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Summary (152 words, max 200 words) 

Allergic contact dermatitis is one of the most frequent forms of skin inflammation. Very often, we 

are exposed to mixtures of allergens with varying potency, dose/area and exposure time. Therefore, 

improved knowledge about immune responses to combinations of contact allergens is highly rele-

vant. In this article, we provide a general introduction to immune responses to contact allergens and 

discuss the literature concerning immune responses to mixtures of allergens. Normally, increased 

responses are induced following sensitization with combinations of allergens compared to single 

allergens. The response against a mixture of allergens can be both additive and synergistic depend-

ing on the dose and combination of allergens. Importantly, sensitization with combinations of either 

fragrance allergens or metal salts can result in increased challenge responses to specific allergens 

within the mixture. Taken together, the immune responses to mixtures of allergens are complex, and 

further studies are required to obtain the necessary knowledge to provide better consumer safety.  
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 Contact allergy is very frequent in the European population as demonstrated by Diepgen et al, who 

found that 27 % had a contact allergy to common allergens (1). This may lead to allergic contact 

dermatitis if the exposure exceeds the individual threshold of response.   

The allergic response is frequently directed towards nickel, cobalt, fragrances, hair dye chemicals or 

preservatives. Many of these molecules are categorized as weak to moderate allergens – this term 

will be used throughout the paper globally for (pre-/pro-) haptens (2). Surprisingly, even ‘weak to 

moderate’ allergens do induce allergic contact dermatitis in many people. This indicates that expo-

sure parameters are critical such as dose and exposure frequency.  Interestingly, consumers are rare-

ly exposed to one isolated allergen but more often to mixtures of allergens e.g. in the form of metal 

alloys, cosmetics and cleaners (3,4). The impact of being exposed to a mixture of allergens instead 

of a single allergen is not well studied. Studies from our group suggested that exposure to mixtures 

of allergens has a great impact on the immune response to single allergens within the mixture. In 

this review, we will discuss the current knowledge on how exposure to mixtures of contact allergens 

affects the immune system by 1) alterations of the chemical property of single allergens in the mix-

tures 2) changing the inflammatory response and 3) affecting T cell activation, proliferation and dif-

ferentiation. Furthermore, we will discuss other factors like the presence of irritants, disrupted skin 

barrier, local skin inflammation and local skin memory that could increase the response to allergens. 

Finally, we will discuss the clinical impact of exposure to mixtures of contact allergens versus iso-

lated contact allergens.     
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Immune response to contact allergens in general  

Allergic contact dermatitis is a complex immunological response dominated by T cells and is in-

duced following exposure of the skin to a contact allergen. Most of our knowledge about the immu-

nological mechanisms mediating the allergic response comes from animal experiments, especially 

the mice models for allergic contact hypersensitivity (CHS). It has been shown that both CD4+ and 

CD8+ T cells are involved in mediating the inflammatory response, and which of the subset that 

dominates seems to be dependent of the allergen and the experimental set-up (5-8). In addition to 

CD4+ and CD8+ T cells, several other cell types are involved in the response including keratino-

cytes, Langerhans cells (LC), dermal dendritic cells (dDC), mast cells, γδ T cells, NKT cells, NK 

cells and B cells (9-19). The allergic response is divided into two phases: the sensitization phase 

and the challenge/elicitation phase. During the sensitization phase, the allergen will induce an in-

flammatory response leading to activation of antigen presenting cells (APC) (LC and dDC) in the 

skin (10,13,16). These cells then migrate to the draining lymph nodes (dLN), where they present 

naïve CD4+ and CD8+ T cells for the allergen. This will lead to T cell activation, and the T cells will 

start to differentiate and proliferate and some of them will become memory T cells (5,7,8,20). By 

the generation of memory T cells, the individual has become sensitized to the allergen. Re-exposure 

to a sufficient dose of the allergen, i.e., elicitation or challenge, causes reactivation of the memory T 

cells leading to a faster and stronger inflammatory response than seen during the primary response 

to the allergen (21). 

The potency of an allergen could be determined by two features: 1) its ability to trigger activation of 

the innate immune response and 2) its ability to induce T cell activation. The epidermis is the first 

part of the body that comes in contact with the allergen and here keratinocytes and LC mediate the 

first response towards the allergen (11-13). The innate immune system particularly recognizes mi-

crobes and damaged self via the pattern recognition receptors; Toll-like receptors (TLR) and NOD-
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like receptors (NLR) leading to the production of various cytokines and chemokines and the expres-

sion of co-stimulatory molecules on APC. During the last decade it has become clear that TLR are 

involved in the initiation of the inflammatory response towards contact allergens (22-25).  It has 

been shown that both TLR2 and TLR4 play an important role in the response to contact allergens 

(22,23,25). Exposure to oxazolone induces a rapid up-regulation of the expression of TLR2 in 

mouse skin (22). Furthermore, a decreased ear-swelling was seen in mice lacking TLR2 following 

challenge with oxazolone which correlated with a decreased level of IFN-γ mRNA but normal lev-

els of IL-4 mRNA in the skin (22). In addition, the authors found impaired Th1 polarization of na-

ïve CD4+ T cells stimulated with DC lacking TLR2 (22). Thus, this suggests that TLR2 signalling 

plays a role in allergen-induced inflammation and in the Th1 response induced by contact allergens. 

Recently it was shown that TLR3 also is involved in the skin inflammation induced by exposure to 

contact allergens (24). Challenge with trinitrochlorobenzene (TNCB) mediated a decreased re-

sponse in TLR3 deficient mice and increased response in TLR3 transgenic mice showing that TLR3 

can be an important regulator of the inflammatory response to contact allergens (24). Interestingly, 

it was shown that mice lacking either TLR2 or TLR4 only had a minor reduction in the response to 

TNCB whereas TLR2/TLR4 double-deficient mice were resistant to CHS (23). Taken together, 

TLR seem to play an important role in initiating of the inflammatory response to contact allergens, 

and at least for TLR2 and TLR4 there seem to be some redundancy.  

 

Allergens have been shown to stimulate TLR both directly and indirectly by inducing the expres-

sion of endogenous TLR ligands (25-27). Both nickel and cobalt bind directly to human TLR4 

thereby inducing stimulation (25,28). Allergen exposure of mice can lead to the degradation of hya-

luronic acid (HA) in the skin leading to generation of HA degradation products that can function as 

TLR2 and TLR4 ligands (26). In addition, it has been shown that treatment of keratinocytes with 
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allergens induces the production of high-mobility group protein B1 (HMGB1), which can function 

as an endogenous TLR4 ligand (27). Furthermore, it is likely that RNA released from necrotic 

keratinocytes induced by exposure to contact allergens can serve as ligands for TLR3 (24). Interest-

ingly, it appears that triggering of TLR by non-allergens can also modify the response to allergens 

(29,30). Pre-treatment with the TLR7 agonist Imiquimod, which is utilized to treat external genital 

warts, actinic keratosis, and basal cell carcinoma, induced increased ear-swelling in mice chal-

lenged with dinitrofulorobenzene (DNFB) and dinitrochlorobenzene (DNCB) compared to mice 

pre-treated with the control vehicle (29,30). These observations indicate that the simultaneous pres-

ence of non-allergens with the potential to stimulate TLR in consumer products will increase the 

risk of developing an allergic response to allergens in the products.  

Contact allergens can also lead to activation of the NLRP3 inflammasome that activates caspase-1 

leading to processing of pro-IL-1β and pro-IL-18 to IL-1β and IL-18, respectively (31,32). IL-1β is 

induced in the skin already 15 minutes after exposure to allergens and plays a central role for the 

allergic response (12,31-35). Activation of the NLRP3 inflammasome by contact allergens seems to 

be mediated by an indirect pathway via ATP (26,27,35). Thus, exposure to contact allergens leads 

to an increase in extracellular ATP that can bind to the transmembrane ATP receptor P2X7 (35). 

Binding of ATP to P2X7 induce the activation of NLRP3 inflammation (35). Interestingly, the re-

sponse to TNCB is abrogated in mice lacking P2X7 indicating that the ATP- P2X7 pathway plays a 

central role in the response to contact allergens (35). Furthermore, it has been shown that some con-

tact allergens like DNCB, 4-nitrobenzylbromide, diphenylcyclopropenone, oxazolone and TNCB 

can induce the production of reactive oxygen species (ROS) in both human and mice keratinocytes 

(26,27,36). Interestingly, it was recently shown that the allergen-induced ROS production leads to 

release of ATP though opening of pannexin hemichannels (36). As the allergen-induced ROS pro-

duction correlates with IL-18 production it is likely that ROS-induced ATP binds to P2X7 leading to 
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NLRP3 inflammasome activation (27). However, this way of inducing NLRP3 inflammasome acti-

vation seems to be allergen-dependent as treatment of keratinocytes with NiCl2 did not induce ROS 

production and as it is uncertain if p-phenylenediamine (PPD) can induce ROS production in 

keratinocytes (26,27,36).  

The activation of naïve T cells has a central role in sensitization to contact allergens. A naïve T cell 

requires three signals to be activated and to differentiate into effector and memory T cells: signal 1) 

recognition of the specific MHC-peptide complex, signal 2) stimulation by co-stimulatory mole-

cules and signal 3) cytokine stimulation. The mechanisms mediating the two last requirements fol-

lowing allergen-exposure are described above. Contact allergens are small molecules (mostly <500 

Daltons) which by themself are not immunogens. Instead, contact allergens react with and modify 

self-proteins which thereby can become an immunogen. The modification of self-proteins by con-

tact allergens can be mediated by different mechanisms: 1) direct binding of the allergen to 

MHC:peptide complex, 2) modification of self that requires that the allergen is present during pro-

tein processing, 3) allergen-induced alterations of protein-processing, and 4) allergen can mediated 

binding between the T cell receptor and MHC molecule independent of the peptide bound to the 

MHC molecule (37-43). Upon recognition and if signal 2 is present, the specific naïve T cell be-

comes activated and will differentiate into effector and memory T cells. Depending on the local cy-

tokine environment (signal 3) different types of T cells will be generated. For many years, IFN-γ 

producing T cells, both Th1 and CD8+ T cells have been thought to be the main effector cells (8). 

However, it is now clear that both Th2 and Th17 cells play a role in the response depending on the 

allergen (44-47). Finally, it is clear that regulatory CD4+ T cells play a critical role in controlling 

the response (48,49). A fraction of the T cells will differentiate into memory T cells that can rapidly 

mediate a response following re-exposure to the allergen. Interestingly, it has recently been shown 
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that exposure to DNFB leads to the generation of both circulating memory T cells and skin-resident 

memory T cells (20). 

 



9 
 

Effects of mixing contact allergens 

Mixing different contact allergens can in theory result in different outcomes: 1) the response can be 

additive, 2) the mixed allergens can work in synergy, 3) one allergen can inhibit the effect of anoth-

er allergen within the mixture (50,51). These effects can be mediated by different immunological 

mechanisms like induction of danger signals, cross-reactive T cells and induction of anti-

inflammatory mechanisms. Moreover, the effect of an additional (or several additional) hapten(s) 

can be exerted during the induction phase and the elicitation phase.  

 

The role of altered chemistry in the mixture  

When mixing allergens one cannot exclude alteration to occur with either a neutralization of the re-

activity and/or the formation of new sensitizers with a different sensitizing potential (either reduced 

or increased). However, as skin sensitizers are electrophilic substances, the probability for them to 

interact chemically is rather low but one should admit that this aspect has been very poorly studied. 

It has been recently published that terpene hydroperoxides from citrus oil could react with alde-

hydes (both are skin sensitizers) to form peroxyhemiacetals but of unknown reactivity (52).  

Another indirect alternated chemistry could arise from metabolic competition of prohaptens to met-

abolic enzymes. Indeed when two prohaptens of similar structures are present in a mixture one 

could expect a competition to occur but here again these aspects in relation with skin sensitization 

have not been studied and reported in the literature.   

Moreover, the deliberate addition of antioxidants to a mixture of prehaptens will delay the for-

mation of oxidation products which are more sensitizing than the initial material, as has been shown 

for the addition of BHT and subsequent autoxidation of d-limonene (53). However, if antioxidants 

are added to decrease sensitisation risk, the risk associated with the antioxidants themselves needs 

to be considered. 
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The effect on the immune response  

Immune response to mixtures of metals 

Metal allergy is the most frequent type of allergic contact dermatitis with allergy to nickel and co-

balt being the major forms affecting 14.5% and 2.2% of the European population, respectively (1). 

The way metals, especially nickel, activate both the innate and adaptive immune response has been 

extensively studied (25,28,38-40,43-49,54). Both nickel and cobalt facilitate dimerisation of human 

TLR4 thereby inducing production of various cytokines and chemokines required for initiating the 

allergic response (25,28,55).  Furthermore, we have shown that nickel allergy can be induced in 

mice via a MyD88 and IL-1-dependent but TLR4-independent pathway, indicating that nickel can 

activate the innate immune response by various mechanisms (33). In agreement with this, it has 

been shown that NiCl2 induce NLRP3-ASC-capase-1 inflammasome activation in APC resulting in 

IL-1β production via mechanisms involving lysosome rapture, mitochondrial ROS generation and 

cation flux (56).  As stimulation of keratinocytes with hexavalent chromium also induces ROS pro-

duction, we find it likely that hexavalent chromium also can induce NLRP3-ASC-capase-1 inflam-

masome activation in APC (57,58).  In addition to activation of the innate immune system via dif-

ferent pathways, nickel can also activate T cells via different mechanisms (37-40,42,43). Nickel can 

be presented to T cells both via peptide-dependent and peptide-independent ways, where nickel 

bridges the TCR and MHC in a way similar to superantigens (37,40,43). Whether other metals can 

activate T cells by similar mechanisms needs further investigations.  

People are mostly exposed to metals by contact with jewellery, tools and coins. Often these expo-

sures are via contact with alloys like stainless steels. Interestingly, very little is known about how 

co-exposure to metals affects the immune response to an individual metal used in the alloy. In a 

study investigating how co-exposure to nickel and cobalt affected the challenge response to either 
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nickel or cobalt, we found that co-sensitization boosted the challenge response to both metals (59). 

Addition of 1% NiCl2 during sensitization with 10% CoCl2 led to a strong increase in the challenge 

response to 10% CoCl2 compared to the challenge response in mice sensitized with 10% CoCl2 

alone as measured by ear-thickness and proliferation of B and T cells (59), i.e., a synergistic or – in 

this case – “adjuvant” effect was noted. In contrast, addition of 1% CoCl2 to 10% NiCl2 during the 

sensitization response only lead to a minor increase in CD8+ T cell proliferation following challenge 

with 10% NiCl2 compared to mice sensitized with 10% NiCl2 alone (59). T cell cross-reactivity 

does not seems to explain these observations, as despite the high prevalence of concomitant nickel 

and cobalt allergy (60), it has been shown that human nickel-specific T cells do not cross-react with 

cobalt (39,54). We found that nickel induced more local inflammation than cobalt in mice only ex-

posed to the individual metal during challenge, indicating that nickel is a more potent adjuvant than 

cobalt (59). Interestingly, it has been shown that chromium (Cr(VI)) is more cytotoxic and that it is 

accumulated more within keratinocytes than nickel and cobalt (61,62). This indicates that chromium 

(Cr(VI)) might be an even stronger adjuvant than nickel during co-exposures to cobalt and other 

metals. However, further investigations are needed to clarify this issue.  

 

Immune responses to mixtures of fragrance allergens 

Allergic contact dermatitis to fragrance allergens is common in Europe (1,63). Fragrances are com-

plex mixtures that often contain between 10-100 components with several of these being contact 

allergens (3). However, the effect of mixtures of fragrance allergens on the immune system is still 

under debate. It has recently been suggested that mixing isoeugenol and cinnamal has an additive 

effect during sensitization (64). This was examined using a modified version of the local lymph 

node assay (LLNA) followed by complex mathematical analysis where the number of leukocytes in 

draining lymph nodes and IFN-γ production by these upon poly-clonal stimulation with conca-
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navalin A were used (64). Surprisingly, it was suggested that isoeugenol and cinnamal followed the 

same dose response curve even though these are known to have different EC3 values, 1.3 and 2.0, 

respectively (64,65).  High doses were used in the experiment (1.9%-30% for cinnamal and 1-16% 

for isoeugenol) (64), which may have affected the results. Cinnamal is known to be irritant to the 

skin and is for this reason patch tested maximally in 1% concentration in man, while the standard 

for isoeugenol is 2% (66). Experiments should be performed in the low dose range. 

Unfortunately, no raw data was included in this paper making it difficult to follow the suggested 

conclusions (64). We have shown that combining HICC, cinnamal and isoeugenol leads to an in-

creased proliferation of both CD4+ and CD8+ T cells during sensitization compared to the response 

induce in mice exposed to one of the allergens (67). However, the effect on the response by the ad-

dition of the other allergens differed with the strongest effect seen for isoeugenol < HICC < cin-

namal indicating that combing fragrance allergens can result in both additive and synergistic effects 

depending on the allergens (67). In addition to artificial, man-made fragrance allergens, several nat-

ural extracts exist including the mixtures oak moss (Evernia prunastri) and tree moss (Evernia fur-

furacea). When comparing the immune response during sensitization induced by oak moss with two 

of the major identified allergens within oak moss, namely atranol and chloroatranol, we found that 

oak moss induced a much stronger response compared to the response induced by either atranol or 

chloroatranol as measured by both B cell infiltration and T cell proliferation in the draining lymph 

nodes (68). However, whether the increased response was mediated by a synergistic effect mediated 

by co-exposure to atranol and chloroatranol or by additional allergens in oak moss could not be an-

swered due to the experimental set-up (68).  It was concluded by Kienhuis et al. that the additive 

effect on the sensitization response when mixing isoeugenol and cinnamal implies that quantitative 

risk assessment based on the response of single allergens in the products would be safe for the con-

sumer (64). However, as we have shown that mice sensitized with mixtures of either HICC, cin-
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namal, isoeugenol or oak moss, show an increased immune response upon challenge with either 

cinnamal or chloroatranol, respectively, than seen in mice sensitized only with the allergen used for 

challenge, in the same concentration as used in the mixture (67,68), we question this conclusion. 

There is no evidence that the levels identified in the current version of quantitative risk assessments 

based on LLNA results will be safe in the sense that no or few cases of sensitization will occur. 

Many individuals in the population are sensitized to cinnamal and isoeugenol already and will not 

be protected. The mechanisms mediating the combination effect in elicitation are not fully known 

but seem to be correlated with increased level of danger signal e.g. pro-inflammatory cytokines dur-

ing sensitization in mice exposed to the mixture compared to the single allergen (68). Taken togeth-

er, this shows that for safety (hazard) evaluation of mixtures of allergens the challenge response to 

single allergens within the mixture has to be evaluated (also) upon sensitization with a typical, rele-

vant mixture, or mixtures.  

 

Finally, is has been suggested that mixing fragrance allergens might have an inhibitory (antagonis-

tic) effect on the response to single fragrance allergens in the mixture. In 1976, Opdyke suggested 

that addition of one fragrance allergen to another fragrance allergen could “quench” the ability of 

this to induce an allergic reaction (69). This quenching phenomenon was found when adding euge-

nol to cinnamal, limonene to citral and dipropylene glycol to phenylacetaldehyde (69). Subsequent-

ly, several attempts have been made to confirm the quenching phenomenon and to understand the 

mechanisms that mediated the quenching (70). Unfortunately, these attempts have not been success-

ful and the ability of one fragrance allergen to quench another fragrance allergen is questionable 

and has never been proven (70).  

 



14 
 

Immune responses to hair dyes 

Hair dyes are complex mixtures of chemicals including dyes, couplers, fragrances and a number of 

other types of ingredients of which several can induce allergic reactions. The best studied allergens 

in relation to allergic reactions induced by hair dyes are the dyes PPD and PPD-related allergens 

like toluene-2,5-diamine (PTD), all categorized as extremely strong allergens.  In 1966, Kligman 

showed that patch testing with 10% PPD induced sensitization in 100% of 25 healthy volunteers 

(71).  However, whether PPD directly activates the immune system or its products generated by au-

toxidation like Bandrowski’s base (BB), which is a potent allergen in animal experiments,  is not 

fully understood (41,72-74). Oxidized PPD and BB seem to be more efficient activator of in vitro 

generated DC-like cells than freshly prepared PPD measured as CD86 expression and level of IL-1β 

and IL-8 (72). However, treatment with freshly prepared PPD induced DC-like cell activation (72). 

Both PPD- and BB-reacting T cell clones could be isolated from individuals with PPD allergy (41). 

It was suggested that PPD and BB required different pathways of processing to be recognized by T 

cells, as T cell proliferation could be induced following PPD presentation on fixed APC whereas 

BB presentation needed living APC (41). Interestingly, Coulter et al. showed that stimulation with 

BB could induce T cell proliferation in blood samples from both individual with PPD allergy and 

healthy controls whereas PPD only induced proliferation in blood samples from individuals with 

PPD allergy (73). This suggests that PPD induced T cell proliferation could be used to discriminate 

PPD allergic versus non-allergic individuals (73). Taken together, this shows the complexity of the 

immune response to PPD and its oxidative products and indicates that studying the real hair dyes 

are even more complex.  

 

LLNA experiments where the response to PPD and methyldibromo glutaronitrile or mixtures of 

these were studied show that mixing these had a synergistic effect on the proliferative response at 
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induction, especially when low doses of the allergens were used (75). Despite these results, it was 

suggested by Aeby et al. that PPD-containing hair dyes are weak sensitizers due to excess of cou-

plers, controlled oxidation and short exposure time (72). However, these suggestions were based on 

experiments studying the immune response to PPD, BB or acetylated forms of PPD and not on re-

sponses to the real mixture or mixtures of different allergens known to be used in hair dyes (72). 

We have studied the immune response to different hair dye products available for consumers, con-

taining either PPD or PTD (76-78). We found that both PPD and PTD containing hair dyes are very 

potent inducers of local skin inflammation and T cell proliferation in the draining lymph nodes 

when using a modified version of LLNA (76,78). Interestingly, we found a stronger response in 

mice exposed to the mixture of colour gel and developer (oxidant) than to just the colour gel, show-

ing that the final mixture of hair dyes can be a very potent immune activator (76). Furthermore, the 

level of the response seems to be correlated both with the concentration of the dye and number of 

additional allergens within the mixture (78). Finally, the exposure regime also seems to play a criti-

cal role for the immune response induced by hair dye. Using an experimental set-up where mice 

were repeatedly exposed to the hair dyes every second week for a total of 10 weeks, we found that 

both PPD- and PTD-containing hair dyes still induce an immune response yet to a lesser extent than 

seen using the modified version of LLNA (76-78). The explanation for this seems to be that in addi-

tion to pro-inflammatory mechanisms, repeated hair dye exposure also induced anti-inflammatory 

mechanisms as regulatory T cells and skin IL-10 production (77,78). Interestingly, we found that 

the hair dye is more potent in inducing regulatory T cells than pure PPD (77). Taken together, hair 

dyes are complex mixtures that can be very potent immune activators depending on the dose of dye 

allergens, presence of additional allergens and the exposure regime.  

 

Other factors that increase responses to allergens  
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In 1966, Kligman showed that pre-treatment of human skin with sodium lauryl sulphate (SLS) in-

creased the frequency of individuals who became sensitized to various contact allergens (79). The 

ability of an added irritant to enhance the response to contact allergens has been confirmed by oth-

ers using mice models (80,81). The effect of pre-treatment with an irritant is especially seen when 

the responses to low concentrations of the allergen or weak allergens are studied (80,81), which is 

also observed in experimental human studies (see below). Interestingly, whereas exposure of the 

skin to the tolerogen dinitrothiocyanobenzene (DNTB) prevents skin inflammation induced by sub-

sequent exposure to DNFB, addition of the irritant SLS to DNTB during sensitization inhibits the 

tolerogenic effect of DNTB (34). The ability of an irritant to lower the threshold for allergen sensi-

tization is likely to be mediated by a combination of irritant induced skin inflammation and de-

creased skin barrier function (34,82). Since the discovery ten years ago that loss-of-function muta-

tions in filaggrin is a major predisposing factor for atopic dermatitis, broad research has addressed 

the correlation between the skin barrier status, filaggrin mutations/content and skin inflammation 

(83). Associations between nickel allergy and loss-of-function mutations in filaggrin have been 

found. However, to understand the role of filaggrin for the sensitization to other contact allergens 

further research is needed (84,85). From a mouse model for filaggrin deficiency, the flaky tail 

mouse, it has been shown that filaggrin deficiency results in an increased response to oxazolone, 

likely mediated by a combination of increased allergen penetration and low-grade skin inflamma-

tion (86,87). Finally, it has recently been shown that skin exposure to a contact allergen results in 

the generation of skin-resident memory T cells (20,88). We have shown that re-exposure to the 

same skin areas result in a rapid increase in IL-1β compared to previously unexposed skin. The in-

crease in IL-1β seems to be mediated by IL-17A and IFN-γ produced by skin-resident CD8+ 

memory T cells (88). Taken together, the addition of irritants, a decreased skin barrier and the im-
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mune status of the skin are all important factors that can change the activation threshold of a given 

allergen. 

 

Clinical experience  

In the clinic combination effects are well-known and referred to as compound allergy (89). This re-

fers to observations that patients may react at patch testing or at normal use to products, which are 

mixtures, but not to any of the individual ingredients, when tested.  Several patch testing prepara-

tions are mixtures in order to mimic exposures e.g. the fragrance mix I and II, which consists of 8 

and 6 allergens, respectively (90). In 38.8% of cases positive to fragrance mix I the test is negative 

if the individual ingredients are tested in the same concentration as in the mix (91). For this reason 

the individual ingredients of FMII are routinely tested in the double concentration (63)  and a simi-

lar recommendation exits for FM I (66) to compensate for the mixture effect, when testing the indi-

vidual ingredients. These effects have also been subject to clinical experimental investigations 

(51,92). McLelland and Shuster showed that the threshold for a response to one allergen was low-

ered by the presence of another in patients sensitized to both allergens and that the response to the 

combined allergens was invariably greater than to the single allergens as measured by skin fold 

thickness corresponding to an additive effect (92). They concluded that the use of single allergens is 

inadequate for the investigation of contact dermatitis (92). In another clinical study it was found that 

the combination of two unrelated fragrance allergens in individuals allergic to both substances had a 

synergistic effect on the elicitation response evaluated by size of reaction, blood flow and clinical 

grading (51). It follows that the patch test stimulus with a single substance may be too weak to de-

tect an allergic reaction elicited by mixtures of substances under natural exposure circumstances 

(51). The effect of mixtures is an integrated part of testing for contact allergy and understanding 

allergic contact dermatitis.   
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For good reasons no studies exist on how combined exposures to allergens effects induction thresh-

olds in man, however in real life most cases of sensitization will be a result of exposures to mixtures 

of multiple allergens in different kind of products and patients with multiple allergies are commonly 

seen (93,94). Multiple sensitivities are among others seen in patients allergic to metals. The combi-

nation of contact allergy to nickel and cobalt as well as chromium and cobalt are more often seen 

than can be explained by chance (95). This may be due to the immunogenic effect of nickel and in 

particularly chromium ((Cr(VI)) which at least in theory may explain that construction workers get 

allergic to not only chromium but also to cobalt concomitantly, even though it is only present in 

minute amounts in cement. 

 

 

 

Conclusion  

In conclusion, we and others have shown that mixing metals, fragrances and hair dyes allergens can 

result in an increased immune response. Whether the combination of allergens results in an additive 

or a synergistic response seems to be both allergen-dependent and dependent on the dose of the dif-

ferent allergens in the mixture. We find it likely that the effect of mixing allergens is most profound 

during exposures to low doses of allergen, which is often the situation for consumers.  As sensitiza-

tion with a mixture of allergens can lead to an increased challenge response to specific allergens 

within the mixture, we question if the way risk assessment is done today is sufficient to protect the 

consumers. Finally, several other parameters seem to be important for the immune response to mix-

tures of contact allergens like additions of irritants and the status of the consumer skin, e.g. skin bar-

rier function and/or low-grade inflammation. 
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Perspectives-unanswered questions  

Further studies on the effect of mixing contact allergens are central for understanding the immuno-

logical mechanisms mediating allergic contact dermatitis and for understanding why some weak 

allergens can be a clinical problem. Genomic profiling of the response induced by nickel, fragrance 

allergens and rubber allergens shows that several common pathways seem to be induced. However, 

all three types of allergens also induce a unique profile suggesting that even though the responses 

look similar clinically they might be very different immunologically (96).  It is therefore important 

to understand how different types of contact allergens induce activations of the innate immune re-

sponse, e.g. whether different allergens induce different types of endogenous TLR-ligands and 

stimulate different TLRs and other innate receptors. Furthermore, the question remains how local 

memory T cells to one allergen in a mixture affect subsequent exposures to other allergens within 

the mixture.  
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