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Abstract: The authors describe a method for long-term hydro-thermal scheduling allowing treatment of detailed large-scale
hydro systems. Decisions for each week are determined by solving a two-stage stochastic linear programming problem
considering uncertainty in weather and exogenous market prices. The overall scheduling problem is solved by embedding such
two-stage problems in a rolling horizon simulator. The method is verified on data for the Nordic power system, studying the
incremental changes in expected socio-economic surplus for expansions in both the transmission and generation systems.
Comparisons are made with a widely used existing long-term hydro-thermal scheduling model. The results indicate that the
model is well suited to valuate the flexibility of hydropower in systems with a high share of intermittent renewable generation.

 Nomenclature
Index sets

A set of price zones
Co, t set of Benders cuts for scenario o and week t
Da set of price-elastic demand steps in zone a
Ga set of thermal generators in zone a
ℋa set of hydropower modules in zone a
K set of time steps within the week
ℒa set of interconnections connected to zone a
ℳ set of exogenous markets
Nh set of efficiency-curve segments for module h
Pa set of pumps in zone a
S set of NS scenarios
SR reduced set of NR scenarios
ωh

B set of modules bypassing to module h
ωh

D set of modules discharging to module h
ωh

S set of modules spilling to module h

Decision variables

αo, t + 1 future expected cost from scenario o week t, 103 €
Φ end of horizon value of stored water, 103 €
uo, t decision variables for scenario o and week t
xo, t state variables for scenario o and week t
yo, t stochastic variables for scenario o and week t
dak excess power in zone a, GWh
f bak flow from zone b to a, GWh
qhk

B bypass from reservoir h, Mm3

qnhk
D discharge through station h at segment n, Mm3

qhk
P pumped water from reservoir h, Mm3

qhk
S spillage from reservoir h, Mm3

rak curtailment in zone a, GWh
vhk volume in reservoir h, Mm3

ygk
G thermal generation for generator g, GWh

ydk
D price-elastic demand at step d, GWh

ymk
P purchase from market m, GWh

ymk
S sales from market m, GWh

Stochastic variables

λ
~

mk exogenous market price for market m, €/MWh
D
~

ak demand in zone a, GWh
I
~

hk inflow to reservoir h, Mm3

P
~

ak wind power in zone a, GWh

Parameters

βc Benders cut right-hand side for cut c, 103 €
ηnh efficiency-curve segment n for station h, GWh/Mm3

ηp consumption for pump p, GWh/Mm3

ℙ(s) probability of scenario s
ϕt autocorrelation for week t
πhc Benders cut coefficient for reservoir h and cut c, 103 €/Mm3

ψph pump topology indicator, { − 1, 1}
σt standard deviation for week t
ζℓ transmission loss for line ℓ, fraction
cdk

D marginal value for demand d, €/MWh
cgk

G marginal cost for thermal generator g, €/MWh
cR cost of curtailment, €/MWh
chk

W head sensitivity for reservoir h, 103 €/Mm3

Hh head for reservoir h, m
Hh

0 nominal head for reservoir h, m
T number of weeks in scheduling horizon

1 Introduction
In the future, the Nordic power system will have tighter
connections with Europe and an increasing proportion of
intermittent renewable generation from, for example, wind, solar
and unregulated hydroelectric systems. Rapid and unpredictable
fluctuations in intermittent generation will offer new possibilities
for controllable generation to be able to respond to these
fluctuations. Flexible and fast-responding power plants able to
produce at demand peaks will therefore see a higher profit
potential. It will become increasingly important for hydropower
producers with access to controllable production to correctly
estimate the value of flexibility so that the water is scheduled
optimally. Under these circumstances, investment decisions in the
hydropower system will call for methods that are able to correctly
predict the value of flexibility.
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Nordic market players and system operators are faced with
major investment decisions related to possibilities for increasing
the number of cable connections to Europe and improving the
flexibility of the generation system. Accurate and robust decision
support is needed to assess the profitability and consequences of
future investments and to ensure co-ordinated development of
exchange capacity and flexibility in the generating system.

In a hydro-thermal market context, the system operating costs
are typically estimated using long-term hydro-thermal scheduling
(LTHTS) tools [1, 2]. The LTHTS problem is dynamic since
reservoir storages provide couplings between the stage-wise
decisions in the scheduling problem. Operating decisions made in
the current stage will affect the reservoir levels in the next stage.
Furthermore, the problem is stochastic since uncertainty about the
future will affect the decisions made today. Normally uncertainties
in the LTHTS problem are related to weather (typically inflow,
snow, temperature, wind and solar radiation) and exogenous power
prices. For the Nordic system, with more than 1000 hydro
reservoirs and covering a widespread and climatically diverse
geographic region, the LTHTS problem is of high dimensionality
both in terms of reservoirs and stochastic processes.

Applied methodologies for solving the high-dimensionality
LTHTS problem traditionally rely on aggregation–disaggregation
techniques, such as in [3–6]. That is, the physical reservoirs are
represented by aggregate equivalents when computing the strategy,
and then the operation is simulated on the detailed system using the
obtained strategy. A strategy is typically represented by water
values or hyperplanes (often referred to as cuts). In our experience,
it becomes increasingly challenging to correctly valuate the
flexibility in complex hydropower systems using coarse
equivalents as the short-term variations in e.g. wind power
production and daily price variations increase. This motivates the
need for LTHTS methods that can handle detailed hydropower in
the strategy computation for large-scale systems.

The stochastic dual dynamic programming (SDDP) presented in
[7] is widely used for operational scheduling, see e.g. [2, 8, 9]. It
allows detailed representation of the hydropower in large-scale
systems [10, 11]. Although subject to recent improvements, see e.g.
[12–15], the SDDP method does not easily facilitate non-
convexities. Consequently, stochastic models introducing stage-
wise dependencies, such as for inflows [16, 17] and exogenous
price processes [18–20], need to be carefully designed to avoid
introducing non-convexities in the SDDP method.

Using historical records to represent future uncertainty in
weather is the preferred procedure by most players in the Nordic
market. Thus, the standard use of operative LTHTS models in the
Nordic market involves direct use of historical weather records, at
least when simulating system operation. The major motivation for
working with historical data is to conserve correlations in both time
and space which are not easily incorporated in stochastic models.
An example is the prolonged dry or wet periods that sometimes
occur in geographical regions. In our experience it is challenging to
obtain SDDP-based strategies (cuts) for the detailed description of
the Norwegian hydropower system that perform well when
simulating the system using historical data [11]. A different method
known as sampling stochastic dynamic programming was proposed
in [21], and is compatible with the direct use of historical data.
However, this method cannot easily handle multiple reservoirs in
the strategy computation due to the ‘curse of dimensionality’ of
dynamic programming.

In a liberalised market context, practical hydropower
scheduling is a continuous process where strategies are updated on
a weekly or even daily basis using the information available at that
time [22]. This process can be resembled in rolling horizon
simulator scheme, as demonstrated by the authors in [23, 24],
combining short-term decisions and medium-term strategy
computation in sequence. This type of scheme, which is often
linked to the framework of model predictive control, was proposed
for the LTHTS problem in [25–27]. A more generic control-
theoretic framework for power dispatch and storage dynamics was
presented in [28].

In this paper, we describe and test an LTHTS method based on
stage-wise optimal operation embedded in a rolling horizon

simulator. The method allows a detailed representation of the
hydropower system and represents uncertainty in weather and
exogenous power prices through scenario fans, where weather
scenarios are based on historical records. A scenario fan is a
special case of a scenario tree, where all uncertainties are resolved
in the second stage. We underline that the presented method can
also represent uncertainty through a scenario tree, but that
possibility will not be further discussed here. The method was first
introduced in [29], but was then applied to an aggregate equivalent
description of the hydropower system. We extend the work in [29]
by introducing detailed hydropower representation and further
elaborating on the description of uncertainty in the scenario fans.
Some preliminary results obtained using an early version of the
proposed method on synthetic test data were reported in [30].
Moreover, we add to the work in [25, 26] by introducing
uncertainties in the scheduling, and to [27] by applying the model
to a realistic system.

The primary contribution of this work is on the application and
verification of the proposed LTHTS method to a realistic
representation of the Nordic power system provided by the
Norwegian transmission system operator. To our knowledge, this is
the first application of a stochastic LTHTS to the full Nordic power
system without aggregation of the physical hydropower
representation. We demonstrate that the proposed method has the
ability to capture the economical and operational impact of both
global and local expansion projects in a hydro-thermal system. In
particular, we evaluate the changes in expected socio-economic
surplus when expanding the cable capacity towards Germany and
upgrading an existing pumped-storage plant in southern Norway.
The model performance is compared with the EFI's Multiarea
Power Market Simulator (EMPS) model [5], which is an existing
and widely used LTHTS model.

2 Solution method
The objective of the LTHTS problem is to minimise expected cost
of operating the system over the specified scheduling horizon. For
this purpose, we propose a simulator optimising the operational
strategy for each decision stage, given the system state at the
beginning of that stage. The simulator is referred to as a scenario
fan simulator (SFS) in the following.

2.1 Scenario fan simulator

Consider a set of scenarios S representing historical values for
uncertain variables to be considered in the scheduling. The SFS
optimises sequences of decisions by solving scenario fan problems
(SFPs) along all scenarios o ∈ S in consecutive order. We use the
term SFP for a two-stage stochastic linear programming (LP)
problem. The SFP is decomposed into a first-stage (operation) and
a set of second-stage (scenario) problems, as illustrated in Fig. 1. 

Consider simulating the system operation along a scenario
o ∈ S for a time stage t ∈ 1̇…T , as illustrated in Fig. 1. A vector
xo, t − 1 describing the physical state of the system is obtained from
the previously solved SFP along scenario o. We assume that the
realisation of stochastic variables yo, t is known and follows
scenario o in week t, but can follow any of the scenarios s ∈ S
from time stage t + 1 and towards the end of the scheduling
horizon. Scenarios o and s belong to the same set S of historical
values, and that the scenarios s can be corrected to account for
correlations, as described in Section 2.2. We assume that all
uncertainties are resolved in the second stage, i.e. the scenario
problems are deterministic. Moreover, we assume that each
scenario s can be assigned a probability of occurrence ℙ(s).

The mathematical formulation of the SFP and the
decomposition strategy is elaborated in Section 3.1. The first-stage
(operational) decision uo, t is stored and the second-stage (scenario)
decisions serve to set the end-value coupling for the first stage,
provided by Benders cuts with coefficients π and right-hand sides
β, as shown in Fig. 1. The simulator uses a rolling horizon, where
the operational decision period has the length of one week and the
length of the scenarios is fixed and should be long enough to
account for the storage capability of the largest hydro reservoirs.
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2.2 Representation of uncertainty

We allow for representation of uncertainty in weather related inputs
such as inflow, wind power, temperature and snow, in addition to
exogenous power prices. Uncertainties in weather related inputs are
based on historical variation. Historical values are used to keep
correlations in time and space and between different types of input
series that are difficult to generate from statistical models. As an
example, a cold winter has less precipitation than normal and the
precipitation is often low for widespread geographical areas at the
same time.

The uncertain inputs are represented by NS = |S| scenarios in
the SFS simulator. The basic assumption for the scenario
generation is that from any point in time the history may repeat
itself with equal probability. This gives NS scenarios if there are NS
historical weather years available. Typically, historical
measurements for around 80 years are available for relevant sites in
the Nordic system. The observed weather statistics are typically
corrected for climatic changes before they are used.

Inflow scenarios may be corrected based on the current snow
storage information by conditioning the future scenarios and their
probabilities on the snow storage in the current week. The
correction is carried out by using ‘observed’ time series for snow
storage. Inflow correction based on snow storage is not utilised in
the case study, and will not be further discussed here.

The basic scenarios generated from historical observations are
corrected for the current value for the scenario o we are simulating
along. The purpose of the correction is to reflect weather
correlations and the ground delays. As an example, if the inflow is
very high this week, the probability of a high inflow the next week
is also high, and vice versa. The corrections are based on the
assumption that a given uncertain input can be described by a first-
order autoregressive model for normalised inflow, e.g. as in [8].
Assume that the observations initially were generated from such a
model. A given scenario s1 with values ys1, t for t = 1…T  would
then be given by the initial value ys1, 0 and a particular sequence ϵt
for t = 1…T  sampled from a normal distribution with zero mean.
Assume that we generate a new scenario s2 with the same sequence
ϵt, but with a different initial inflow ys2, 0. It is then straightforward
to derive that the scenario values ys2, t will approach ys1, t as t is
increasing according to

ys2, t = ys1, t + ys2, 0 − ys1, 0
σt
σ0

ϕ0
t − 1 (1)

Even if the scenarios s are based on observed values, we use the
same method to correct the SFP scenarios to the actual value given
by the scenario o that we are simulating along. The initial inflow
deviation is given by the difference between the values of scenario

o at time t and the original value of scenario s at time t. Corrected
values y^s, ts for scenario s for time step ts are then given by

y^s, ts = ys, ts + yo, t − ys, t
σts
σt

ϕt
ts − t (2)

In our approach, we are using the same method to modify scenarios
for all weather related input and exogenous power prices, and
model parameters are estimated individually for each input series.

To reduce computational burden, we allow reducing the set of
scenarios S to SR according to the fast forward selection algorithm
in [31]. It is not straightforward to find a reasonable valuation of
each scenario in this method since different types of uncertainties
are represented. In this work, we have valuated the scenarios
according to the estimated sum of energy, i.e. the sum of estimated
energy in the corresponding inflow and wind series.

3 Model description
3.1 Scenario fan problem

The SFP is defined as a two-stage stochastic LP problem. The
objective function of an SFP for time stage t and operational
scenario o can be formulated as in (3). The notation corresponds
with the illustration in Fig. 1. The system is scheduled T weeks
ahead, and thus T^ = T + t − 1

min
uo, us

Zo, t xo, t − 1, uo, t

+ ∑
s ∈ SR

ℙ(s) ∑
ts = t + 1

T̂
Zs, ts xs, ts − 1, us, ts + Φ xs, T̂

(3)

We decompose the SFP into a first-stage operational (4) and a
second-stage scenario (5) problem using Benders decomposition
[32]. The end of horizon value of stored water Φ may conceptually
be set to zero if the planning horizon is sufficiently long

min
uo, αo

Zo, t xo, t − 1, uo, t + αo, t + 1 (4)

min
us

∑
ts = t + 1

T̂
Zs, ts xs, ts − 1, us, ts + Φ xs, T̂ (5)

αo, t + 1 + πcxt ≥ βc (6)

First, the operational problem in (4) is solved to provide a trial state
solution xo, t

∗ . Subsequently, the trial solution is taken as an initial
state in the scenario problem in (5), so that xs, t = xo, t

∗ . The optimal
objective from (5) and its sensitivities to changes in the initial state
are used to create Benders cuts of type (6), where πc and βc are
vectors comprising cut coefficients and the cut right-hand sides,
respectively. The procedure is iterative, gradually improving the
Benders cuts stored in the set Co, t.

3.2 Operational decision problem

In the following, we describe the basic formulation of the
operational decision problem for a scenario o in time stage t. We
omit the scenario and time indices for simplicity. Stochastic
variables, i.e. the exogenous prices, inflow, demand and wind
power, are marked with the ∼symbol.

Minimise

Zo, t = ∑
k ∈ K

∑
a ∈ A

∑
g ∈ Ga

cgk
G ygk

G − ∑
d ∈ Da

cdk
D ydk

D + cRrak

− ∑
h ∈ ℋa

chk
Wvhk + ∑

m ∈ ℳ
λ
~

mk ymk
P − ymk

S + αo, t + 1

(7)

Fig. 1  Illustration of the simulator scheme, decomposing an SFP into one
operational and several scenario problems
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Subject to

vhk + ∑
n ∈ Nh

qnhk
D + qhk

B + qhk
S + ∑

p ∈ Pa

ψphqhk
P

− ∑
j ∈ ωh

D
∑

n ∈ N j

qn jk
D − ∑

j ∈ ωh
B
qjk

B − ∑
j ∈ ωh

S
qjk

S

−vh, k − 1 = I
~

hk, ∀h, k

(8)

∑
g ∈ Ga

ygk
G + ∑

h ∈ ℋa

∑
n ∈ Nh

Hh

Hh
0 ηnhqnhk

D − ∑
p ∈ Pa
ψph = 1

ηpqhk
P

− ∑
d ∈ Da

ydk
D + ∑

ℓ:(a, b)
∈ ℒa

1 − ζℓ f bak − f abk

+rak − dak = D
~

ak − P
~

ak, ∀a, k

(9)

ymk
P − ymk

S + ∑
ℓ:(m, a)
∈ ℒm

[ 1 − ζℓ f amk − f mak] = 0, ∀m, k
(10)

αo, t + 1 + ∑
h ∈ ℋ

πhcvhk ≥ βc k = |K| , ∀c ∈ Co, t (11)

The objective (7) is to minimise the system costs associated with
operation of the system in the current decision period and the
expected cost of operating system in the future. The current cost
comes from thermal generation (yG), curtailment of price-inelastic
demand (r) and purchase of power from exogenous markets (yP).
The coverage of price-elastic demand (yD) and sales of power to
exogenous markets (yS) can be seen as revenues. Import and export
across the system boundary is modelled by defining a set ℳ of
exogenous market areas with a sales and purchase option at the
price λ

~
mk. The future expected operating cost is represented by

αo, t + 1 which is constrained by Benders cuts in (11).
The hydropower system comprises hydropower modules ∈ ℋ

connected through the three waterways discharge, bypass and
spillage. A module comprises one reservoir and one power station.
Water balances in (8) are defined for each module in each time
step, accounting for the hydrological topology provided by the
waterways and pumps.

A separate power balance (9) is defined for each price zone in
each time step. Thermal, hydro and wind power generation are
balanced against the demand while allowing exchange with
neighbouring price zones and exogenous markets. The second term
in (9) describes hydropower generation, which is modelled as a
piecewise linear and concave relationship between power and
discharge, provided that the efficiencies ηnh decrease with
increasing n. The relationship between reservoir volumes,
discharge and hydropower generation is generally non-convex, and
is therefore challenging to accurately represent in an LP-based
optimisation model, see e.g. [33] for a discussion of alternative
techniques. In the presented model, we follow the heuristic
presented in [8]. A nominal head Hh

0 is used as a reference for the
efficiencies ηnh, and the generation is adjusted according to the
actual head Hh corresponding to initial reservoir volume for the
current week. Since head enters the optimisation problem as a
parameter and not a variable, we do only account for the immediate
impact of head in (9). Pre-computed sensitivities chk

W are used in the
objective (7) to consider the expected future value of head,
according to the procedure in [8]. The pump efficiency ηp is
allowed to depend on the head of the reservoirs it pumps between.

Power balances for exogenous market areas are defined in (10).
The transmission system connecting zones and markets in (9) and
(10) is represented by limiting flows through maximum flow
capacities and let transmission losses depend linearly on the flows.
The model allows dumping of excess power dak to avoid negative
prices, and thus circumvent unlogical loading of the discharge
segments in (9). Note that the details in the modelling of the

thermal market and power flows correspond with the data used in
the case study, and that further constraints on the system operation,
such as representation of linearised start-up costs [34] and DC
power flows [35], will not be discussed here.

All variables are non-negative and may have time-dependent
lower and upper boundaries. The reservoir, discharge and bypass
variables are often subject to seasonal constraints to ensure that
watercourses are operated in a sustainable manner.

3.3 Second-stage decision problem

The scenario problems are built according to (5) by summing
contributions to the objective from (7) and adding constraints (8)–
(10) for consecutive weeks along a scenario s. The iterative
evaluations of the scenario problems serve to create a future
expected cost function for the operational problem through cuts of
type (11), as described in Section 3.1. In the following, we describe
several practical trade-offs between the quality of the cuts and the
computational burden of solving the scenario problems.

For large-scale systems with fine time resolution, the size of the
scenario problem becomes an issue. Consider a system with 500
hydro modules optimised for a horizon of 52 weeks with 56 time
steps within the week. Without simplifications, the number of
reservoir balances (8) will be 500 × 52 × 56 = 1, 456, 000. In
principle, the scenarios should cover a time horizon long enough so
that end-valuation of the reservoirs do not impact the operational
decisions. Strictly following this principle would lead to
impractical scenario lengths (more than 5 years for the Nordic
system). We relax this principle by defining the end of horizon
values through Φ in (5). The end-valuation can e.g. come from a
different type of scheduling model, or through an initial run of the
SFS with a longer time horizon and simpler representation of
uncertainty.

In the general case, system operation in the near future is more
likely to influence the cuts than operation at the end of the
scheduling horizon. We exploit this by allowing a gradually coarser
time resolution within the week along the scenarios.

Regarding the head dependencies introduced in (8), the head
parameter Hh for a given week and scenario is assumed to be equal
to the head obtained in the middle of the week for the
corresponding scenario in the previously solved SFP. Similarly, the
head sensitivities cW in (7) are computed as described in [8] based
on the solution from the previously solved SFP. The introduction of
head dependencies only incur a slight increase in computation time
since the very first SFP needs to be solved twice. In our
experience, the representation of head-dependent hydropower
generation described here is a reasonable compromise between
accuracy and computation time for many watercourses in the
Nordic system.

Working with scenarios allows easier treatment of certain kinds
of state- and scenario-dependent constraints than what is the case
for dynamic programming type of algorithms. Examples of such
constraints are the different types of discharge and bypass
requirements that depend on the storage level. These can e.g. be
pre-processed for a given scenario based on the solution for the
corresponding scenario in the previously solved SFP.

3.4 Parallel processing

The SFP is well suited for parallel processing due to the problem
decomposition, where each of the NR = |SR| scenario problems
can be solved on a separate processor. In this work, the NS
scenarios are simulated in sequence, since the case study concerns
future system expansions, and consequently the simulated results
should not significantly depend on the chosen initial state. If used
for price forecasting for the current system, the scenarios are
arranged in parallel using the known initial reservoir levels as a
common starting point. In the latter case, both the simulation
procedure and the decomposition are arranged in parallel, so that a
total of NR × NS parallel processes can share the workload.

A computer model was established implementing the proposed
SFS method. The model was implemented in Fortran, using the
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dual simplex algorithm from the CPLEX 12.6 library [36] and the
MPI protocol for message passing.

4 Nordic case study
4.1 Case description

The SFS computer model was tested on data for the Nordic system,
provided by the Norwegian transmission system operator, see
illustration in Fig. 2. The system description comprises 26 price
zones: 15 in Norway, 4 in Sweden, 2 in Denmark, 2 in Finland, the
3 Baltic countries, and represent a possible system configuration
around year 2020, including new HVDC cables between Norway
and Great Britain and Norway and Germany. 

In the simulations, we considered the historical inflow years
1962–2012 represented by 228 geographically unique inflow
records. Wind power and temperature data were specified for the
same sequence of years using 85 and 15 individual records,
respectively. A system boundary was drawn along connections to
the exogenous markets in Great Britain, Germany, the Netherlands,
Poland and Russia. The stochastic exogenous prices were obtained
from a fundamental market model considering a wider system
boundary and a coarse representation of the hydropower system.

The system was modelled using 1265 hydro modules (each
module has a hydro reservoir and a power station) out of which
737 have reservoirs with maximum capacity exceeding 2 Mm3.

The SFP cost minimisation problem formulated in Section 3 is
equivalent to maximising socio-economic surplus. We analyse the
sensitivity in socio-economic surplus obtained for two system
expansions: (i) increased capacity on an HVDC cable, and (ii)
increased capacity in an existing pumped-storage plant.

The SFS results were compared with those obtained from the
EMPS model on the same data. The EMPS is a fundamental
LTHTS model based on aggregation–disaggregation techniques
[5], and is in widespread use by players in the Nordic market. For
all SFS runs, a scenario length of 52 weeks was used, and the end-
valuation was obtained from the EMPS model run on the same
case. The number of scenarios was reduced to 19, and all
simulations were run on server node with two 10-core Intel Xeon
E5-2640 processors with 2.50 GHz and 128 GB RAM.

4.2 Increased cable capacity

We evaluated the expected change in socio-economic surplus when
increasing the HVDC cable capacity between Norway and
Germany. This cable is indicated by a stapled line in Fig. 2.

For this study both the SFS and EMPS models were run with a
time resolution of five time steps within the week, i.e. this was the
time resolution for the operational problems in the SFS model.
Moreover, we applied one time step within the week in the SFS
scenarios. Each scenario problem had 68.917 constraints and
451.655 variables, and the operational problems were
approximately a magnitude of 10 smaller. The two-stage SFP on
average converges in ∼20 iterations spending slightly more than 1 
min of CPU time. The total run time for the SFS was 50 h, while
the EMPS model spent ∼10 min.

Fig. 3 shows the change in annual expected socio-economic
surplus when increasing the cable capacity towards Germany with
200 MW from its base case using 10 MW steps. According to
theory one should expect the socio-economic surplus to be non-
decreasing with increasing cable capacity. Although this was not
strictly the case for any of the models, Fig. 3 shows that the SFS
model results are more consistent, reducing the ‘noise’ seen with
the EMPS model. 

4.3 Increased pumped-storage plant capacity

Next, we look at a specific large-scale expansion project in the
Sira-Kvina watercourse in the southern part of Norway, as
illustrated at the left-hand side in Fig. 2. The Duge pumped-storage
plant is indicated as plant number 6 in the watercourse and has a
capacity of 200 MW. We increased the capacity of the Duge
pumped-storage plant incrementally with a maximum increase of
2000 MW. A large-scale expansion of the plant capacity will
impact power prices in the corresponding price zone.
Consequently, there is a need for analysing the market impact and
at the same time respect the detailed constraints in the watercourse.
An exchange capacity of 5000 MW between Norway and Germany
was assumed to obtain intra-week price differences that triggers
pump operation.

For this study, we ran the models with a time resolution of 56
time steps within the week for the operational problem. The finer
time resolution allows the pumped-storage plant to exploit price
differences between time steps and to more realistically see
constraints in the watercourse. Moreover, we applied five time
steps within the week for the first 10 weeks in the SFS scenarios
and 1 time step for the remaining horizon. Each scenario problem
had 120.957 constraints and 749.455 variables, and the operational
problems were approximately half the size. Each SFP was on
average solved in 3.5 min and the total run time was 156 h.

Fig. 4 shows how the pump was operated in the SFS model for
a selected week and scenario considering 230 MW installed
capacity. The price differences between the time steps motivate the
frequent on/off decisions for the pump. In contrast, the heuristics in
the EMPS model primarily allows for seasonal pumping, and will
therefore not optimally exploit the intra-week price differences. 

Fig. 2  Nordic area, including an excerpt of the Sira-Kvina watercourse.
The stapled circle indicates the location of the watercourse, and the stapled
line the cable between Norway and Germany

 

Fig. 3  Change in annual expected socio-economic surplus with increasing
cable capacity between Norway and Germany

 

IET Gener. Transm. Distrib.
© The Institution of Engineering and Technology 2017

5



Fig. 5 shows the change in annual expected socio-economic
surplus as a function of increased plant capacity for the two
models. As for the cable expansion case, the marginal benefits seen
in Fig. 5 are more consistent in the SFS case than for the EMPS
model. The detailed hydro system operation in the EMPS model is
based on heuristics while the SFS model optimises these decisions.
Although the SFS model utilises the pumped-storage plant in a
more economically efficient manner, the marginal value of
additional plant capacity is lower due to the detailed constraints
seen by the SFS model. 

5 Conclusions
We presented a hydro-thermal scheduling method based on a
combination of simulation and optimisation. The method considers
uncertainties related to weather and exogenous power prices in a
fan of scenarios. Furthermore, the detailed hydropower system is
represented without aggregation. The method was tested on
realistic data for the Nordic power system, considering increased
cable capacity towards Germany and increased capacity in a single
pumped-storage plant. The results indicate that the method is well
suited to valuate the flexibility in the hydropower system when
exposed to more volatile power prices.

Although the method is well suited for parallel processing,
several simplifications were needed to arrive at reasonable
computation times for the case study. By reducing the number of
scenarios in the fan and the scenario horizon, as well as the time
resolution along the scenario horizon and the type of constraints to
be represented in the scenarios, one can tailor the computational
burden according to the available computational resources.
However, the compromise between reduced computation time and
quality of the strategy should be carefully evaluated, and is
recommended as a subject for further work.
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