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Abstract 

Modern vessels are designed to collect, store and communicate large quantities of ship performance and navigation information through 
complex onboard data handling processes. That data should be transferred to shore based data centers for further analysis and storage. However, 
the associated transfer cost in large-scale data sets is a major challenge for the shipping industry, today. The same cost relates to the amount 
of data that are transferring through various communication networks (i.e. satellites and wireless networks), i.e. between vessels and shore 
based data centers. Hence, this study proposes to use an autoencoder system architecture (i.e. a deep learning approach) to compress ship 
performance and navigation parameters (i.e. reduce the number of parameters) and transfer through the respective communication networks 
as reduced data sets. The data compression is done under the linear version of an autoencoder that consists of principal component analysis 
(PCA), where the respective principal components (PCs) represent the structure of the data set. The compressed data set is expanded by the 
same data structure (i.e. an autoencoder system architecture) at the respective data center requiring further analyses and storage. A data set 
of ship performance and navigation parameters in a selected vessel is analyzed (i.e. data compression and expansion) through an autoencoder 
system architecture and the results are presented in this study. Furthermore, the respective input and output values of the autoencoder are 
also compared as statistical distributions and sample number series to evaluate its performance. 
© 2018 Shanghai Jiaotong University. Published by Elsevier B.V. 
This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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analysis. 
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. Introduction 

.1. Performance and navigation data 

The ship energy efficiency management plan (SEEMP) [1] ,
.e. a mandatory requirement, enforces vessels to collect ship
erformance and navigation information by implementing var-
ous onboard sensors and data acquisition (DAQ) systems.
hese DAQ systems are designed to collect, store and com-
unicate large quantities of ship performance and navigation

nformation through complex data handling processes. Those
re also facilitated by integrated bridge systems (IBSs), where
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arious navigation and automation systems are connected [2] .
hese DAQ systems can create large-scale data sources and

ntroduce additional challenges in onboard data handling pro-
esses. The same issues have often been identified as “Big
ata” challenges by various industrial applications due to

heir volume, variety, veracity and velocity considerations [3] .
uch big data sets can also create additional challenges during
ata transmission processes (i.e. between vessels and shore
ased data centers). e.g. the associated costs to transfer of
uch data sets through various satellite networks are relatively
xpensive in shipping. Hence, effective approaches to reduce
he amount of data that communicate through such satellite
etworks are considered by the shipping industry in recent
ears and that reduce the associated data transfer costs. 
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In general, the most preferred method by the shipping in-
dustry is to increase the length of the sampling period (i.e.
a lower sampling rate) in which reduces the number of data
samples collected with a selected time period. This method
reduces the size of ship performance and navigation data sets,
therefore the associated data transfer costs can be minimized.
However, such data sets may not consist of all relevant in-
formation on ship performance and navigation conditions due
to the lower data sampling rate. Furthermore, that can intro-
duce additional challenges in parameter estimation processes
[4] , where estimation algorithms can diverge from the actual
values due to inadequate data sampling rates. Therefore, the
actual performance and navigation parameters cannot be esti-
mated from such data sets in some situations. e.g. the engine
fuel and power consumption values in vessels cannot be com-
pared, adequately due to the lower sampling rate of the data
sets. 

1.2. Recent studies 

Various ship performance and navigation monitoring sys-
tems with sensors and DAQs are implemented by the ship-
ping industry. These on-board systems as a part of IBSs col-
lect various ship performance and navigation parameters from
navigation and automation systems. The same parameters (i.e.
collect as big data sets) represent ship operational and nav-
igation information that can be used under various decision
support systems. These systems can often be divided into two
categories of safety and performance monitoring systems. The
safety monitoring systems focus on improving the navigation
safety in shipping. Ship on-board systems to improve the nav-
igation safety under rough weather conditions are presented
in [6] and [7] . In addition, ship collision avoidance systems
with decision support features are presented [8–12] . The per-
formance monitoring systems focus on improving energy effi-
ciency and reducing emissions in shipping [5] . Similarly, ship
on-board systems to improve vessel energy efficiency under
various operational conditions are presented by the authors in
[13–15] . 

However, these systems have not been designed to han-
dle big data sets and that may limit to small or moderate
data sets. Therefore, the decision support features in such
systems may often suffer under large scale ship performance
and navigation data sets. This study proposes a methodol-
ogy as a part of both safety and performance monitoring
systems to overcome the same challenges in shipping. The
methodology consists of pre-processing of ship performance
and navigation data sets, where the size of data sets is re-
duced. Therefore, the resulted data sets can be conveniently
transferred to shore based data centers in a reduced format.
One should note that the proposed pre-processing step con-
sists of implementing a dimensionality reduction method on
ship performance and navigation data sets. Furthermore, the
structure for ship performance and navigation data is discov-
ered through the same method and used to reduce the size of
the respective data sets (i.e. dimensionality reduction method
or data compression). Even though the size of the respective
ata set is reduced, the amount of ship performance and nav-
gation information is preserved (i.e. or approximately equal)
uring this data compression process. Since the size of the
ata sets can be reduced, the sampling rate of the same can
e increased. Therefore, the information quality of ship per-
ormance and navigation data sets can be further improved. 

.3. Autoencoder 

The proposed approach consists of implementing an au-
oencoder system architecture in an onboard data handling
ystem that collects ship performance and navigation infor-
ation. The autoencoder system architecture introduces a

imensionality reduction method, i.e. while preserving the
mount of ship performance and navigation information, for
he same data sets as the main contribution of this study.
n overview of an autoencoder system architecture is pre-

ented in Fig. 1 consisting data compression, communication
nd expansion steps. Autoencoder is an unsupervised learning
ethod that is implemented as a feed-forward neural network

 [16] and [17] ), which is also categorized as the linear ver-
ion of deep learning [18] . Autoencoders are the fundamen-
al building blocks of deep learning and that may associate
ith additional linear and/or nonlinear functions. Such au-

oencoders are capable to compress and expand the respective
nformation that is the inputs to the same. Deep learning con-
ists of learning the respective information from the bottom
ayer of the neural network rather than the top layer (i.e. back-
ropagation approach). Hence, that can be a slight deviation
rom conventional neural network approaches. However, this
pproach is illustrated as a better learning method for neu-
al networks by the recent studies of other transport systems
19] . Since this study focuses on the linear version of deep
earning, the proposed neural networks consists of a linear
unction (i.e. under the proposed autoencoder system archi-
ecture). In general, the autoencoder recreates the input of the
eural network at its output. The neural networks consist of
idden layers to compress and expand the respective data and
he hidden layers locate between the input and output layers
f the autoencoder (see Fig. 1 ). The difference between the
nput (i.e. the actual parameters) and output (i.e. the estimated
arameters) data sets can be used to evaluate the success of
he neural network (i.e. the comparison/expansion accuracy). 

An autoencoder system architecture consists of two sec-
ions (see Fig. 1 ): encoder and decoder. The inputs to the
ncoder are ship performance and navigation data collected
rom various onboard sensors. The input data sets are com-
ressed by the encoder under the respective linear function
f the autoencoder (i.e. the hidden layer compresses the data
ets). Then, the compressed data sets are transmitted through
ommunication networks to shore based data centers for stor-
ge and further analyses. The compressed data sets are re-
eived by the decoder of the autoencoder located in shore
ased data centers, where the data sets are expanded (see
ig. 1 ) under the same linear function of the autoencoder.
herefore, the outputs of the decoder consist of estimated
hip performance and navigation data sets. These data sets
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Fig. 1. Autoencoder system architecture. 
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i.e. estimated ship performance and navigation information)
an further be analyzed for other applications, i.e. ship energy
fficiency, emission, and system reliability, at the respective
ata centers. The measured and estimated ship performance
nd navigation data sets may have some parameter variations
hat reflect the autoencoder performance. However, some er-
oneous conditions can also be introduced into the same data
et during this process (i.e. data compression and expansion)
nd that may relate to the respective linear function. There-
ore, an appropriate linear function should be assigned under
he autoencoder system architecture. One should note that an
utoencoder system architecture (i.e. the encoder and decoder)
acilitates to extract a low dimensional high-level representa-
ion from a high-dimensional ship performance and navigation
ata sets. It is believed that such representation can also be
sed to evaluate the respective ship performance and naviga-
ion conditions. Furthermore, the same (i.e. a low dimensional
igh-level representation) can also be expanded back to the
igh-dimensional ship performance and navigation data sets
et by considering the respective linear function of the au-
oencoder. Hence, the respective linear function under data
ompression/expansion steps of an autoencoder plays an im-
ortant role. 

Autoencoders that are also a part of deep learning are often
ssociated with various linear and nonlinear approaches that
elate to the respective application domains [20] . Liner ap-
roaches consist of real, complex and finite field applications
f autoencoders. Nonlinear approaches consist of Boolean,
oolean/linear, neural networks and Boltzmann machines ap-
lications of autoencoders. However, linear approaches con-
ist of linear functions for both encoder and decoder sides
nd this study also focuses on the same. This linear function
roposed in this study for the autoencoder system architec-
ure is derived from principal component analysis (PCA) and
he respective derivation of this function is also presented in
he following sections. One should note that the linear func-
ion under PCA represents a set of vectors, i.e. singular val-
es and vectors, and these vectors relate to the structure of
he ship performance and navigation data set. Hence, such
tructural information, i.e. principal components, in the ship
erformance and navigation data set is used for both com-
ression and expansion steps of the autoencoder. One should
F  
ote that the data structure represents various relationships
mong the respective ship performance and navigation pa-
ameters. Those parameters relate to onboard sensors of the
essels, therefore the data structure can represent an abstract
odel of the vessel and ship systems. Since vessels consist of

ossible combinations of different automation and navigation
ystems, such data structures should further be investigated to
nderstand vessel and ship system behavior. 

.4. Principal component analysis 

PCA is a non-parametric method for extracting relevant in-
ormation from data sets. That transforms the parameter set,
.e. sensor measurements, of the respective data into a lin-
arly uncorrelated parameter set, i.e. the new basis, which
an be used as a low dimensional representation of the origi-
al data set. The linearly uncorrelated parameters of the data
et may improve the content visibility in some situations, be-
ause those represent the most important parameter relation-
hips, i.e. the correlations among parameters, in the data set.
ne should note that the new basis, i.e. the linearly uncor-

elated parameters, is represented by the respective principal
omponents (PCs), i.e. singular values and vectors, of the
ata set. Singular values and vectors are fundamental build-
ng blocks of multi input multiple-input and multiple-output
lectrical and mechanical systems accordance with the system
heory. The respective PCs that have a linear combination of
he respective ship performance and navigation parameters are
erived from the sensor measurements. The encoder and de-
oder of the autoencoder are based on these PCs. The number
f PCs that should implement under the hidden layers, i.e. the
ncoder and decoder, of the autoencoder should be selected,
ppropriately by considering the respective application. Such
election should be made by considering the singular values
nd that represent the percentage of the information content
f the parameter relationships in the data set. Furthermore, the
espective number of PCs relate to the number of nodes in
he hidden layers of the autoencoder, where the most impor-
ant information in the data set should be preserved. Hence,
his approach reduces the dimensionality of ship performance
nd navigation data set by considering its structure (i.e. PCs).
urthermore, the same PCs can be used to visualize ship per-
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formance and navigation data under a different set of pa-
rameters, where the information visibility can be improved.
Finally, the reduced data sets of ship performance and nav-
igation information communicate through satellite networks,
where the respective transfer costs can be minimized. 

There are several steps that should be taken on the data
sets, prior to implementing PCA. Firstly, any erroneous re-
gions (i.e. sensor faults and noise and system abnormal
events) in the data sets should be removed to improve the
data integrity, if possible. Furthermore, slow maneuvering sit-
uations of the vessels should be removed from the respec-
tive ship performance and navigation data sets, therefore low
signal-to-noise ratio situations can be avoided. Secondly, the
scaling of ship performance and navigation data sets should be
done to reduce uneven parameter contributions during PCA.
e.g. the parameters with large variances may have bigger con-
tributions in the data analysis and that should be avoided.
Such situations can be avoided by standardizing the respec-
tive parameters in ship performance and navigation data sets,
where each parameter is assigned with zero mean and 1.0
variance values. Hence, each parameter has an equal vari-
ance (i.e. 1.0), therefore that influences equally in PCA [21] .
Even though a set of unit-less parameters are introduced into
PCA by this step, the respective units can be preserved, sepa-
rately [22] . However, this approach may increase sensor noise
in some situations and that degrades the outcome of PCA.
That is another reason to remove slow vessel maneuvering
situations (i.e. high sensor noise situations) from the respec-
tive ship performance and navigation data sets, as mentioned
before. 

Each PC represents an important variance direction that
is orthogonal to each succeeding variance. The top principal
component represents the largest variance direction and the
bottom principal component represents the smallest variance
direction of the data set. The most important PCs (i.e. the top
PCs) in a data set can be selected to represent the entire data
set, i.e. a lower dimensional representation that is defined as
data compression in this study. An accumulated percentage
of variances (i.e. the summation of the respective singular
values) in the data set can be used as a guideline to select
the most important PCs. Therefore, a higher percentage of the
information on ship performance and navigation data can be
preserved by selecting an appropriate number of PCs. 

Additional advantages have also been noted by selecting
an appropriate number of PCs. It is observed that data anoma-
lies are often grouped into the bottom principal components,
therefore the bottom PCs can also be used to identify such
erroneous data regions [23] . The respective erroneous regions,
i.e. data anomalies, can be isolated and recovered in some sit-
uations to improve the quality of ship performance and nav-
igation data by considering the respective PCs. Furthermore,
redundant parameters (i.e. redundant sensor measurements)
within the data sets can also be identified by observing the
PCs. Therefore, PCA has often been adopted by many “Big
Data” applications in various industrial platforms [24] as a
part of their data handling processes. 
b

. Mathematical formulation 

.1. Autoencoder development 

A mathematical overview of an autoencoder with respect
o PCA is presented in this section. The encoder compresses
he measured data set of ship performance and navigation
arameters as mentioned before. The input to the encoder is
 ( t ), i.e. a measured ship performance and navigation data
et, denoted as: 

 (t ) = 

[
x 1 (t ) x 2 (t ) . . . x n (t ) 

]
(1)

here x 1 (t ) , x 2 (t ) , . . . , x n (t ) with x i ( t ) ∈ R 

d represent the re-
pective ship performance and navigation parameters. One
hould note that X ( t ) should a normalized data set derived
rom actual ship performance and navigation parameters. The
utput of the encoder is Y ( t ), a compressed data set, denoted
s: 

 (t ) = 

[
y 1 (t ) y 2 (t ) . . . y m 

(t ) 
]

(2)

here n > m and y 1 (t ) , y 2 (t ) , . . . , y m 

(t ) with y i ( t ) ∈ R 

d repre-
ent a set of new parameters that are derived from the mea-
ured ship performance and navigation data set by considering
CA. The compressed data set, Y ( t ), may consist of less pa-
ameters than the actual data set, X ( t ), due to the selected
umber of PCs. It is expected that the compressed data set
s delivered to data centers through the respective communi-
ation networks. The encoder of this neural network (i.e. the
ata compression) can be denoted as: 

 (t ) = f e ( W e X (t ) + b e ) (3)

here f e ( · ) is the respective linear function, W e is the weight
atrix and b e is the bias vector of the encoder. On the other

and, the decoder expands the compressed data set of ship
erformance and navigation parameters. The output of the de-
oder side is ˆ X (t ) , the data set of estimated ship performance
nd navigation parameters denoted as: 

ˆ 
 (t ) = 

[ ˆ x 1 (t ) ˆ x 2 (t ) . . . ˆ x n (t ) 
]

(4)

here ˆ x 1 (t ) , ˆ x 2 (t ) , . . . , ˆ x n (t ) with ˆ x i (t ) ∈ R 

d represent a set
f estimated ship performance and navigation parameters. The
ecoder of this neural network (i.e. the data expansion) can
e written as: 

ˆ 
 (t ) = f d ( W d Y (t ) + b d ) (5)

here f d ( · ) is the respective linear function, W d is the weight
atrix and b d is the bias vector of the decoder. One should

ote that f e ( · ) and f d ( · ) can either be linear or nonlinear func-
ions. However, a linear function is considered in this study
s mentioned before. The actual data set in ship performance
nd navigation information is normalized with zero mean and
.0 variance values (i.e. b e ≈b d ≈0), previously. Hence, the
espective encoder and decoder functions in ( 3 ) and ( 5 ) can
e simplified as: 
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f

Y (t ) = W e X (t ) 
ˆ 
 (t ) = W d Y (t ) (6) 

Considering ( 6 ), the data compression and expansion steps
an be summarized as: 

ˆ 
 (t ) = W d W e X (t ) (7) 

Therefore, ( 7 ) represents an expression between the actual
nd estimated data sets of ship performance and navigation
arameters. One should note that some variations in the ac-
ual and estimated data sets can be observed under the data
ompression and expansion steps. Such parameter variations
ntroduce some erroneous conditions that can be denoted by:

 (t ) = 

[
e 1 (t ) e 2 (t ) . . . e n (t ) 

]
(8) 

here e 1 (t ) , e 2 (t ) , . . . , e n (t ) with e i (t ) = x i (t ) − ˆ x i (t ) , ∈ R 

d 

epresent a set of ship performance and navigation parameter
rrors. Considering ( 7 ), ( 8 ) can be written as: 

 (t ) = X (t ) − ˆ X (t ) = ( I − W d W e ) X (t ) (9)

f W e ≈W d 
T , then W d W e = W d W 

T 
d ≈ I and ( 9 ) can be written

s: 

 (t ) ≈ 0 (10) 

Therefore, W e can be derived from W d to minimize the
rrors between the measured and estimated ship performance
nd navigation parameters. One should note that W e ≈W d 

T 

s considered to approximate measured and estimated ship
erformance and navigation parameters. Hence, the weight
atrix, W d , should further be calculated and denoted as: 

 d = 

[
w 1 w 2 . . . w n 

]
(11) 

here w 1 , w 2 , . . . , w n with w i ∈ R 

m represent the respective
arameters in the weight matrix. 

.2. Principal component calculations 

The respective errors between actual and estimated ship
erformance and navigation parameters should be minimized
nder the weight matrix of the autoencoder. Hence, the re-
pective orthonormal basis of E ( t ) that minimizes the mean
east square error can be calculated by the following mini-

ization problem: 

in. ‖ E ( t ) ‖ 2 = Min. 

∥∥∥X (t ) − ˆ X (t ) 
∥∥∥

2 

= Min. 
∥∥X (t ) − W d W 

T 
d X (t ) 

∥∥2 
(12) 

The minimization problem in ( 12 ) can be also written as:

in 

n ∑ 

i=1 

∥∥x i (t ) −ˆ x i (t ) 
∥∥2 = Min. t race 

[(
I −W d W 

T 
d 

)
X (t ) X 

T (t ) 
]

(13) 

One should note that ( 13 ) can be modified as the following
aximization problem: 
in 

n ∑ 

i=1 

∥∥x i (t ) −ˆ x i (t ) 
∥∥2 ⇒ Max. t race 

[
W 

T 
d X (t ) X 

T (t ) W d 
]

(14) 

Considering the method of Lagrange multipliers, ( 14 ) can
e modified as: 

 = t race 
[
W 

T 
d X (t ) X 

T (t ) W d 
] + t r ace 

[(
I − W d W 

T 
d 

)
�

]
(15)

here � = �T ∈ R 

d×d is the Lagrange multiplier matrix. The
radient of ( 15 ) is zero at its stationary points. These station-
ry points represent the respective solutions to ( 14 ) and that
an be written as: 

 

T (t ) X (t ) W d = W d �

W d W d 
T = I (16) 

ence, ( 16 ) satisfy the required conditions in ( 10 ) and the
bjective function in ( 16 ) can also be denoted as: 

 

T 
d X 

T (t ) X (t ) W d = � (17) 

One should note that the Lagrange multiplier matrix, �, is
elected as a diagonal matrix, which is also symmetric. Since
he Lagrange multiplier matrix is a symmetric diagonal matrix
hat also represents the eigenvalues of X 

T ( t ) X ( t ) [25] . The top
nd bottom eigenvalues and eigenvectors of X 

T ( t ) X ( t ) is same
s the top and bottom singular values and vectors of X ( t ).
ence, the singular value decomposition (SVD) for the mea-

ured data set of ship performance and navigation parameters,
 ( t ), is considered to derive the Lagrange multiplier matrix.
he respective SVD of the same data set can be written as:

 (t ) = U �V 

T (18) 

here � is the singular value matrix and U and V are the
espective left and right singular vectors. Hence, the SVD
f the data set gives the optimal solution to the minimiza-
ion problem in ( 13 ). One should note that the left-singular
ectors of X ( t ) are the eigenvectors of X ( t ) X 

T ( t ) and the right-
ingular vectors of X ( t ) are the eigenvectors of X 

T ( t ) X ( t ). The
on-zero singular values of X ( t ) are the square roots of the
on-zero eigenvalues of both X ( t ) X 

T ( t ) and X 

T ( t ) X ( t ). Hence,
he respective PCs of the ship performance and navigation
ata sets can be calculated by SVD as an efficient algorithm.
hese singular values and vectors that represent the PCs are
rthogonal to each other. One should note that the same ap-
roach minimizes the least mean square reconstruction error
nd maximizes the projection variance between the input and
utput data sets of ship performance and navigation param-
ters. The top PC (i.e. the vector with the highest singular
alue) represents the largest variance and the bottom PC (i.e.
he vector with the lowest singular value) represents the small-
st variance that is orthogonal. Hence, the respective weight
atrix is selected as: 

 d ≡ U � (19) 

By considering ( 19 ), the respective encoder and decoder
unctions, f e ( · ) and f d ( · ), can be derived. 
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Table 1 
Min and Max. Values of ship performance and navigation parameters. 

Parameter Mini. Max. 

1. Avg. draft (m) 0 15 
2. STW (Knots) 3 20 
3. ME power (kW) 1000 8000 
4. Shaft speed (rpm) 20 120 
5. ME fuel cons. (Tons/day) 1 40 
6. SOG (Knots) 0 20 
7. Trim (m) −2 6 
8. Rel. wind speed (m/s) 0 25 
9. Rel. wind direction (deg.) 2 360 
10. Aux. fuel cons. (Tons/day) 0 8 

p  

d  

d  

s  

(  

a
 

a  

n  

t  

c  

b  

m  

i  

p  

b  

s

3

 

a  

s  

s  

p  

t  

t  

d  

s  

t  

g  

c  

1  

9  

f  

9  

c  

d  

t  

n  

p  

d  
2.3. Optimal values 

Considering ( 19 ), ( 6 ) can be modified as: 

 (t ) = (�t ) 
−1 U 

T 
t ︸ ︷︷ ︸ 

= W e 

X (t ) (20)

where W e is the modified weight matrix that consists of the
respective singular values and vectors. Furthermore, �t and
U t represent the matrices that consist of the top h -number of
singular values and vectors (i.e. PCs) from � and U , respec-
tively. One should note that ( 20 ) represents the linear func-
tion of the data compression step (i.e. the encoder side) of
the autoencoder. The modified weight matrix is introduced by
assuming that the most important information on the data set
(i.e. ship performance and navigation parameters) is preserved
by the respective singular values and vectors. It is expected
that 95 −99% of the ship performance and navigation infor-
mation of the data set should be preserved during this com-
pression and expansion steps of the autoencoder. That can be
done by selecting an appropriate set of PCs (i.e. singular val-
ues and vectors) from the respective data set. Considering a
situation, where α% of the variance should be retained within
the selected PCs, the respective singular value calculation can
be written as: 

1 − h 
�
i=1 

S i / 
d 
�
i=1 

S i ≤ 1 − α

100 

(21)

where S i is the i -th singular value and the total and top num-
bers of singular values are denoted by d and h , respectively.
Therefore, ( 21 ) can be simplified as: 

h 
�
=1 

S i / 
d 
�
i=1 

S i ≥ α

100 

(22)

The top PCs should be selected to accommodate α% of
the actual information of ship performance and navigation
parameters. Hence, ( 6 ) can be written as: 

ˆ X (t ) = W d Y (t ) = U t �t ︸ ︷︷ ︸ 
= W d 

Y (t ) (23)

One should note that ( 23 ) represents the modified linear
function of the data expansion step (i.e. the decoder) of the
autoencoder. Hence, ( 20 ) and ( 23 ) are used as the optimal lin-
ear functions for the data compression and expansion steps of
the autoencoder and the results are presented in the following
section. 

3. Data analysis 

3.1. Vessel instrumentation 

The respective data set of ship performance and navigation
parameters is collected from a bulk carrier with following par-
ticulars: ship length: 225 (m), beam: 32.29 (m), gross tonnage:
38.889 (tons), deadweight at max draft: 72.562 (tons). The
vessel is powered by 2 stroke main engine (ME) with maxi-
mum continuous rating (MCR) of 7564 (kW) at the shaft rota-
tional speed of 105 (rpm). Furthermore, the vessel has a fixed
itch propeller, diameter 6.20 (m), with 4 blades [26,27] . The
ata set consists of the following parameters: average (Avg.)
raft, speed through water (STW), main engine (ME) power,
haft speed, ME fuel consumption (cons.), speed over ground
SOG), trim, relative (rel.) wind speed and direction (dir.) and
uxiliary (aux.) engine fuel consumption (cons.). 

Several data pre-processing steps are implemented in this
nalysis to improve the quality of the ship performance and
avigation data set. Firstly, the parameter variations within
he selected maximum (max.) and minimum (min.) values are
onsidered and presented in Table 1 . The parameter variations
eyond the normal operational regions (i.e. beyond max. and
in. values) are removed by this step. Secondly, the data set

s normalized (i.e. standardization) to equally center and scale
arameters, where each parameter is subtracted and divided
y the sample mean and standard deviation values of the data
et. 

.2. PC calculations 

The PCs of the ship performance and navigation data set
re calculated and the respective singular values (SV) are pre-
ented in the top plot of Fig. 2 in ascending order. Then, each
ingular value is divided by the sum of singular values and
resented in the middle plot of the same figure. That shows
he percentage of ship performance and navigation informa-
ion that each singular vector consists of. The values that are
erived in the previous step are subtracted from 1 and pre-
ented in the bottom plot of the same figure. This plot shows
hat the percentage of the actual ship performance and navi-
ation information that can preserve by removing each prin-
ipal component. The results can be interpreted as: the top
0, 9, 8, 7 and 6 principal components can preserve 100%,
9.92%, 99.48%, 97.86% and 94.03% of the actual ship per-
ormance and navigation information. The respective 99% and
5% lines are also presented in the same plot. The top 7 prin-
ipal components are selected as the benchmark level for this
ata analysis and that can preserve approximately 97.86% of
he ship performance and navigation information. One should
ote that this step reduces a 10 parameter data set of ship
erformance and navigation information into a 7 parameter
ata sets (i.e. compressed data set of 7 new parameters).
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Fig. 2. Autoencoder system architecture. 
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herefore, the compressed data set can be approximated to
0% of its original size with 98% preserved ship performance
nd navigation information. This can also be seen as a sit-
ation, where 30% of the ship performance and navigation
ata set is reduced with 2% of information loss. One should
ote that the information loss may relate to data anoma-
ies and sensor noise, therefore that can negligible in some
ituations. 

The data compression ratio, i.e. the ratio between the un-
ompressed size and compressed size, is independent of the
utoencoder system architecture, but the distribution and re-
undancy of sensor measurements. If the ship performance
nd navigation parameters are distributed with low correla-
ions, then the compression ratio may decrease by preserv-
ng the same percentage of information. If each parame-
er is measured by several sensors (i.e. data redundancy),
hen the compression ratio may increase by preserving the
ame percentage of information. One should note that such
orrelations among ship performance and navigation parame-
ers also represent the respective data structure. The respective
Cs represent the structure of the ship performance and navi-
ation data set, therefore a proper structure improves the data
ompression ratio. However, data anomalies and sensor noise
onditions can degrade the compression ratio in some situa-
ions. In general, ship performance and navigation parameters
re often related to each other (i.e. speed-power conditions,
rim-draft conditions), therefore a good compression ratio has
een observed in this study. Furthermore, the compression ra-
io can further be increased by introducing multiple sensors to
onitor the most important ship performance and navigation

arameters and that may relate to the respective application.
he data compression ratio may increase in such situations,
owever the number of ship performance and navigation pa-
ameters in the data sets may also increase. 
.3. Measured and estimated data 

The respective histograms for ship performance and navi-
ation parameters are presented in the plots of the first column
n Fig. 3 . The same parameters are normalized (i.e. standard-
zation) to use under PCA [28–30] as a part of the autoen-
oder system architecture and the results are presented in the
lots of the second column in the same figure. The new pa-
ameters are derived by projecting measured ship performance
nd navigation parameters into the respective PCs and the re-
ults are presented in the plots of the third column in the same
gure. That are denoted by X P 1 ( t ), X P 2 ( t ), ..., X P 10 ( t ) and a
ecreasing trend on the variance values of these parameters
an also be noted because the singular values are decreasing
n the same order. The new parameters derived by considering
he top 7 PCs (i.e. the compressed data set) are selected to
ommunicate from the encoder to the decoder of the autoen-
oder in this study. One should note that these PCs preserve
8% of the ship performance and navigation information in
his data set. 

The compressed data set is transferred to the decoder of
he autoencoder, where the respective data set should be ex-
ended to its original parameters. The decoder receives a data
et of 7 parameters and that should be transformed into a data
et of 10 parameters. The same PCs (i.e. the data structure)
re used to expand the compressed data set of ship perfor-
ance and navigation parameters. The output of the decoder

s categorized as estimated ship performance and navigation
ata set. The respective histograms for each estimated (Est.)
hip performance and navigation parameters are presented in
he plots of the fourth column of Fig. 3 . The histograms for
easured ship performance and navigation parameters (Msd.)

re also presented in the same plots. One should note that
hese are the initial ship performance and navigation param-
ters that are measured by the onboard sensors. Some vari-
tions among measured and estimated histograms (i.e. ship
erformance and navigation parameters) can be observed in
hese plots. The estimated ship performance and navigation
ata represent some parameter degradation conditions due to
he data compression and expansion steps of the autoencoder.

The measured and estimated ship performance and nav-
gation parameters with respect to the sample number are
resented in Fig. 4 . The time duration between two consec-
tive data points is 15 (min). However, some data intervals
re not continuous because erroneous data intervals are re-
oved from this data analysis, initially. In general, measured

nd estimated ship performance and navigation parameters are
pproximately similar. However, some relatively small param-
ter variations can also be observed in this figure and that are
ntroduced by the data compression and expansion steps of
he autoencoder. 

.4. Data compression ratio 

It is noted that estimated ship performance and nav-
gation parameters represent approximately Gaussian type 
istributions in a majority of the situations due to PCA.
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Fig. 3. PCA of ship performance and navigation parameters. 
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Furthermore, measured ship performance and navigation pa-
rameters that have approximately Gaussian type distributions
have low information loss in comparison to the parameters
with Non-Gaussian type distributions. If the parameters con-
sists Gaussian type distributions, then each PC is an asymp-
totically consistent unbiased estimate for the respective data
set [31] . Therefore, the parameters with Non-Gaussian type
distributions in such data sets should be transferred into Gaus-
sian type distributions in possible situations to improve the
ata compression ratio. It is also noted that the autoencoder
ransforms ship performance and navigation parameters into
pproximately Gaussian type distributions, when those param-
ters are not parallel to any PC. If the PCs are not parallel
o the respective parameters, then the same parameters con-
ists of a stronger correlation. Therefore, a negligible data
ompression ratio (i.e. equal measured and estimated param-
ter values) can be observed under the autoencoder, i.e. the
arameters are parallel to PCs. 
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Fig. 4. Measured and estimated parameters of ship performance and navigation data. 
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The central limit theorem states that, given certain condi-
ions, any independent random variable can be approximated
o a Gaussian distribution with well-defined mean and vari-
nce values, regardless of the actual distribution of the respec-
ive parameter [32] . The autoencoder also approximates the
ariance of each ship performance and navigation parameter
nto an approximate Gaussian distribution, where the respec-
ive information can retain within the respective PC. It is also
ecommended that each ship performance and navigation pa-
ameter should be transformed into approximately Gaussian
ype distributions, therefore the data compression ratio can be
ncreased. e.g. rel. wind direction sensor measurements may
ot consist of a Gaussian type distribution (see Fig. 3 ). That
an be transformed to a Gaussian type distribution by con-
idering an appropriate angle transformation. Therefore, this
an be an iterative process, where the amount of information
oss vs the parameter compression ratio should be compared
o evaluate the autoencoder performance. The outcome of this
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study shows that 98% of the variance is retained with the re-
spective 7 PCs. Therefore, only 2% of ship performance and
navigation information has lost during these data compression
and expansion steps of the autoencoder. 

3.5. Improvements in data compression 

There are various septs that can be taken to improve the
quality of the data compression and expansion steps of the
autoencoder. As discussed before, that can be done by trans-
forming the respective parameters into Gaussian type distribu-
tions and selecting a minimal number of PCs that can preserve
required ship performance and navigation information. Ship
performance and navigation parameters can be rearranged to
create Gaussian type distributions in some situations. How-
ever, ship performance and navigation parameters may not vi-
sualize Gaussian type distributions in those situations. Various
data clustering approaches in a high dimensional space should
be considered to identify appropriate Gaussian type distribu-
tions these situations [30] . E.g. marine engines of ocean going
vessels may have several operational points, therefor ship per-
formance and navigation parameters can be clustered around
Gaussian type distributions under these operational points, in
which should be identified by additional algorithms. This ap-
proach shows that ship performance and navigation parame-
ters may consist of a combination of several approximately
Gaussian type distributions and that should be identified be-
fore PCA. Ship performance and navigation data sets should
be separated into such Gaussian type distributions and each
distribution (i.e. data cluster) should send separately through
the autoencoder to improve the compression ratio in those
situations [2] . 

Those data clusters can be compressed and expanded by
the autoencoder with approximately similar measured and es-
timated data sets. One should note that the compression ratio
can be higher with lower information loss in such situations.
Some ship performance and navigation parameters are more
important than others, therefore addition sensors can be intro-
duced to monitor those parameters. That step can strengthen
the most important ship performance and navigation param-
eters within the respective data sets and PCA can identify
such situations, i.e. redundant parameter measurements. How-
ever, data anomalies, i.e. sensor and DAQ faults and system
abnormal events, can degrade the data compression ratio of
the autoencoder. Such data anomalies can often be outliers
of PCs and that can be detected by using adequate outlier
detection filters with the bottom PCs [33] . Since the PCs
represent the respective data structure of ship performance
and navigation parameters, that can also be used to recover
some data anomalies. Therefore, such data anomaly detection
and recovery filters can also be a part of the autoencoders,
i.e. self-cleaning autoencoders, and that will further improve
the quality of the respective data sets. However, additional
hardware erroneous conditions (i.e. channel errors and fad-
ing) can be introduced into ship performance and navigation
parameters during data commination processes. It is believed
that such conditions can also be identified, isolated and recov-
red by a self-cleaning autoencoder system architecture [34] .
owever, such additional features will be integrated into the
roposed autoencoder system architecture in the future work
f this study. 

One should note that self-cleaning autoencoders can be an
mportant part of onboard data handling processes of mod-
rn vessels. When vessels are equipped be such large num-
er of onboard sensors, these steps discussed in this section
an make a considerable contribution to improve the respec-
ive data handling processes. Furthermore, autoencoders with
 good compression ratio can help the data handling pro-
esses to reduce the required computational power in onboard
essels. 

. Conclusion 

Ship owners often use the average values of ship perfor-
ance and navigation parameters and that reduce the size

nd cost of transferring, handling and analyzing the respec-
ive data sets. The main objective in this study is to show
hat ship performance and navigation data sets can be re-
uced in their sizes by the autoencoder system architecture,
hile having a high sampling rate. Therefore, the respective

hip performance and navigation parameters can be stored
nd analyzed with a high data sampling rate in such situa-
ions. The will further improve the information visibility of
essel operational and navigation conditions. 

An autoencoder system architecture compresses and ex-
ands data sets of ship performance and navigation parame-
ers, which should be transferred through communication net-
orks as reduced data sets but with a considerable amount
f information. The encoder and decoder should develop as
oftware functions, therefore the autoencoder system archi-
ecture may not depend, extensively on the hardware systems
f modern vessels. In general, the encoder should be imple-
ented in onboard vessels and the decoder should be imple-
ented in onshore data centers. The data transmission process

lso plays an important role under the autoencoder system
rchitecture. In general, some vessels transmit ship perfor-
ance and navigation data under satellite communications to

ata centers, while the respective bandwidth is free. Other
essels transmit ship performance and navigation data under
ireless communication to data centers, while the vessels are
ithin port areas. Therefore, the respective data centers can

ocate within the port areas with the required infrastructures,
here the proposed autoencoder system architecture can be

mplemented. 
Autoencoders derive a new reduced set of parameters that

s another representation of measured ship performance and
avigation parameters. These new parameters consist of a
onsiderable amount of ship performance and navigation in-
ormation, therefore the capabilities of using those parame-
ers to quantify ship performance and navigation conditions
nstead of using measured parameters should be further in-
estigated. Hence, optimal vessel operational and navigation
ituations can be identified to archive the respective energy
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