but it has
a smaller width depends on the ratio between the entrainment velocity and the settling
velocity. The greater the settling velocity compared with the entrainment velocity, the
bigger the zone of deposition and thus the higher deposition rate and vice versa. In other
words, the portion of the cross-section area occupied by the deposition zone is
proportional to the ratio of entrainment velocity to settling velocity. For example, in the
high-momentum region, the zone of deposition occupies a small portion of the jet cross-
section, but in the buoyancy-dominated region, the settling velocity is largely bigger than
the entrainment velocity, so the deposition zone occupies almost all the jet cross-section.
The portion of the cross-section area occupied by the deposition zone can be described by
the parameter (1 — o cos¢ / ws). In this way, we do not need to assume a specific
geometry of the deposition zone in the cross-section area (that can be ring or circle as
Figure 2 shows, or an angular sector as the deposition zone geometry proposed by Lane-
Serff and Moran [9]). However, Figure 3 shows the evolution of this parameter in a
horizontal buoyant jet.
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Figure 3. The velocity profile along the jet axis corresponding to experiments of Lee [10] for
case 3 in Table.1, in addition to the evolution of the parameter (1 — aV cos¢ / w,) “ the dashed
line with the axis on the right . The markers on («) and (w) profiles are put every 400 step of
calculation.



Considering the fundamental deposition model of Koh and Chang [26] for the settling of
barge disposed wastes:

dP
% = —2W5Cpb(1 - [)’) (26)

Where P is the solid flux in the jet; S is the distance along the jet axis, Cp is the solid
concentration (Cp = P/Q) and f is a constant taken normally £ = 0 [26, 27].

The model presented in this study is based on this fundamental model, where the terms are
developed to incorporate more general cases. The model is written as follows (the number
below the term indicate the number of the formerly-mentioned assumption used to built the
term):

dP aV cos¢
" -2(w, —aV cos¢)C,b(1 - " )ef (27)
1 —

2

Where cf'is a constant that reflects the effect of buoyancy forces in inhibiting the deposition:
¢f= 1 in considerably buoyancy-dominated flow (g,’ = 0.384 m/s’, approximately, that can
correspond to a discharge of an initial density of 1000 kg/m’ in a milieu of average density of
1040 kg/m?).

¢f = 1.5 in moderately buoyant-dominated flow (go’= 0.185 m/s’, approximately, that can
correspond to a discharge of an initial density of 1000 kg/m’ in a milieu of average density of
1020 kg/m’).

cf =2 for nonbuoyant jets.

This parameter is always taken 1 (¢f= 1) in the case of presence of coflow.
We will discretize the Equation (27) in a finite difference step forward framework, in
order to couple it with the near field model, thus we can get the solid flux in each slice £,

which enables us to reveal the deposition rate curve along the jet trajectory:

Equation 27 is arranged by replacing C, by P/Q as follows:

1 dp b aV cos¢
s =2(w, —aV cos¢) é (1- S ).cf (28)
. . . . . 1dP dnP
Better numerical accuracy can be achieved by rearranging Equation (28) using —— = .
P ds ds
dlnP b aV cos¢
S = —Z(WX —aV cos ¢) E (1 - W, )Cf (29)
We discretize Equation (29) in a finite difference step forward framework as follows:
InP_-InP b 30
D T "=—2(ws—al/kcosgbk)-—k'(l—m)-cf (0)
hk Qk Ws



The formula that is coupled with the fluid phase model and put in the calculation routine
becomes:

31
lnPk+1=1nPk_Z(Ws_O‘VkCOS(Pk)'g—k'(l—m)-cf-hk (31)

k Wi

Results and discussions

The cases that we study fall under four distinct categories: Horizontal buoyant jets in
stationary ambient (I); Inclined buoyant jets in stationary ambient (II); Horizontal buoyant jets
in coflowing ambient (IIT) and Horizontal nonbuoyant jets in stationary ambient (I'V).

These categories are found in the available literature about deposition from buoyant and
nonbuoyant jets, which enable us to calibrate and validate the model presented.

We choose to keep the same units of experimental data as stated in the original references for
deposition rates in order to demonstrate the different ways and units used in presenting the
deposition rate and for the simplicity in comparison when referring to the experiment in its
original reference. Particle density function (PDF) in the experiments of Cuthbertson and
Davies [10], and gr/m.s for the other experiments.

The proposed model is validated using the data in Table 1. The experiments of Lane-Serff and
Moran [9], Cuthbertson and Davies [10] and Lee [13] are used in order to study the deposition
from buoyant and non-buoyant jets and validate the proposed model. We demonstrate the jet
hydraulic structure; and compare deposition simulation with the experimental results. We
would like to mention that the initial form of data taken from the works of Lane-Serff and
Moran [9], Cuthbertson and Davies [10], and Lee [13] are experimental points of longitudinal
deposition curve, while the initial form of data taken from the work of Bleninger and Carmer
[8] is the number of particles deposited in each cell of a grid located on the ground, after a
simple treatment of these raw data, we get the longitudinal deposition curve.

Table 1. Experimental data of Lane-Serff and Moran [9], Cuthbertson and Davies [10], and
Lee [13] used to calibrate and validate the proposed model.

Zsea:
Data Vo D Do pa u, ¢9p or Wso
Category - Case source (m/s) (mm) (kg/m’) (kg/m’) (m/s) (°) xa*  (m/s)
(m)
I 1 [10] 1.04 11.5 1000 1020 0 0 0.747 0.0299
I 2 [9] 0.72 5.0 99876 1040 0 1_5 0.25 0.027
11 3 [10] 1.076 11.5 1000 1020 0.038 0 0.733 0.0299

4 [13] 086 6.0 9972 997.2 0 0 0.80* 0.0266
v

5 [13] 0.76 6.0 998.1  998.1 0 0 0.80* 0.0193




Lane-Serff and Moran [9] performed experiments on inclined and horizontal round buoyant
jets. The experiments were conducted in a rectangular glass tank, with length 1.2 m, width 0.3
m and depth 0.4 m. The tank was filled to a depth of approximately 0.3 m with saline solution
(pa~ 1040 kg/m®). A buoyant sediment-laden plume was created by introducing fresh water
(or a weak saline solution) from an outlet of diameter D = 5 mm near the bottom of the tank.
Two different sieved size fractions of sand were used (fine: 75 um < d < 150 pm) and (coarse:
75 um < d < 150 um). The amount of sand in the fluid source was kept small (less than 10
gr/L) to minimize its impact on the flow.

The unit of the deposition rate in the experimental results is gr/m.sec. To obtain such unit in
our model, we entered the initial solid particles concentration as indicated in the experiment

(cpo= 10 gr/L), we calculate the initial solid flux Py= C,y*Qy (gt/sec), then the model can
calculate the deposition from each slice (gr/sec) and dividing this value by the thickness of
each slice (hy) gives the unit (gr/m.sec).

Cuthbertson and Davies [10] performed experiments on horizontal buoyant jets in stationary
and coflowing ambient. The experiments were conducted in a recirculating water channel of
length 10.0 m, width 1.0 m, and depth 1.2 m. The channel was filled to a prescribed depth H
(0.55 m < H < 0.75 m) with homogeneous saline water of initial density (1020 - 1040 kg/m’).
Steady uniform ambient flow conditions were established within the channel with depth-
averaged velocity (0.017 - 0.052 m/sec). A particle-laden buoyant jet with source density
(1000 kg/m®) was discharged horizontally into the coflowing ambient receiving water through
a single round port of internal diameter D = 11.5 mm. Two types of noncohesive, spherical
particles were used in the experiments (500 - 600 pm, 1500 kg/m’) and (630 - 850 um, 1150
kg/m®). The particles were added to the source fluid to a volumetric concentration of about
0.1 %.

Lee [13] has performed experiments of horizontal sediment buoyant and non buoyant jets
discharged in stationary ambient water. The bottom deposition rate of different jet flow rates,
particle sizes and densities for jets were measured with bottom tray collection. The particle
concentration across the jet cross sections of jets was measured by both the direct suction
sampling technique and particle imaging technique. The settling velocities of particles were
measured by the settling column experiments and compared with the settling formula using
the size measurement from the Laser Diffraction Particle size Analyzer. The jet velocity field
was checked by Laser Doppler Anemometry measurement. The experiments of horizontal jets
in stationary ambient water were carried out in a 1 m long x 1 m width x 0.5 m high water
tank. A constant water depth of roughly 0.45 m is maintained. The jet exit from a nozzle (6
mm diameter) with a flow ranged between 10 and 100 L/hour. In these experiments,
freshwater is used as ambient fluid and ethanol-water mixture to produce the buoyancy jet. A
wide range of particle size and density of spherical glass particles (dso = 115 - 215, pm, p, =
2500 kg/m’) and synthetic particles (dsp = 621 and 716 pum, pp = 1140 and 1160 kg/m’) are
used to perform these experiments.

Table 2 shows the calculation details for all of the simulated experiments. We can see that the
deposition criterion is satisfied after a trajectory less than one millimeter for all the
experiments due to the abrupt loss of initial quantity of movement, once the discharge comes
in contact with ambient water.



Table 2. The simulation details and results for the experiments of Lane-Serff and Moran [9],
Cuthbertson and Davies [10], and Lee [13] used to validate the proposed model.

The deposition starts at

S (10* Total
Data A Slicek*/  m)the  Vie/ o GV W Depo
Case rce (10*s) Total entire Vo ©)  (ms)  (ms) sition
slices trajector (%) (%)

y (m)
1 [10] 553  209/249 2.05/1.21 35 1.22  0.03 0.03 94.0
2 [9] 3.47 99/171 1.2/0.44 48.0 13.94 0.028 0.027 89.0
3 [10] 534  250/285 1.98/1.49 3445 129 0.03 0.03  80.0
4 [13] 3.50  179/599  1.15/0.8 38.38 0 0.027 0.026 99.9
5 [13] 395  281/599 0.945/0.8 31.50 0 0.019 0.019 994

The results obtained with the present model for horizontal buoyant jets in stationary ambient
are shown in Figure 4. They are compared to data issued from experiments of Cuthberson and
Davies [10]. A good agreement between the experimental data corresponding to case 1 in
tables and the model is clear, where the majority of solid particles deposit in the nearfield (97
%). The deposition in the near field is the dominant mechanism in this case.
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Figure 4. Model validation using data of Cuthbertson and Davies [10] for case 1
corresponding to the category of horizontal buoyant jets in stationary ambient.

Figure 5 shows the model results for inclined buoyant jets in stationary ambient. In this case,
we note an acceptable agreement between the model and the experimental data obtained by
Lane-Serff and Moran [9] corresponding to case 2 in tables. This agreement can be explained
by the longer trajectory of jet before reaching the free surface (as the jet is inclined down) so
the deposition in the nearfield is a dominant mechanism in a considerable part of the jet
before approaching the free surface and the development of the surface gravity current. The
difference between calculated values and measured values is probably because of the initial
jet inclination towards the bottom, then change of direction towards the surface which creates



a stagnant zone in the inferior part of the jet enhances the deposition. Another reason for this
this difference is the possible interaction between the jet and the bottom of the tank.
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Figure 5. Model validation using data of Lane-Serff and Moran [9] for case 2 corresponding
to the category of inclined buoyant jets in stationary ambient.

Figure 6 shows the model results for

buoyant jets in a weak coflow compared to experimental

data of Cuthberson and Davies [10] corresponding to case 3 in Tables. We see a good
agreement between the data and the model even if the deposition rate peak was higher in our
model. This is probably because the model underestimates the effect of ambient current or
because the settling velocity in the presence of ambient current was in reality a little slower
than the value reported in the reference. However, we can see that the deposition from near-
field is the dominant mechanism with 96 % of solid particles deposited in the near-field.
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data of Cuthbertson and Davies [10] for case 3

corresponding to the category of horizontal buoyant jets in presence of co-flow.



The model proposed seems to predict well the deposition of sediments in the case of
horizontal non buoyant jet moving in stationary ambient water, and transporting particles with
small diameter and large density (dsp = 115, 215 um, p, = 2500 kg/m’) such as represented in
case 4, Figure 7. The model also calculates accurately the sediment deposition of particles
with large diameter and small density (dsp = 621 and 716 um, p, = 1140 and 1160 kg/m’)
transported by horizontal non buoyant jet moving in stationary ambient water as represented
in case 5, Figure 8.
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Figure 7. Model validation using data of Lee [13] for case 4 corresponding to the category of
horizontal non-buoyant jets in stationary ambient for particles with small diameter and high
density (dsp =115, 215 um, p, = 2500 kg/m’).
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Figure 8. Model validation using data of Lee [13] for case 5 corresponding to the category of

horizontal non-buoyant jets in stationary ambient for particles with large diameter and low

density (dsp= 621 and 716 um, p, = 1140 and 1160 kg/m").

Globally we see that the model is in good agreement with experimental data of the five cases
studied in this paper. In the case of horizontal buoyant jets in stationary ambient, the
importance of buoyancy forces that decrease the deposition in the near-field and naturally
give more importance to the second stage of deposition from surface gravity currents. In the
case of inclined buoyant jets in stationary ambient, the initial vertical velocity is negative and
it increases slowly due to the buoyancy forces. A little difference between calculated values



and measured values is noted, probably because of the initial jet inclination towards the
bottom, which creates a stagnant zone in the inferior part of the jet.

For horizontal buoyant jet in coflowing ambient, the horizontal velocity is very close to the
vertical velocity because of the presence of u, contrarily to all the previous experiments where
the vertical velocity was always dominant in the last section and u, = 0. We see a good
agreement between the data points and the model even if the deposition rate peak was higher
in our model. This is probably because the model underestimates the effect of ambient current
or because the settling velocity in the presence of ambient current was in reality a little slower
than the value reported in the reference. The mechanism of deposition in the nearfield is the
dominant mechanism in the majority of the studied cases.

Conclusion

Unidirectional coupling between the fluid mouvement and the sediment transport is
successfuly performed in order to study the deposition from low-concentrated particle-laden
turbulent jets in marine oufalls. A developed bidimensional lagrangian integral model is used
in this study.

The deposition from each slice depends on the difference between two acting velocities, the
first velocity, the particle settling velocity and the second velocity is the jet entrainment
velocity. The deposition begins when the first velocity is greater than the second.

Laboratory experiments of Lane-Serff and Moran [9], Cuthbertson and Davies [10], and Lee
[13] were selected from litterautre and used to validate the poposed model. The experiments
consist of inclined and horizontal buoyant jets in stationary ambient, horizontal buoyant jet in
coflowing ambient and nonbuoyant horizontal jet in stationary ambient. Globally, the model
shows good agreement with experimental data especially when we have high deposition rates
from the nearfield which makes the deposition mechanism studied here the dominant
mechansim.

Experimental studies on more inclined jets seem indispensable in order to confirm the choice
of deposition criterion. In addition to that, the integration of other mechanisms of deposition
in the model like particles re-entrainment, deposition from surface gravity currents, the effect
of confinement and the effect of surface waves in several scenarios are promising points at
later steps of this work.
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Nomenclature
B = Buoyancy flux;
b = Jet half-width;
¢y = Constant in the deposition model presents the role of buoyancy in inhibiting the
deposition;
D = Port diameter;
E = Total entrainment;
E, = Aspiration entrainment;
g = Gravity acceleration;
g’ =Reduced gravity g’'=g.Ap/p;
h = Slice thickness;
M = Momentum flux;
m = Mass in the slice;
P = Solid flux;
QO =Flow (volume flux);
r = Deposition rate;
t = Time;
V' = Velocity vector (scalar value +orientation);
u,w = Horizontal and vertical components of velocity vector;
u, = Depth-averaged ambient flow velocity;
V. = Entrainment velocity;

wy = Particle settling velocity;
xa = The prescribed distance (the length of calculation domain) in case of nonbuoyant
jets.
xbl,xb2,zb1,zb2 = The coordinates of the boundaries of the upper surface in the slice (inferior point
1 and high point 2) in x-z plane
x,z = Cartesian coordinates of the center of the upper surface of the slice;
zsea = Water height above discharge point;
a = Aspiration entrainment coefficient o = 0.057.V2;
p = Density;
¢ = Jet angle with respect to horizontal plane;
Am = Increase in slice mass due to entrainment;
S = Distance along the jet axis from the nozzle to the studied slice.

Subscripts
0 = Values at jet discharge point;
a = Ambient values;
k = Values of plume element at k" step of calculation.



