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1Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS (UMR 7104), Inserm U964,
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ABSTRACT

The function of genes is often evolutionarily con-
served, and comparing the annotation of ortholog
genes in different model organisms has proved to
be a powerful predictive tool to identify the function
of human genes. Here, we describe Manteia, a
resource available online at http://manteia.igbmc.
fr. Manteia allows the comparison of embryological,
expression, molecular and etiological data from
human, mouse, chicken and zebrafish simultan-
eously to identify new functional and structural cor-
relations and gene-disease associations. Manteia is
particularly useful for the analysis of gene lists
produced by high-throughput techniques such as
microarrays or proteomics. Data can be easily
analyzed statistically to characterize the function
of groups of genes and to correlate the different
aspects of their annotation. Sophisticated querying
tools provide unlimited ways to merge the informa-
tion contained in Manteia along with the possibility
of introducing custom user-designed biological
questions into the system. This allows for example
to connect all the animal experimental results and
annotations to the human genome, and take advan-
tage of data not available for human to look for can-
didate genes responsible for genetic disorders.
Here, we demonstrate the predictive and analytical
power of the system to predict candidate genes re-
sponsible for human genetic diseases.

INTRODUCTION

The recent explosion of bioinformatics resources provides
an increasing amount of data and an expanding array of

tools for researchers. Some of the databases where this
information is available are specialized for a specific type
of data such as expression data [e.g. Unigene (1), Gene
Expression Omnibus (2), Arrayexpress (3)], genomic data
[e.g. Ensembl (4), the National Center for Biotechnology
Information (NCBI) (1)] or genetic disease data [e.g. the
Online Mendelian Inheritance in Man database (OMIM)
(5)]. Several resources have been established gathering the
information relevant to specific model organism such as
the Mouse Genome Informatics database [MGI (6)] and
the Zebrafish Information Network database [ZFIN (7)].
However, the way the information is formatted and stored
in such specialized databases greatly limits the possibilities
for combined analysis of multiple data sets. The informa-
tion is usually formatted for the system that hosts it, which
makes it difficult to correlate and compare different data
from different databases. Even in systems that specialize
on a particular model organism, the information is usually
compartmentalized and can only be explored individually.
Conversely, the understanding of events involved in devel-
opment, physiology and disease requires one to gather a
wide variety of experimental observations and to study
how events correlate over time. This requires not only a
resource that hosts the relevant information, but also a
system that provides the right tools to extract and
exploit the full range of these data in a coherent environ-
ment. When we started this project, the annotation of the
chicken genome was poor, yet the first microarrays were
becoming available. Manteia was initially designed to
be able to help annotate these microarrays by importing
annotation from other species. Then the possibility to
manipulate large lists of genes, probesets and other types
of annotations was added together with statistical ana-
lysis modules allowing to directly analyze the enrich-
ment in particular annotation categories (8–10). New
functionalities and vertebrate species annotations were
progressively added to the database as requested by
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investigators with the goal of providing a user-friendly
tool, allowing biologists to mine their data without know-
ledge of bioinformatics. Manteia is designed to annotate
and analyze large volumes of data by combining major
resources from human and vertebrate model organisms.
The system provides new tools and concepts to compare
the annotation of ortholog genes and to analyze the infor-
mation and make insightful testable predictions to help in
the understanding of biological and developmental events
as well as genetic disease etiology.

MATERIALS AND METHODS

Data and software

Part of the Manteia architecture is based on the Aniseed
Gmod (11). The data used in Manteia are stored in a
PostgreSQL8 database. The user Web site and the admin-
istration tools are written in PHP5 and use javascript and
AJAX to enhance the interaction with users. Dynamic
graphs are built using the D3 JavaScript library.
Statistics tools use R to compute the hypergeometric
test. Data originating from Ensembl are downloaded
using BioMart. Affymetrix probe sets originate from the
Human Genome U133 Plus 2.0 array, the Mouse Genome
430 2.0 and MoGene 1.0 st arrays, the Chicken array and
the Zebrafish array. The other data are downloaded
directly from their respective Web sites. The download,
the processing and the storage of the information in the
database are automated using the Manteia management
tools. Manteia runs on every modern browser provided
they are up-to-date, including Explorer, Firefox, Safari
and Chrome. The results presented in this article may
change as the database is updated regularly.

Entity–Quality method implementation

The Entity–Quality (E-Q) method is used to find which
terms are related in the human and mouse phenotype
ontologies. The logical definitions of these ontologies
(the decomposition of what is affected and how) use the
Phenotype and Trait Ontology [PATO (12)] to describe
the nature of the phenotype abnormality and an anatom-
ical ontology [FMA (13) for human and MA (14) for
mouse] to describe the affected organ. The correspondence
between terms from FMA and MA are found using the
Uber-anatomy ontology [UBERON (12)]. The logical def-
initions and these ontologies were downloaded from the
Open Biological and Biomedical Ontologies Foundry
[OBO (15)]. Terms from the human phenotype ontology
(HPO) that could not be mapped to their corresponding
mouse terms were annotated with the mapping of their
closest annotated parent. When no correspondence can
be found this way, Manteia uses a keyword system
created manually to relate phenotypes affecting the same
organ or function. More than 50 keywords are used.
Manteia uses a lower weighting for queries using the
keyword system to reflect the lack of precision of this
method compared with the E-Q approach.

OMIM prediction statistics

To compute the number of correct genes expected by chance
for each ranking position when picked randomly in the
genomic regions, we used the following for each rank i:

Eð 1
Ni
Þ& 1

Ni

Pm
j¼1

1
nij

having Ni ¼ ni1,ni2, . . . ,nimf g, the

number of regions with at least i genes, and ni, the
number of genes in regions with at least i genes.

RESULTS

System presentation

Manteia is an integrative database that gathers most of the
data generated for human and vertebrate model organisms
in a same framework. The system is designed to be used by
biologists or geneticists and does not require any specific
knowledge in bioinformatics. It includes sophisticated
data mining tools that allow the combination of data
from different origins, nature and species. The data
stored in Manteia originate from four vertebrate species:
human, mouse, chicken and zebrafish. The information
stored in the system covers different aspects of embryonic
development and mutations/genetic disorders leading to
abnormal phenotypes and diseases in animal models
such as zebrafish or mouse and in humans. Data are
organized into three main categories: Molecular,
Expression and Developmental data, each corresponding
to a different menu in Manteia. Molecular data consist of
functional annotations from Gene ontology [GO (16)],
chromosome location and single-nucleotide polymorph-
isms (SNPs) from Ensembl, protein motifs from Interpro
(17), transcription factors from the DNA-binding domain
database [DBD (18)] and orthology data computed from
Inparanoid (19) and Compara (4) to link together the
genes of different species. In addition, the data from
reactome (20) are used to describe interactions, complexes
and pathways, while data from the Encyclopedia of DNA
Elements [ENCODE (21)] are used to predict the tran-
scription factors regulating gene expression. Expression
data comprise in situ hybridization from the MGI and
Embrys (22) as well as expressed sequence tags (ESTs)
from Unigene. EST data can be used to evaluate the ex-
pression level of genes using a digital differential display
approach similar to ZooDDD (23). Embryological data
include phenotype descriptions of mutations for human,
mouse and zebrafish originating from OMIM, MGI and
ZFIN, respectively. All these descriptions make use of
ontologies including the mammalian phenotype ontology
(24), the HPO (25) and the fish anatomical description.
HPO is used to provide a semantic description to
OMIM data.
Comparing the information related to a given gene

across data sets remains a challenging task. This is due
in part to the fact that the data are associated to gene
models that are specific to the database they originate
from. To address this problem, Manteia links all the in-
formation from the databases described above to the same
set of gene models allowing an easy comparison of genes
and their annotations across vertebrate species. We chose
to use the Ensembl models as our reference set, but gene
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models from NCBI are also included and can be browsed
independently in the system. Affymetrix microarray
probe sets for Human, mouse, fish and chicken are
linked to both sets of gene models, allowing one to
maximize the information available to describe each
sequence and interpret the experiments. All the data
are processed automatically by the Manteia management
tools (Figure 1). For each gene model, Manteia provides
a page listing all the available information. The page is
analyzed dynamically to generate charts designed to
provide an overview of the annotation (Figure 2a and
b). It is also possible to combine the data from all the
orthologs and corresponding gene models so the infor-
mation can be compared and completed within a same
page. This way, users can easily access the most compre-
hensive data set available.
The Manteia system is particularly useful to analyze

large lists of data such as those generated by microarray,
high-throughput sequencing or proteomics analyses. It
accepts inputs including lists of genes, ESTs, probe
sets, SNPs and chromosome regions with the main iden-
tifiers used in the community, which can be pasted from
their original files directly into the Manteia interface.
Genes returned by the system can be exported with
their annotation features as tabulated text files using
the ‘Refine’ tool described below. Similarly, a cross-
reference system allows the user to convert the gene iden-
tifiers to ensure compatibility with other databases and
software.

Data exploration tools

Refine
Each type of data is accessible in the system through its
own dedicated interface, providing the most relevant
options for each query. However, one of the strengths of
Manteia comes from its ability to combine different
sources of information to address complex biological
questions. A particularly useful tool of the Manteia inter-
face is called ‘Refine’ and it is designed to filter the results
from a query with another tool of the system (see all the
options in Table 1). For example, suppose one wishes to
find which transcription factors are responsible for a
muscle phenotype in mouse and are known to lead to a
genetic disease in man. To that end, one can use the tool
‘transcription factor’ in the ‘Molecular data’ menu of
Manteia to list all the known mouse transcription
factors, then use ‘Refine’ (selecting ‘Phenotype’ and then
entering the term ‘muscle phenotype’) to keep only those
factors whose knockout in the mouse shows a muscle
defect. Then one can obtain the list of the human
orthologs of these genes using ‘Refine’ again (with the
‘Orthology’ tool) and finally use ‘OMIM’ without any
parameters to list all the diseases related to these genes
(see Supplementary Video S1). This ultimately leads to a
list of 67 transcription factors whose knockout in the
mouse gives a muscle phenotype and whose human
orthologs are annotated in OMIM as associated to a
human genetic disorder. Hence, all the tools of the

Figure 1. Overview of the Manteia architecture. Data are collected from various databases for several species. They are then processed by the
management tools and accessed with the online user interface. Over 30 exploration, graphical representation and statistical tools are available. All the
tools are interoperable, which makes it possible to analyze the information, perform data mining and make predictions.
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system can be linked in a sequential manner to create a
pipeline of analysis. Not only does this approach allow
one to use heterogeneous data together, but it allows the
transfer of annotation from one species to another. This
way it is possible to predict phenotypes or diseases even in
species for which these features are poorly documented
like in chicken.

‘Refine’ can be used for several types of analysis. When
a list of genes is provided to a tool using ‘Refine’, the user
can select a keyword to extract the genes corresponding to
this feature. However, when no keyword is provided, this
tool analyzes all the genes from the list and displays the
corresponding annotation as a text or an interactive graph
(Figure 2c–e). This provides an overview of the annotation
available for these genes and highlights the features they
have in common.

Annotation enrichment and statistical analysis
When large lists of genes or proteins from high-through-
put experiments such as microarrays or proteomics are
being studied together, it is often informative to analyze
their annotation to identify possible enrichment in par-
ticular functional or structural categories. To that end,
we designed statistics tools that can list every annotation
of a group of genes and tell the user if a given category is
enriched or depleted compared with a reference, for

example, a genome, a microarray or a custom designed
list (Figure 3). Our statistics tools work similarly to
GOstat (26), extending the concept to a wider variety of
data including GO, Interpro, phenotype, pathway, mo-
lecular complex and chromosome distribution. The signifi-
cance of each result is given with a P-value computed with
a hypergeometric test and corrected for multiple testing
using the Bonferroni and the Benjamini-Hochberg false
discovery rates. The resulting table allows the user to
retrieve the list of genes associated with each annotation
by a simple click, making it possible to select them specif-
ically for further analysis. Additional features allow one to
dynamically filter the results and highlight annotation
categories that are related together; this greatly eases the
analysis of the results. The Manteia statistics tools have
been successfully used to characterize the function of
cyclic genes (8), highlight the role of genes expressed in
the presomitic mesoderm (9) and identify genes involved
in sex determination in the chicken (10).
The scope of application of statistics tools has been

extended with a conditional probability module that
makes it possible to study the correlation between differ-
ent annotations. For example, to identify the biological
pathways involved in somitogenesis, it is possible to
select the genes responsible for an ‘abnormal somite de-
velopment’ using the ‘Phenotype’ search tool, then

Figure 2. Graphical representations. Manteia uses interactive graphs to represent a result or simplify an annotation. Figure (a) is a word cloud
computed from a gene file to give an overview of its functions. The more a word is used in the page, the bigger it appears in the cloud. (b) Specific
annotation based on ontologies like GO or phenotypes are simplified using a radar chart showing the distribution of individual terms in broad
annotation categories. A list of genes can be analyzed using dedicated graphs to represent their interactions (c) or the molecular complexes they form
(d). GO, phenotypes and protein motifs annotations are represented using tree maps where each tile represents a keyword and its size the number of
genes corresponding to this category.
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perform a statistical analysis on GO annotations and filter
the GO terms related to ‘signaling pathway’ (Figure 3).
The conditional probability module then shows that
15.5% of genes involved in the ‘abnormal somite develop-
ment’ belong to the Wnt pathway, 10.5% to the Notch
pathway and 9% to the transforming growth factor beta
and bone morphogenic protein pathways. The correlation
is weaker with the smoothened (4%) and the fibroblast
growth factor (5%) pathways. When this statistical
analysis is performed on the phenotype annotation, the
same data set shows nontrivial correlations with a cardio-
vascular system phenotype (74%), an abnormal brain
morphology (51%) or a craniofacial phenotype (52%).
All these features were found significantly enriched with
a false discovery rate <1%. This way the system highlights
developmental events driven by the same genes and can
help predict syndromic associations in human based on
such associations in animal models.

Using mouse phenotypes to predict candidate genes for
human genetic diseases

We have also developed tools allowing the use of mouse
annotation to identify candidate genes for specific human
genetic diseases. This tool that allows to ask complex
queries is called ‘Querybuilder’. It enables the user
to query the database by typing a complex question
(Figure 4). Questions combine the search of specific
features with logical operators (and, or, not). For
example, ‘[SPECIES(‘‘Mus musculus’’) and PATHWAY
(‘‘Signaling by NOTCH’’) and GO(‘‘nervous system de-
velopment’’)] not IP(‘‘Notch domain’’)’ will return all

the mouse genes from the Notch signaling pathway that
are involved in the nervous system development but not
coding for a Notch domain. Questions to the system can
take advantage of the multiplicity of information available
to complement certain data with others. For example,
looking for ‘[GO(‘‘heart development’’) or PHENO
(‘‘abnormal cardiac development’’)] returns more results
than each query ran separately.

‘Querybuilder’ offers the possibility to design several
queries and have them evaluated at the same time by the
system. The list of genes returned are ordered by the
number of conditions they meet. Each query can be as-
signed a weight to reflect its importance in the analysis.
This powerful approach permits one to evaluate several
conditions without discarding the genes that do not meet
all the criteria. Instead, a score is given reflecting the per-
tinence of a gene as a match to the different criteria. This
last feature is a particularly powerful way to use the
phenotypic data from mouse mutants to find candidate
genes responsible for complex human syndromes or
diseases. For example, the Holt-Oram syndrome is
characterized by an abnormality of the thumb and an
atrial septal defect. To look for genes responsible for
this syndrome, one can design two distinct queries using
the mouse phenotype terms: ‘abnormal digit morphology’
and ‘atrial septal defect’. Manteia returns 15 genes having
both features including TBX5, which is known to lead to
this disease (see Supplementary Table S1). Candidate
genes can be further investigated thanks to all the data
provided by the system. For instance, this query returns
SALL4 as a candidate. This gene is responsible for the

Table 1. Tools available from the ‘Refine’ interface

Expression data
In situ In situ hybridization expression data
Digital differential display Identifies genes differentially expressed in different samples using ESTs
EST count Predicts gene expression levels using ESTs

Annotations
GO Gene functional annotation
Protein motif Protein motif prediction
Phenotype Phenotype description for mutated genes
OMIM Human genetic disorder description
Chromosome location Returns the genes contained in a given chromosomal region
SNP Returns the genes associated to a given single-nucleotide polymorphism
Biological pathway Returns the genes involved in a given biological pathway
Molecular complex Returns the genes involved in a given molecular complex
Interactome Returns the genes involved in a given molecular interaction
Transcription factors from DBD Identifies the genes with a transcription factor activity
Transcription targets Returns the genes that regulate or are regulated by the given genes
Annotated with . . . Returns the genes annotated with one of the data sets listed above

Species
Orthology Returns the corresponding orthologs of a gene
Species filter Returns the genes that belong to a given species

Boolean tools
Query builder Addresses Boolean questions to the system using a mixture of data
Annotation distribution Shows the distribution of genes in different annotation categories
Boolean list Identifies shared or specific genes from two lists
Venn diagram Creates a Venn diagram for up to four lists of genes

Export
Create custom Ref for Statistics Creates a custom reference to be used with statistics tools
Convert gene ID list Converts a gene identifier into another identifier
Export gene ID list Exports the current list of genes
Export annotation Exports the annotation features of the current list of genes
Export corresponding probe sets Exports the corresponding probe sets of the current list of genes
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Okihiro syndrome with limb defects similar to the ones
found in the Holt-Oram syndrome but it also induces
ocular and renal anomalies that are not found in these
patients or in the animal models.

For Alagille syndrome, one can design six queries cor-
responding to the main features of the disease: ‘jaundice’,
‘cholestasis’, ‘abnormal cardiac morphology’, ‘abnormal
vertebrae morphology’, ‘abnormal anterior eye segment
morphology’ and ‘craniofacial phenotype’. Manteia
returns no gene with all six features, but finds two candi-
dates with five of them, including NOTCH2, which is
known to be responsible for Alagille syndrome (see
Supplementary Table S2). The gene that ranks second is
CHUK. This gene shares many phenotypic features with
NOTCH2 in the mouse but has not been associated to a
human disease. The second gene known to be responsible
for this syndrome is JAG1. This gene shares four features
with the mouse phenotype description and ranks within
the first 30 candidates out of the entire set of mutated
genes in mouse genome. Using a similar approach,

‘Querybuilder’ has been used to study the origin of the
clinical features of the 2q37 deletion syndrome from the
numerous genes found in this locus (27).
Two additional customized versions of the

‘Querybuilder’ are available in the ‘Boolean tool’ section
of Manteia. One is called ‘medical diagnostic’ and allows
to find a genetic disease based on clinical features. The
second, called ‘Annotation distribution’, counts how
many genes correspond to each query defined by the
user (Figure 5). This is particularly useful to analyze
high-throughput experiments and quantify how many
genes belong to each category (e.g. cell cycle, signaling,
metabolism) and see how these values evolve over differ-
ent experimental conditions.
Boolean tools can be used in combination with

‘Refine’, thereby providing unlimited ways to combine
the information contained in Manteia. Altogether, these
tools provide a highly sophisticated way to perform a
global search using several types of data from different
species.

Figure 3. Statistics tools. The statistic module of Manteia allows one to highlight the terms of an annotation that are enriched or depleted in a set of
genes. Here the GO annotation enrichment is exemplified. The P-value column gives the significance of the enrichment. The two following columns
correct this value for multiple testing. The blue color indicates a statistical significance. Terms that are related in the ontology can be highlighted to
ease the analysis. Here GO terms related to the NOTCH and WNT signaling pathways are colored in beige and green, respectively. Statistics tools
can be used in combination with other exploration tools to compute a correlation between different types of data. In this example, ‘Phenotype search’
(on top) is used to assemble a list of genes leading to an abnormal somite development. The resulting GO statistics are filtered with the keyword
‘signaling pathway’. The conditional probability module (right hand side on the GO statistics screenshot) is used to compute the probability of
having a gene annotated with a given GO term when it is already annotated with the ‘abnormal somite development’ phenotype (first column), and
conversely (second column).
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Automatic candidate gene predictions for OMIM diseases
When the description of a disease is available from
OMIM, Manteia is able to automatically generate the
‘Querybuilder’ question allowing the identification of the
best candidate genes for that disease. To do this, the
system uses the formatted description of the disease
provided by HPO and searches for the equivalent terms
in the mouse phenotype ontology to generate the query.
This correspondence is based on an enhanced version of
the E-Q (28) method (see ‘Materials and Methods’
section), which defines each phenotype in terms of what
is affected and how, with the consequence of making dif-
ferent phenotype ontologies compatible. A weight is used,
taking into account the frequency of each feature in
OMIM to focus on the disease specificities. When the
query is run, the system ranks the mouse candidate
genes according to the number of keywords they share
with the clinical description of the human disease and
the weight given for each feature.
The E-Q method is among the most recent and efficient

methods to compare phenotypes between different species

(29,30). To evaluate its accuracy in Manteia, we ran a
simulation on all OMIM diseases for which an HPO de-
scription was available and for which a gene was already
suspected or known to lead to the disease (�3100 OMIM
gene–disease associations). About 28% of cases could not
be analyzed mainly owing to a lack of phenotype annota-
tion for the corresponding mouse genes. For the 2241 re-
maining gene–disease associations, Figure 6a shows that
387 genes are accurately found within the first 50 candi-
dates when only 16 are expected by chance. Even though
this method can give excellent results, this simulation
shows that for many cases, the clinical features alone are
not enough to predict accurately the right candidate genes.
The algorithm cannot distinguish the right candidate
among genes responsible for similar phenotypic features
in the genome.

To overcome this problem, Manteia allows the investi-
gators to narrow down the number of candidates by using
this automatic approach along with their own evidences.
For example, one can constrain the search to a chromo-
somal location given by a CGH array or a linkage analysis

Figure 4. Data integration tool. The ‘Querybuilder’ makes it possible to address a question to the system using several types of data. The user enters
a keyword, selects the best matching suggestion among a list and builds a question using Boolean operators (and, or, not). Several questions can be
addressed at the same time using a separator followed by a weight reflecting the relative importance of each query. Alternatively, Manteia can
automatically create a query from an OMIM file to look for the best candidate genes for that disease. The matching genes are ordered according to
their relevance. The column at the right hand side indicates which queries match the gene annotation. Last, an interactive chord diagram is generated
to show how many genes are returned by each query and how many share the same features.
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using a combination of the ‘chromosome location’ and
‘OMIM’ tools. For example, most DiGeorge syndrome
cases result from a microdeletion on chromosome
22q11.2. To prioritize the candidate genes potentially re-
sponsible for the disease, one can enter these coordinates in
the system, obtain the mouse orthologs using ‘Refine’ and
then go to the DiGeorge page in the OMIM module to
start the automatic search. TBX1, which has been proven
to be associated to the disease (31), ranks first in the list
(see Supplementary Table S3). Interestingly, Manteia
ranks CRKL in second position. This gene plays a major
role in the formation of the structures affected by the
syndrome (32). Note that without using the chromosome
localization data, TBX1 ranks 17th among the candidates.

We further tested the benefits of using mapping infor-
mation in the previous analysis by running simulations
over different intervals around the disease gene (the size
of the search area depends on the precision with which the
disease locus has been mapped). Once again, all known
disease genes from OMIM are searched in Manteia using
the corresponding clinical description of the patients
among the candidate genes contained in these chromo-
somal intervals. The position in which the known gene is
found among the candidates measures the precision of the
method. The results are then compared with the number
of known genes expected by chance for each ranking
position when picked randomly in the same areas of the
genome (See ‘Materials and Methods’ section). Using the
positional information, 94, 86, 57 and 46% of known
genes rank within the first 10 positions in the prediction
list when regions of 5, 10, 50 and 100 Mb are analyzed,
respectively (Figure 6b). These results are highly signifi-
cant (Figure 6c–f) and are considerably better than the E-
Q method used alone (Figure 6b). The unique possibility

offered by Manteia to combine automatic and manual
search has clear value for human genetics where in many
cases, the disease locus has not been identified but has
been mapped to a specific linkage interval.

DISCUSSION

Manteia is an original online resource that provides a
cohort of data from different species with a set of
powerful tools within a structured environment to
unleash the potential of combinatorial large-scale
analyses of biological and clinical data. The system is ex-
tremely versatile and can be used for many types of
analyses, including data retrieval, gene or probe set anno-
tation, information content analysis, candidate gene pre-
diction and prioritization. The user interface has been
designed to make all analyses easy and fast, and an
online help is provided to familiarize the novice with the
system. The system architecture is modular and will allow
the addition of new animal models, new data sets and new
tools to extend even more the scope of its applications.
This tool should prove particularly helpful for investi-

gators interested in finding biologically significant correl-
ations in large lists of genes and proteins generated by
modern high-throughput approaches. Thanks to its
ability to combine genomic, phenotype and medical
data, Manteia is also particularly well adapted to help
geneticists in investigating the genetic origin of human
diseases, as shown with our simulations. Phenotype data
are clearly the most valuable source of information for this
kind of predictions. The relatively restricted amount of
phenotype data currently available represents the most
important limitation to this approach. However, the
continual efforts made by the International Mouse

Figure 5. Annotation distribution. The ‘Annotation distribution’ tool generates a bar plot and a donut chart showing how many genes correspond to
each Boolean query defined by the user. Here the search for genes responsible for the development or the abnormality of the cardiovascular,
respiratory, skeletal and renal systems is exemplified. This way it is possible to see the relative importance of different annotation categories in a
given data set and see how the distribution evolves over different experimental conditions. The Venn diagram generator can then be used to see the
genes that are shared among the results returned by the queries.
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Phenotyping Consortium aiming at describing the null
mutations of every single gene from the mouse genome
should help resolve this problem over time. Manteia pre-
dictions are computed live, which has several advantages.
It allows the users to add their own information to the
queries and it eases the maintenance of the system. Hence,
new information can be exploited immediately in Manteia
by updating its knowledge base. In this regard, we have
designed an automated annotation pipeline to keep

Manteia up-to-date. In this way, the information content
of the system will continuously increase in size and quality
to enhance the sensitivity of predictions made by the
system.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.

Figure 6. Candidate genes prediction for OMIM diseases. Manteia ranks mouse candidate genes according to the number of phenotypic features
they share with the human disease genes. Figure (a) shows the ranking of mouse genes when searched using the E-Q method alone with the number
of genes expected by chance. Figure (b) shows the distribution obtained when genes are searched in an area of 5 (purple), 10 (red), 50 (green) and 100
Mb (yellow). Most of known or suspected disease genes rank within the first 10 candidates. (c–f) shows the ranking distribution for each search area
compared with the distribution expected by chance. The first positions, where most genes are found, are significant.
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et de la recherche médicale’ (INSERM); European
research council (ERC) [249931]; Cotrel foundation.
Funding for open access charge: ERC.

Conflict of interest statement. None declared.

REFERENCES

1. NCBI Resource Coordinators. (2013) Database resources of the
National Center for Biotechnology Information. Nucleic Acids
Res., 41, D8–D20.

2. Barrett,T., Wilhite,S.E., Ledoux,P., Evangelista,C., Kim,I.F.,
Tomashevsky,M., Marshall,K.A., Phillippy,K.H., Sherman,P.M.,
Holko,M. et al. (2013) NCBI GEO: archive for functional
genomics data sets—update. Nucleic Acids Res., 41, D991–D995.

3. Rustici,G., Kolesnikov,N., Brandizi,M., Burdett,T., Dylag,M.,
Emam,I., Farne,A., Hastings,E., Ison,J., Keays,M. et al. (2013)
ArrayExpress update—trends in database growth and links to
data analysis tools. Nucleic Acids Res., 41, D987–D990.

4. Flicek,P., Ahmed,I., Amode,M.R., Barrell,D., Beal,K., Brent,S.,
Carvalho-Silva,D., Clapham,P., Coates,G., Fairley,S. et al. (2013)
Ensembl 2013. Nucleic Acids Res., 41, D48–D55.

5. McKusick,V.A. (2007) Mendelian inheritance in man and its
online version, OMIM. Am. J. Hum. Genet., 80, 588–604.

6. Eppig,J.T., Blake,J.A., Bult,C.J., Kadin,J.A. and Richardson,J.E.
(2012) The Mouse Genome Database (MGD): comprehensive
resource for genetics and genomics of the laboratory mouse.
Nucleic Acids Res., 40, D881–D886.

7. Bradford,Y., Conlin,T., Dunn,N., Fashena,D., Frazer,K.,
Howe,D.G., Knight,J., Mani,P., Martin,R., Moxon,S.A. et al.
(2011) ZFIN: enhancements and updates to the Zebrafish Model
Organism Database. Nucleic Acids Res., 39, D822–D829.

8. Krol,A.J., Roellig,D., Dequeant,M.L., Tassy,O., Glynn,E.,
Hattem,G., Mushegian,A., Oates,A.C. and Pourquie,O. (2011)
Evolutionary plasticity of segmentation clock networks.
Development, 138, 2783–2792.

9. Ozbudak,E.M., Tassy,O. and Pourquie,O. (2010) Spatiotemporal
compartmentalization of key physiological processes during
muscle precursor differentiation. Proc. Natl Acad. Sci. USA, 107,
4224–4229.

10. Zhang,S.O., Mathur,S., Hattem,G., Tassy,O. and Pourquie,O.
(2010) Sex-dimorphic gene expression and ineffective dosage
compensation of Z-linked genes in gastrulating chicken embryos.
BMC Genomics, 11, 13.

11. Tassy,O., Dauga,D., Daian,F., Sobral,D., Robin,F., Khoueiry,P.,
Salgado,D., Fox,V., Caillol,D., Schiappa,R. et al. (2010) The
ANISEED database: digital representation, formalization, and
elucidation of a chordate developmental program. Genome Res.,
20, 1459–1468.

12. Mungall,C.J., Torniai,C., Gkoutos,G.V., Lewis,S.E. and
Haendel,M.A. (2012) Uberon, an integrative multi-species
anatomy ontology. Genome Biol., 13, R5.

13. Rosse,C. and Mejino,J.L. Jr (2003) A reference ontology for
biomedical informatics: the Foundational Model of Anatomy.
J. Biomed. Inform., 36, 478–500.

14. Blake,J.A., Bult,C.J., Kadin,J.A., Richardson,J.E. and Eppig,J.T.
(2011) The Mouse Genome Database (MGD): premier model
organism resource for mammalian genomics and genetics. Nucleic
Acids Res., 39, D842–D848.

15. Smith,B., Ashburner,M., Rosse,C., Bard,J., Bug,W., Ceusters,W.,
Goldberg,L.J., Eilbeck,K., Ireland,A., Mungall,C.J. et al. (2007)
The OBO Foundry: coordinated evolution of ontologies to
support biomedical data integration. Nat. Biotechnol., 25,
1251–1255.

16. Gene Ontology Consortium. (2013) Gene Ontology annotations
and resources. Nucleic Acids Res., 41, D530–D535.

17. Hunter,S., Jones,P., Mitchell,A., Apweiler,R., Attwood,T.K.,
Bateman,A., Bernard,T., Binns,D., Bork,P., Burge,S. et al. (2012)
InterPro in 2011: new developments in the family and domain
prediction database. Nucleic Acids Res., 40, D306–D312.

18. Wilson,D., Charoensawan,V., Kummerfeld,S.K. and
Teichmann,S.A. (2008) DBD—taxonomically broad transcription
factor predictions: new content and functionality. Nucleic Acids
Res., 36, D88–D92.

19. Ostlund,G., Schmitt,T., Forslund,K., Kostler,T., Messina,D.N.,
Roopra,S., Frings,O. and Sonnhammer,E.L. (2010) InParanoid 7:
new algorithms and tools for eukaryotic orthology analysis.
Nucleic Acids Res., 38, D196–D203.

20. Croft,D., O’Kelly,G., Wu,G., Haw,R., Gillespie,M., Matthews,L.,
Caudy,M., Garapati,P., Gopinath,G., Jassal,B. et al. (2011)
Reactome: a database of reactions, pathways and biological
processes. Nucleic Acids Res., 39, D691–D697.

21. de Souza,N. (2013) The ENCODE project. Nat. Methods, 9,
1046.

22. Yokoyama,S., Ito,Y., Ueno-Kudoh,H., Shimizu,H., Uchibe,K.,
Albini,S., Mitsuoka,K., Miyaki,S., Kiso,M., Nagai,A. et al. (2009)
A systems approach reveals that the myogenesis genome network
is regulated by the transcriptional repressor RP58. Dev. Cell, 17,
836–848.

23. Chen,Y.C., Hsiao,C.D., Lin,W.D., Hu,C.M., Hwang,P.P. and
Ho,J.M. (2006) ZooDDD: a cross-species database for digital
differential display analysis. Bioinformatics, 22, 2180–2182.

24. Smith,C.L. and Eppig,J.T. (2013) The Mammalian Phenotype
Ontology as a unifying standard for experimental and high-
throughput phenotyping data. Mamm. Genome, 23, 653–668.

25. Robinson,P.N. and Mundlos,S. (2010) The human phenotype
ontology. Clin. Genet., 77, 525–534.

26. Beissbarth,T. and Speed,T.P. (2004) GOstat: find statistically
overrepresented Gene Ontologies within a group of genes.
Bioinformatics, 20, 1464–1465.

27. Leroy,C., Landais,E., Briault,S., David,A., Tassy,O., Gruchy,N.,
Delobel,B., Gregoire,M.J., Leheup,B., Taine,L. et al. (2013) The
2q37-deletion syndrome: an update of the clinical spectrum
including overweight, brachydactyly and behavioural features in
14 new patients. Eur J Hum Genet., 21, 602–640.

28. Mungall,C.J., Gkoutos,G.V., Smith,C.L., Haendel,M.A.,
Lewis,S.E. and Ashburner,M. (2010) Integrating phenotype
ontologies across multiple species. Genome Biol., 11, R2.

29. Washington,N.L., Haendel,M.A., Mungall,C.J., Ashburner,M.,
Westerfield,M. and Lewis,S.E. (2009) Linking human diseases to
animal models using ontology-based phenotype annotation. PLoS
Biol., 7, e1000247.

30. Hoehndorf,R., Schofield,P.N. and Gkoutos,G.V. (2011)
PhenomeNET: a whole-phenome approach to disease gene
discovery. Nucleic Acids Res., 39, e119.

31. Yagi,H., Furutani,Y., Hamada,H., Sasaki,T., Asakawa,S.,
Minoshima,S., Ichida,F., Joo,K., Kimura,M., Imamura,S. et al.
(2003) Role of TBX1 in human del22q11.2 syndrome. Lancet,
362, 1366–1373.

32. Moon,A.M., Guris,D.L., Seo,J.H., Li,L., Hammond,J., Talbot,A.
and Imamoto,A. (2006) Crkl deficiency disrupts Fgf8 signaling in
a mouse model of 22q11 deletion syndromes. Dev. Cell, 10,
71–80.

Nucleic Acids Research, 2014, Vol. 42, Database issue D891

Downloaded from https://academic.oup.com/nar/article-abstract/42/D1/D882/1066493
by UNIVERSITE LOUIS PASTEUR SERVICE COMMUN DE DOCUMENTATION user
on 06 February 2018

This work was supported by the 
,
,
``
''
and 

