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Abstract

The work presented in this paper concerns the efforts of conducting a computa-
tional fluid dynamics (CFD) simulation of air flow past a fixed 2D NACA0015
airfoil at high Reynolds number (Re = 2.5×106) using an isogeometric finite el-
ement methodology with linear, quadratic and cubic spline elements. Flow sim-
ulations at such high Reynolds numbers require turbulence models or very high
resolution. The present work employs the Spalart-Allmaras turbulence model
combined with a Navier-Stokes solver based on a Chorin projection method, the
first development of its kind in an isogeometric finite element framework. The
obtained results from the simulations are compared with two sets of experimen-
tal results available in the literature.

Keywords: Isogeometric analysis, NACA0015 airfoil, Chorin projection
method, Spalart-Allmaras

1. Introduction

Wind power has gained political momentum in recent years owing to its
relatively lesser environmental conflicts, greater efficiency and favorable wind
conditions. The European Union (EU), for example, has a slogan 20− 20− 20,
which implies that by 2020 20 % of the EU’s energy should come from renewable
sources, greenhouse gas emissions should decrease by 20 % and energy efficiency
should increase by 20 %. By that time it is expected that 40 GW of the offshore
wind power capacity would have already been installed [1]. In 2013 alone,
around 11100 MW of wind power infrastructures, both onshore and offshore,
were installed in the EU [2]. Meanwhile, an increasing number of wind turbines
have been and will be installed in both the United States (US) and China.
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Offshore wind energy compared to its onshore counterpart appears more
attractive due to its lesser visual impact and lesser issues related to land ac-
quisition. Relatively more convenient accessibility to open sea allows for the
installation of larger and larger turbines capable of producing much more power
resulting in far lesser number of turbines per wind farm to produce the same
amount of power. However, the large size of the turbines and the harsh meteo-
rological conditions offshore come with new design challenges, not appropriately
addressed by the traditional engineering methods/tools [3]. One such problem
is related to the dynamic loading and unloading of turbine blades and struc-
tures. Fluid-structure interaction (FSI) simulation tools are being developed
to address the issue and have already become a reality for wind turbines ([4]
and [5]) and bridges [6, 7, 8, 9]. However, such detailed 3D simulations are still
computationally demanding and not suitable for performing sensitivity analysis
for optimum blade design.

To strike a balance between accuracy and computational efficiency, inspi-
ration can be taken from a strip theory approach which was used to simulate
vortex-induced vibration of offshore risers and submerged pipelines in [8], [10]
and [11]. In the approach, a series of 2D computational fluid dynamics (CFD)
simulations were conducted to predict the flow characteristics around the riser
and then the forces were transferred to the structure solver for finite element
analysis using non-linear beam elements. The reliability of this method depends
on the accuracy of the 2D simulations and hence as a starting point we inves-
tigate an approach based on isogeometric analysis which emerged in 2005 [12],
and offers integration of analysis and CAD geometry [13] through the use of the
same basis functions. This results in advantages such as better accuracy per
degree-of-freedom and exact geometric representation.

Wind turbines have for many years been an active research field, and in
recent years isogeometric wind turbine simulation results have been published
by Bazilevs and others [14, 15, 4]. However, little has been published, barring
some work like [16] and recently [17], on flow past a fixed airfoil. Moreover, most
of the simulations in a wind engineering context using isogeometric analysis have
been limited to Variational Multiscale (VMS) approach for modeling turbulence.
Although the approach has a more sound basis for simulating turbulent flows,
their applicability is somewhat constrained by their computationally expensive
nature, i.e. need for doing 3D flow simulations.

A remedy in order to enable the use of 2D flow simulations is to use Reynolds-
Averaged Navier-Stokes (RANS) equations with one-equation Spalart-Allmaras
(SA) turbulence closure which has been specially developed and optimized for
simulating 2D flow around airfoils [18]. Furthermore, based on a study by Valen-
Sendstad et al. ([19]), that investigated the performance of six different solvers
for incompressible flow, we have chosen to use a Chorin projection method
(incremental pressure correction) as this was found to be the most efficient
and accurate. This is further enhanced by applying Minev stabilization for
equal order elements [20]. We believe that the first step towards the use of strip
theory is to develop and demonstrate a CFD solver based on splines (to improve
geometric representation), with Chorin projection method (for efficiency) and
Spalart Allmaras turbulence model (optimized for 2D flow around airfoils). The
main contribution of this work is to demonstrate the seamless integration of
geometry modeling, meshing and analysis tools using linear, quadratic and cubic
spline elements and the achievable accuracy to simulate flow around a two-
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dimensional NACA0015 airfoil.

2. Theory

A code intended for a task like sensitivity analysis / shape optimization
requires it to be convenient to use and easy to make several runs by changing the
input parameters. This requires a seamless integration of the geometry modeler,
mesh generator and CFD solver. In this section we present a description of
the NACA airfoils, governing equations of flow and turbulence modeling, their
discretization, implementation of boundary conditions as well as equations used
to compute the aerodynamic coefficients presented in the result section.

2.1. Introduction to 4-digit NACA airfoil
The family of symmetric NACA airfoils is denoted by NACA00XX where

the last two digits give the ratio between the maximum thickness of the airfoil
t and the chord length c. The shape of all NACA00XX airfoils is given by the
analytical formula [21]

yt = 5tc

[
0.2969

√
x

c
− 0.1260

(x
c

)
− 0.3516

(x
c

)2

+ 0.2843
(x
c

)3

− 0.1015
(x
c

)4
]

(1)

where yt is the distance from the centerline, t the maximum thickness from
the centerline, c the chord length and x the position along the chord from 0
to c. In order to have a closed curve and thickness yt = 0 at x = c one of
the coefficients has to be modified as they do not sum to zero. We choose
to modify the last coefficient (i.e. the coefficient in front of the highest order
term) to −0.1036 as this gives the smallest perturbation of the surface curve.
Sometimes the blade profile is given in the form of coordinate data at discrete
points along the surface. No matter how the data is obtained it is used to get
a spline representation following the approach described in Section 2.5.3.

2.2. Fluid solver
This section describes the fluid solver through the governing equations, the

isogeometric finite element approximation, the projection method employed and
the boundary conditions.

2.2.1. Governing equations
Viscous airflow at low Mach numbers is mathematically described by the

incompressible Navier-Stokes equations. These equations can be written as

∂u

∂t
+ ρ (u · ∇)u−∇ · σ (u, p) = ρf in Ω

∇ · u = 0 in Ω.

Here, Ω ∈ Rd, d = 2, 3, is a suitable, sufficiently regular and open domain, ρ
is the constant fluid density, p is the pressure, u is the fluid velocity vector and
f is a volumetric body force. The Cauchy stress tensor can be written as

σ(u, p) = −pI + 2µε(u),
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where I is the identity tensor and µ is the dynamic viscosity and the strain rate
ε is defined as

ε(u) =
1

2

(
∇u+ (∇u)T

)
.

Furthermore, we define ∂Ω = Γ = ΓD ∪ ΓN ∪ ΓM where ΓD are the boundaries
with Dirichlet conditions, ΓN the boundaries with Neumann conditions ΓM
the boundaries with mixed conditions. Mixed boundary conditions are used
in situations where the normal velocity components are given, usually zero,
together with the tangential stresses can model symmetry planes and slip or
friction conditions.

The variational formulation is expressed as: Find (u, p) ∈ U ×Q such that(
ρ
∂u

∂t
,v

)
+ c(u;u,v) + b(p,v) + a(u,u) + b(q,u) = f(v) (v, q) ∈ V ×Q.

(2)

Here, we have defined the spaces

U = H1
ΓD,Γ⊥

M
(Ω) =

{
v ∈H1(Ω) | v = uD on ΓD and v · n = u⊥ on ΓM

}
V = H1

ΓD,Γ⊥
M ;0(Ω) =

{
v ∈H1(Ω) | v = 0 on ΓD and v · n = 0 on ΓM

}
Q = L2(Ω),

where uD and u⊥ both are given functions and n is the unit outer normal on
Γ, and the forms

a(u,v) = 2

∫
Ω

µε(u) : ε(v) dx

b(q,v) = −
∫

Ω

(∇ · v)q dx

c(w;u,v) =

∫
Ω

ρ(w · ∇)u · v dx

f(v) =

∫
Ω

ρf · v dx +

∫
ΓN

t · v ds ,

where t = σ ·n is the traction vector on Γ. Here U and V are the velocity trial
and test function spaces, respectively, whereas Q is the corresponding function
spaces for the trial and test pressure variables. The velocity trial function space
H1

ΓD,Γ⊥
M

(Ω) has the same regularity as the classical Hilbert space H1(Ω) inside
the domain Ω, but restricted to fulfill the imposed Dirichlet conditions along ΓD
as well as mixed boundary conditions, see Section 2.2.4 along Γ⊥M . The velocity
test function space H1

ΓD,Γ⊥
M ;0

(Ω) is similar to the velocity trial space, but have
homogeneous Dirichlet conditions along ΓD and Γ⊥M .

2.2.2. Isogeometric finite element approximation
The isogeometric finite element method approximates the solution by using

a spline basis of polynomial order p and regularity Cp−1, whereas C0 Lagrange
polynomials of low order (typical p = 1 or p = 2) are used in traditional finite
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element formulations. Our approach is based on a conforming finite element
approximation, i.e.

Uh ⊂ U , Vh ⊂ V , Qh ⊂ Q.

The discrete approximation spacesUh, Vh, Qh are chosen as the isogeometric
finite element spaces. This gives the semi-discrete formulation of the variational
problem stated in Eq. (2): Find (uh, ph) ∈ Uh ×Qh such that(

ρ
∂uh
∂t

,vh

)
+ c(uh;uh,vh) + a(uh,uh) + b(p,vh) + b(q,uh) = f(vh)

for all (vh, qh) ∈ Vh ×Qh.
Herein, we have developed a block-structured B-spline isogeometric finite

element approximation of the Navier-Stokes equations described above. To con-
struct a B-spline basis for a domain Ω which is subdivided into a number of
patches (a patch is equivalent to a block) Ωe such that Ω = ∪Ne=1Ωe we asso-
ciate for each patch a knot-vector in each coordinate direction

Ξek =
{
ξe1,k, ξ

e
2,k, . . . , ξ

e
ne
k+pek+1

}
for k = 1, . . . , d. The B-spline basis for patch Ωe on the parametric domain
Ω̂ = (0, 1)d is written as Ŝ

pe

αe where the multi-indices αe = (αe1, . . . , α
e
d) and

pe = (pe1, . . . , p
e
d) denote the regularity and order for the basis in each coordinate

direction, respectively. The corresponding basis for the physical domain Ωe can
be expressed using the coordinate mapping φe : Ω̂→ Ωe as

Sp
e

αe =
{
vh | vh ◦ φe ∈ Ŝ

pe

αe

}
.

If the variational formulation allows a discontinuous approximation the spline
finite element basis for the domain Ω can be defined as

Sh =
{
vh | vh|Ωe

∈ Sp
e

αe

}
.

If we assume that the knot-vectors and geometrical mapping φe for all the
patches are consistent on common edges and faces we can define a continuous
basis

Sh =
{
vh ∈ C(Ω) | vh|Ωe

∈ Sp
e

αe

}
.

2.2.3. Projection method
In order to solve the mixed variational problem given above the following

inf-sup condition

inf
qh∈Qh,qh 6=0

sup
vh∈Vh,vh 6=0

b(qh,vh)

‖qh‖L2(Ω)‖vh‖H1(Ω)
≥ C > 0.

needs to be satisfied in order to avoid spurious pressure modes [22]. This imposes
restrictions on the choices of Vh and Qh.

Traditionally a mixed finite element method with different approximation
spaces for pressure and velocity is required. In this work we use a pressure
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correction projection scheme which allows for equal order approximation of the
velocity and pressure. This is based on the work pioneered by Chorin [23] and
Temam [24] in the late 1960s. However, the present implementation is inspired
by the review article [25] which also accommodates significant progress regarding
theoretical and implementational issues for projection schemes in recent years,
and the work on pressure stabilization by Minev as presented in [20].

For the chosen projection method one only needs to solve decoupled prob-
lems of elliptic equations at each time step instead of the full coupling of the
velocity and pressure [25]. Thus standard Krylov subspace methods like the
conjugate gradient (CG) method and Generalized Minimal RESidual method
(GMRES) can be used to solve the linear systems. For these methods we also
can employ efficient preconditioners. Drawbacks of the projection methods in-
clude a inherited splitting error and extra numerical boundary conditions for the
pressure. This reduces the convergence order of the numerical approximation.

In order to avoid the inconsistent pressure boundary condition present in
many splitting schemes one may choose a rotational formulation for the incre-
mental pressure correction scheme as proposed in [26]. The resulting splitting
error is now only due to an inaccurate slip condition imposed on the velocity.
The rotational form of the Chorin splitting scheme is of order 2 for the velocity
and order 3/2 for the pressure, both in the L2-norm, [27]. However, in some of
our numerical tests we observed pressure oscillations when we used equal order
approximation. Thus, in order to get a stable solution with our equal order
approximation we herein chose to employ Minev stabilization as given in [20] to
avoid node-to-node pressure oscillations.

The standard incremental pressure correction scheme is given by

1. Velocity prediction step
ρ

2∆t

(
3ũn+1 − 4un + un−1

)
+ ρ

(
2un − un−1

)
· ∇ũn+1

−∇ · σ
(
ũn+1, pn

)
= ρfn+1,

ũn+1 = 0 on Γ.

2. Pressure correction step
ρ

2∆t

(
3un+1 − 3ũn+1

)
+∇

(
pn+1 − pn

)
= 0,

∇ · un+1 = 0,

un+1 · n = 0 on Γ.

However, to get a stable solution without pressure oscillations for an equal order
approximation Minev [20] modified the pressure correction step and solved it in
two successive steps

2.a Stabilized pressure correction (Galerkin formulation)(
∇
[
(1 + ˆ̂σ)pn+1 − pn

]
,∇q

)
= −3

2

(
∇ · ũn+1, q

)
+ ˆ̂σ

(
∇ · (−2un +

1

2
un−1), q

)
−

ˆ̂σ

2

∫
∂Ω

(
3ũn+1 − 4ũn + un−1

)
· nq ds q ∈ Qh.

6



Here, ˆ̂σ is the stabilization parameter which is set equal to the time step
in all simulations.

2.b Velocity correction

3

2

(
un+1 + ũn+1

)
+∇

(
pn+1 − pn

)
= 0

with boundary conditions as given in the problem formulation.

To summarize: Our algorithm implemented in IFEM is as follows:

1. Velocity prediction step
Find ũn+1 using the velocities un and un−1 and the pressure pn computed
at earlier time steps.

2.a Stabilized pressure correction (Galerkin formulation)
Find pn+1 using the predicted velocity ũn+1 and the velocities un, un−1

and the pressure pn computed at earlier time steps.
2.b Velocity correction

Find un+1 using the predicted velocity ũn+1, the updated pressure pn+1

and the pressure pn computed at the previous time step.

The standard incremental pressure correction scheme is of order 2 for the
velocity and order 1 for the pressure, both in the L2-norm, [25]. As stated
in [20], this is not changed when employing Minev stabilization.

Remark
The Pressure Poisson Equation (PPE) in Step 2.a implies that the proper dis-
crete space Qh for the pressure trial and test functions has to fulfill Qh ⊂
L2(Ω)∩H1(Ω). Furthermore, in PPE we employ a homogeneous Dirichlet con-
dition for the pressure at the outflow boundary and homogeneous Neumann
conditions, i.e. ∇pn+1 · n along the other boundaries.

2.2.4. Boundary conditions
Several boundary conditions can be applied for the Navier-Stokes equations.

We assume that Γ ⊂ ∂Ω is a subset of the boundary of the domain. The
Dirichlet and Neumann conditions can be written as

u = g on Γ (Dirichlet conditions)
σ · n = h on Γ (Neumann conditions),

where g = g(x, t) and h = h(x, t) are given functions and n denotes the unit
outer normal vector on ∂Ω. Since only the gradient of the pressure is present
in the Navier-Stokes equations and the Dirichlet condition does not involve any
pressure information, the pressure can only be determined up to a constant
if a Neumann condition is prescribed everywhere on the boundary. To fix the
pressure level and have a well-defined problem a homogeneous pressure condition
can be imposed on the outflow boundary. Furthermore, from the continuity
condition we derive the following compatibility condition∫

Ω

∇ · udx =

∫
∂Ω

u · nds =

∫
∂Ω

g · nds = 0,
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i.e. the boundary condition must impose a zero mean flux on the boundary to
satisfy mass conservation.

We now assume that the boundary Γ can be decomposed into three disjoint
segments ∂Ω = ∂Ωin ∪ ∂Ωout ∪ ∂Ωc with

∂Ωin = {x ∈ Γ | u · n < 0} , (inflow boundary)
∂Ωout = {x ∈ Γ | u · n > 0} , (outflow boundary)
∂Ωc = {x ∈ Γ | u · n = 0} , (characteristic boundary)

On the inflow part of the boundary, i.e. on ∂Ωin, it is most natural to impose a
Dirichlet condition. On outlet boundaries, i.e. on ∂Ωout, the Neumann condition
is the preferred choice.

Mixed boundary conditions are also possible for the Navier-Stokes equations.
A slip boundary condition can be written as

u · n = 0 on Γ,

n · σ · (I − n⊗ n) = h on Γ,

where I − n ⊗ n span the tangent plane to the boundary ∂Ω in Rd. This
corresponds to a Dirichlet condition for the normal direction and a Neumann
condition in the tangential plane.

2.3. Turbulence modeling
High Reynolds number flows are dominated by turbulence which can be fully

resolved using Direct Numerical Simulation (DNS) or partially resolved using
Large Eddy Simulation (LES). In LES the larger scales in the flow are resolved
while the smaller scales are assumed to be isotropic and modeled using different
kinds of subgrid scale parametrization. However, the computationally expensive
nature of DNS and LES prohibits their usage as a design tool. It is one of the
reason that RANS models are still widely used. In the RANS model turbulence
is not resolved but modeled. The mesh resolution and quality requirements for
this class of models are also less stringent than the ones required in DNS or
LES. In this work we employ the Spalart-Allmaras turbulence model [18] which
has been optimized to simulate 2D flow around aerodynamically shaped bodies
like an airfoil.

2.3.1. The Spalart–Allmaras turbulence model
The Spalart-Allmaras turbulence model is a one-equation model for a mod-

ified turbulent kinematic viscosity ν̃ [18]. We employ the standard model pre-
sented in [18] along with the negative Spalart-Allmaras model presented in [28].
The formulation of the model is the transport equation

Dν̃

Dt
= P −D +

1

σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2 (∇ν̃)

2
]
,

where ν = µ/ρ is the laminar kinematic viscosity, u is the fluid velocity and d
is the distance from a given point to the closest solid wall. Furthermore, the
production and wall destruction terms read

P = cb1(1− ft2)S̃ν̃, D =
(
cw1fw −

cb1
κ2
ft2

)[ ν̃
d

]2

.
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The laminar suppression term ft2 is defined as

ft2 = ct3 exp
(
−ct4χ2

)
,

with ct3 = 1.2 and ct4 = 0.5. From the modified viscosity ν̃ the eddy viscosity
can be computed as

νt = ν̃fv1, fv1 =
χ3

χ3 + c3v1

, χ ≡ ν̃

ν
.

Modifications of the original model for the modified vorticity were published in
[28]. The modified vorticity S̃ is now given by

S =
ν̃

κ2 · d2
fv2, fv2 = 1− χ

1 + χfv1
,

where S represents the magnitude of the vorticity and d the distance to the
closest wall, and

S̃ =

S + S : S ≥ −cv2S

S +
S(c2v2S+cv3S)
(cv3−2cv2)S−S : S < −cv2S

with cv2 = 0.7 and cv3 = 0.9. The new modified vorticity S̃ does not have the
possibility of becoming negative and thus avoids a possible problem of disrupting
other Spalart-Allmaras functions. Furthermore we have for the destruction term

fw = g

[
1 + c6w3

g6 + c3w3

]1/6

g = r + cw2(r6 − r)

r =
ν̃

S̃κ2d2
.

In the original work [18] the following values are given for the other constants
appearing in the model

cb1 = 0.1355, cb2 = 0.622, cw2
= 0.3, cw3

= 2,

σν̃ = 2/3, cṽ1 = 7.1, k = 0.41.

However, in cases with under-resolved grids and for some transient states, the
produced ν̃ solution is negative. A typical choice is then to clip the negative ν̃
value, but we employ the negative Spalart-Allmaras model, presented in [28],
which reads

Dν̃

Dt
= Pn −Dn +

1

σ
∇ · [(ν + ν̃fn)∇ν̃] +

cb2
σ

(∇ν̃)
2
,

where Pn is the production, Dn is the wall destruction and fn(χ) is diffusion
coefficient modification. The diffusion coefficient modification is given as

fn =
cn1 + χ3

cn1 − χ3
,

where cn1 = 16. Furthermore we have

Pn = cb1(1− ct3)Sν̃, Dn = −cw1

[ν
d

]2
,

where S is the vorticity. The negative model always produces zero eddy viscosity,
νt.
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2.3.2. Numerical discretization of the Spalart–Allmaras turbulence model
The Spalart–Allmaras turbulence model is also discretized using spline finite

elements. If we let ν̃h denote numerical approximation of the modified viscosity
and define a suitable test function φh ∈ Vh, the method is given as

BG(ν̃h, φh) = 0, φh ∈ V0
h,

where

BG(ν̃h, φh) =

(
∂ν̃h
∂t

, φh

)
+ c(uh; ν̃h, φh) + a(ν̃h, φh)

− s1(ν̃h, φh)− s2(ν̃h; ν̃h, φh) + s3(ν̃h; ν̃h, φh),

and with
(ν̃, φ) =

∫
Ω

ν̃φ dx,

c(u; ν̃, φ) = (u · ∇ν̃, φ),

a(ν̃, φ) =

(
(ν + ν̃)

σ
∇ν̃ · ∇φ

)
s1(ν̃, φ) = (cb1(1− ft2)S̃ν̃, φ),

s2(ν̃, φ) =
(cb2
σ
|∇ν̃|2, φ

)
,

s3(ν̃, φ) =

((
cw1fw −

cb1
κ
ft2

)[ ν̃
d

]2

, φ

)
.

The negative Spalart-Allmaras model is discretized similarly.
For the temporal discretization we have used a semi-implicit Euler scheme,

where the value of ν̃ is evaluated at the previous time step n, i.e. ν̃n is used,
in some of the terms to get a linear problem for the new solution ν̃n+1. More
precisely, if ∆t is the time step, then the time integration scheme reads(
ν̃n+1 − ν̃n

∆t
, φ

)
+ c(u; ν̃n+1, φ) + a(ν̃n; ν̃n+1, φ) =s1(ν̃n+1, φ)

+ s2(ν̃n+1, φ)− s3(ν̃n+1, φ).

Here the convective term, the diffusion term and all three source terms are
treated semi-implicitly. All the coefficients depending on ν̃ are evaluated at
time level n.

2.3.3. Boundary conditions for the Spalart-Allmaras Model
The Spalart-Allmaras model assumes that the mesh is sufficiently refined

close to the wall surfaces with the non-dimensional wall distance y+ ∼ 1. The
non-dimensional wall distance y+ is defined in terms of the friction velocity u∗
as

y+ =
u∗
ν

with u∗ =

√
τw
ρ

where the wall shear stress τw is given by

τw = µ

[
∂u

∂n

]
y=0

= µ [∇u · n]y=0 .
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Close to the wall the flow is laminar so ν̃ is set to zero. On the inflow boundaries
ν̃in = 5ν is used, whilst a homogeneous Neumann boundary condition is applied
on the outflow boundaries and symmetry planes.

∂ν̃

∂n
= ∇ν̃ · n = 0.

2.4. Aerodynamic coefficients
The quantities of interest in numerical simulations of flow past an airfoil are

the aerodynamic coefficients for a given angle of attack α and a given Reynolds
number Re. The Reynolds number is defined as

Re =
u∞c

ν
,

where u∞ is the the constant inflow velocity, c is the chord length and ν = µ/ρ
is the kinematic viscosity. The three coefficients are the drag coefficient CD, the
lift coefficient CL and the pressure coefficient CP defined as

CD =
Fx

1
2ρu

2
∞cl

, CL =
Fy

1
2ρu

2
∞cl

, CP =
p− p∞
1
2ρu

2
∞
.

The quantities Fx and Fy are the horizontal and vertical force components
acting on the airfoil respectively, ρ is the density of the fluid, l is the length in
the spanwise direction and p∞ is the ambient pressure. The force components
are computed as

F = [Fx, Fy]T =

∫
Γw

σ · n ds,

where Γw is the airfoil surface.

2.5. Mesh generation
Generation of a high quality block-structured mesh can often be a challenge

with respect to partitioning the computational domain into 2D quadrilaterals
which are not too skewed or distorted. Several other aspects are also relevant.
First of all one would like to avoid distorted elements and abrupt change in the
element size. Such cases can lead to unwanted grid effects. Secondly, we would
like to have smaller elements at parts of the boundary with high curvature and
close to solid walls in order to capture boundary layers.

2.5.1. Block-structured mesh generation
A bottom-up approach is often preferred for constructing a block-structured

mesh. For two-dimensional problems the procedure can be described as
1. Define the corner nodes for the blocks.
2. Connect the corners to form the edges.
3. Refine the edges with a suitable grading.
4. Connect the edges to form surfaces.

To define the grading of the mesh a geometrical factor r can be defined as the
ratio of the element size of two consecutive elements, i.e. if {xi}mi=1 are the
points on the edge or curve and ∆si = ‖xi − xi−1‖2 defines the cell size, then

r = ∆si/∆si−1,

for i = 2, . . . ,m. To impose a smooth change in element size, we typically have
that 0.8 < r < 1.2, and for sharp boundary layers we may even use 0.9 < r < 1.1
to capture the rapid change in the solution.
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2.5.2. Spline curves
In this section we define spline curves, which form the foundation of the

mesh generation, as in [13]. Assume that we have a knot-vector

Ξ = {0 = ξ1, ξ2, . . . , ξn+p+1 = 1} .

and a set of control points C = {c1, . . . , cn} which defines the spline curve

c(ξ) =

n∑
i=1

ciBi,p(ξ),

where {Bi}ni=1 are the basis functions. The parameter p is the polynomial order
of the spline curve, and each knot ξi may be repeated several times, but the
knot-span should be non-decreasing

ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p+1.

For p = 0 the basis functions are piecewise constants

Bi,0(ξ) =

{
1, ξi ≤ ξ < ξi+1,

0 otherwise.

The higher order B-spline basis functions are defined as a linear combination of
splines of lower order using the Cox-de Boor recursion formula

Bi,p(ξ) =
ξ − ξi

ξi+p − ξi
Bi,p−1(ξ) +

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Bi+1,p−1(ξ). (3)

We restrict our attention to open knot-vectors, i.e. splines that are interpo-
latory at the end points, and then the first and last knots are repeated p + 1
times. Furthermore, if the spline is Cp−1 continuous then all the internal knots
have multiplicity one and the knot-vector can be written as

Ξ = {ξ1, . . . , ξ1︸ ︷︷ ︸
p+1

, ξ2, . . . , ξm−1, ξm, . . . ξm︸ ︷︷ ︸
p+1

},

where the number of unique knots is given by q = n− p+ 1. The corresponding
knot-vector without repeated knots is

Ξ̄ = {ξ̄1, ξ̄2, . . . , ξ̄q}.

2.5.3. Cubic spline interpolation
The mesh generation process is dependent on standard cubic spline inter-

polation [29]. The starting point is a set of m points {xi}mi=1 that we want to
approximate by a cubic spline curve c(ξ) such that

• c(ξ̃i) = xi for ξ̃i ∈ [0, 1].

• c(ξ) ∈ C2([0, 1]).
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The points {ξ̃i}qi=1 where the spline curve interpolates the data are called the
Greville points. Two extra conditions are needed to uniquely define the inter-
polation. We use either Hermitian (c′(0) = t0, c

′(1) = t1) or natural boundary
conditions (c′′(0) = c′′(1) = 0), where t0 and t1 are the tangent vectors of
the spline curve at the endpoints. This leads to an n × n linear system with
n = m + 2, which can be solved for the unknown control points {ci}ni=1. The
interpolation is not uniquely defined since the parametrization can be different.

Cubic spline interpolation is used for the airfoil as given in Equation (1).
The entire mesh is made for polynomial order p = 3, and only lowered to orders
p = 1 and p = 2 once all patches and refinements have been completed.

2.5.4. Surface generation
For surface generation we employ the concept of Coons patches [30]. Given

four boundary curves u0(ξ), u1(ξ), w0(η), w1(η) as given in Figure 1. These

u0(ξ)

u1(ξ)

w0(ξ) w1(ξ)

Figure 1: Boundary curves for Coons surface patch.

curves have normalized knot vectors and are connected such that u0(ξ1) =
w0(0), u0(1) = w1(0), u1(1) = w1(1), u1(0) = w0(1), thus forming a closed
loop. By defining the surfaces

S1(ξ, η) = (1− η)u0(ξ) + ηu1(ξ)

S2(ξ, η) = (1− η)w0(η) + ξw1(η)

S3(ξ, η) = (1− ξ)(1− η)u0(0) + ξ(1− η)u0(1) + η(1− ξ)u1(0) + ξηu1(1)

the Coons surface paths is given by

Sc(ξ, η) = S1(ξ, η) + S2(ξ, η)− S3(ξ, η).

The Coons surface patch approach is a quick and easy way of building the
surfaces. Being able to define the geometry through the boundary curves of
each surface or patch is a great advantage.

3. Simulations Setup

A high quality mesh is a prerequisite for a reliable simulation of flow around
an aerodynamically shaped body like an airfoil. Here we describe the meshes
used for our 2D simulations and the basis for the choice of domain size and time
step. Other test cases are also defined.
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3.1. Mesh description
The meshes are denoted by B followed by an identifying number indicating

the level of refinement, i.e. B0 is the coarsest mesh and B2 the finest mesh
in our simulations. The meshes are constructed with polynomials of orders 1,
2 and 3, and are intended for use with the Spalart-Allmaras model without
any law-of-the-wall parametrization. Each mesh consists of 128 patches, which
gives huge flexibility in the number of processors the simulations can be run
on. The simulations in this paper are run on 12, 16, 24, 32 or 64 cores. IFEM
is parallelized through a domain decomposition approach [31] where each sub-
domain consist of one or more patches. The code uses the PETSc [32] for the
parallel matrix classes and for the solution of the resulting linear system. The
use of PETSc also gives access to iterative (Krylov-type) solution methods and
state-of-the-art advanced preconditioners such as algebraic multigrid [33] and
additive Schwarz [34]. When it comes to refinement, a basic template given in
Figure 2 is used as a starting point. The figure also shows four refinement edges
(marked by bold lines) which are used in the mesh generation.

H = 15c

L = 20c

0.1c
e1

e2

e3
e4

α

Figure 2: NACA0015: Basic block structure and definition of refinement edges for fixed
NACA0015 airfoil with angle of attack α.

Important refinement parameters for the meshes are presented in Table 1,
whilst the grading factors for the different meshes are illustrated in Figure 3.
The resulting number of element and degrees-of-freedom are listed in Table 2.
Figure 4 shows the B0 mesh for α = 6◦ and p = 2.

In order to evaluate the quality of the meshes we use in our simulations
we apply some well-known mesh metrics. The scaled Jacobian mesh metric,
described in [35], is shown in Figure 5 for the coarsest grid B0. As can be seen
in the figure the scaled Jacobian is positive for all elements, meaning that there
should be no unphysical results due to intersecting grid lines. The stretch mesh
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Table 1: NACA0015: Detailed refinement information about simulation meshes B0, B1 and
B2. Edge grading factor is given by r, and npts is the number of points along the airfoil
surface whilst n is the number of inserted knots along the given edge.

Mesh B0 B1 B2

Airfoil npts 103 127 173
r 0.96 0.96 0.97

e1
r 0.81 0.89 0.92
n 36 60 80

e2
r 0.88 0.92 0.94
n 35 55 75

e3
r 0.9 0.91 0.93
n 12 18 24

e4
r 0.89 0.92 0.94
n 35 50 65

B0 B1 B2
Grid

0.000

0.005

0.010

0.015

0.020

D
is

ta
nc

e
fr

om
ai

rf
oi

l

Figure 3: NACA0015: Grading factor illustration (zoomed) of the innermost patches close to
the airfoil for the different meshes.

metric is shown in Figure 6. The IFEM solver is able to handle large element
aspect ratios.
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Table 2: NACA0015: Number of elements and degrees-of-freedom for simulation meshes B0,
B1 and B2 and polynomial orders p = 1, 2, 3.

Mesh p nel ndof

B0
1 22046 67116
2 22046 78222
3 22046 90096

B1
1 45864 138909
2 45864 155319
3 45864 172497

B2
1 82582 249522
2 82582 271380
3 82582 294006

(a) NACA0015: Mesh B0, p = 2.

(b) NACA0015: Closeup view of mesh B0,
p = 2.

Figure 4: NACA0015: Grid B0 for α = 6◦. Patch boundaries in black.

3.2. Physical parameters and boundary conditions
All simulations are based on a fluid density of ρ = 1.205 kg/m3, dynamic

viscosity µ = 1.8208 × 10−5 kg/(m s) and inflow velocity u∞ = 37.775 m/s
giving a Reynolds number of Re = 2.5 × 106. An inlet boundary condition
is imposed on the curved surface, a wall boundary condition is imposed on
the airfoil surface, a slip condition is applied on the lateral boundaries while a
homogeneous Neumann condition is used for the outflow.

3.3. Determination of the domain size
In the simulation of the kind presented in the paper one expects the aerody-

namic coefficients of the airfoil to be independent of the location of the bound-
aries. Sensitivity studies were conducted to identify the domain extent. Basi-
cally the dimensions L and H (Figure 2) were varied and simulations for five
different domain extents (B1, K0, K1, K2, K3) were conducted to compute the
drag and lift coefficients. The specifications of the domain set-ups are given in
Table 3. In all the five setups the airfoil is discretized using n = 127 points along
the surface with a grading factor of r = 0.96 towards both the trailing and the
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Figure 5: NACA0015: Scaled Jacobian mesh metric for grid B0 at 12◦ angle of attack.

Figure 6: NACA0015: Stretch mesh metric for grid B0 at 12◦ angle of attack.

leading edges. All the simulations were conducted for an angle of attack α = 6o,
order p = 1 and until a non-dimensional time t = 50. The results for drag and
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lift coefficients are shown in Table 4. The sixth and the seventh column in the
table shows the percentage error in CL and CD associated with the changes in
the domain size with respect to B1. The percentage change in any case is less
than 2.5% which should be acceptable for all practical purposes. We thus fix
the B1 domain configuration for subsequent analysis. The chosen domain setup
is shown in Figure 7.

u∞

uy = 0

uy = 0

p = 0

c = 1

H = 15c
L = 20c

Figure 7: NACA0015: Computational domain for fixed NACA0015 airfoil.

Table 3: NACA0015: Details of mesh and domain size. Edge grading factor is given by r,
whilst n is the number of inserted knots.

Grid B1 K0 K1 K2 K3

H 15c 15c 15c 10c 20c
L 20c 15c 30c 20c 20c
nel 45864 44694 47736 43120 47824
ndof 138909 135384 144549 130656 144804

e1
r 0.89 0.89 0.89 0.89 0.89
n 60 60 60 60 60

e2
r 0.92 0.92 0.92 0.92 0.92
n 55 55 55 48 60

e3
r 0.91 0.91 0.91 0.91 0.91
n 18 18 18 18 18

e4
r 0.92 0.92 0.925 0.92 0.92
n 50 45 58 50 50

Based on the small variations in the lift and drag coefficient a problem area
size of H = 15c and L = 20c is chosen.
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Table 4: NACA0015: Results for flow past a NACA0015 airfoil at α = 12◦ with p = 1.

α = 12◦ |CL−CL,B1|
CL,B1

[%] |CD−CD,B1|
CD,B1

[%]Grid p ∆t CL CD

B1 1 0.0005 1.21490 0.02352 - -
K0 1 0.0005 1.20620 0.02407 0.72 2.31
K1 1 0.0005 1.21041 0.02317 0.37 1.49
K2 1 0.0005 1.21011 0.02387 0.39 1.46
K3 1 0.0005 1.20820 0.02355 0.55 0.10

3.4. Time step determination
In order to determine a sufficiently small time step several simulations were

run on the finest grid, B2, with a sufficiently small time step ∆t = 0.0005 or
∆t = 0.00035 and spline elements of order p = 1, p = 2 and p = 3 for three
angles of attack. All simulations were run to non-dimensional time t = 75,
equaling 150000 or approximately 214000 time steps. The results are shown
in Table 5. As all simulations converge it can be safely concluded that the
Courant-Friedrichs-Lewy (CFL) condition, which is necessary for stability, is
satisfied. All subsequent simulations were therefore conducted with time step
given in Table 5.

Table 5: NACA0015: Results for grid B2 in determination of the time step ∆t.

Grid p α [◦] ∆t CL CD

IFEM (SA) B2 1 0 0.0005 −0.00016 0.01041
IFEM (SA) B2 1 6 0.0005 0.64573 0.01299
IFEM (SA) B2 1 12 0.0005 1.21902 0.02286
IFEM (SA) B2 2 0 0.0005 0.00001 0.01046
IFEM (SA) B2 2 6 0.0005 0.63758 0.01298
IFEM (SA) B2 2 12 0.0005 1.20819 0.02276
IFEM (SA) B2 3 0 0.0005 −0.00003 0.01047
IFEM (SA) B2 3 6 0.0005 0.63409 0.01301
IFEM (SA) B2 3 12 0.00035 1.20745 0.02187

3.5. Simulation length
In order to determine the lift and drag parameters it is crucial that the

simulations are run until a quasi steady-state situation is achieved. This is
monitored through the cumulative lift and drag coefficients. A time history
plot of the cumulative mean of the lift and drag coefficients for grid B0, p = 2,
α = 12◦ and ∆t = 0.0005 is shown in Figure 8.

Based on these results, the calculations of the lift and drag coefficients are
based on the time interval between 70 and 75 (≈ 10000 time steps).

3.6. Definition of test cases
Once the domain size, time steps and simulation length are established fur-

ther simulations were conducted for three mesh setups B0, B1, B2 with linear,
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Figure 8: NACA0015: Cumulative mean of CL and CD at α = 12◦ for grid B0, p = 2,
∆t = 0.0005.

quadratic and cubic spline elements with a time step as given in Table 5. All
inputs, including boundary conditions, are identical for all the cases with an
angle of attack α = 0◦, 6◦, 12◦. Thus a total of 27 cases are investigated.

4. Results and discussion

Results from the 27 different cases discussed in the previous section are now
compared against two sets of experimental ([36],[37]) results. While the results
in [37] come from the experiments conducted at the same Reynolds number as
in this paper, the results in [36] were obtained from wind tunnel experiments
conducted at lower Reynolds numbers and then extended to higher ones. In
the following subsections we present and discuss our 2D simulation results for
different angles of attack α.

4.1. Results for α = 0◦

An angle of attack of α = 0◦ corresponds to a situation where the flow
is expected to be statistically symmetric and absence of any flow separation.
Experimental values of nearly zero lift therefore does not come as a surprise.
The pressure field in Figure 21a computed by numerical simulation is symmetric
about the chord line which implies that the pressure integrated over the top
surface and bottom surface will be equal in magnitude and opposite in direction
resulting in a net zero lift. Also the flow impinges on the leading edge resulting
in a relatively high pressure zone on this side of the flow and hence a positive
drag coefficient.
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4.1.1. Lift and drag coefficients for α = 0◦

Lift and drag coefficients for α = 0◦ are shown in Table 6 along with ex-
perimental results available in the literature. The results are also presented in
Figure 9. Lift coefficients are predicted very well in our simulations and compare
well to the two sets of experimental results. Drag coefficients on the other hand
are overpredicted. This is as expected due to the use of the Spalart-Allmaras
turbulence model which assumes fully turbulent flow. However, drag coefficients
seem to be better approximated for p = 1 than for p = 2 and p = 3, whilst lift
coefficients seem to be better approximated with increasing spline element order
p.

4.1.2. Surface pressure plots for α = 0◦

The surface pressure coefficients for mesh B2 and p = 1, 2, 3 computed using
IFEM are compared against experimental results from [37] in Figure 10. Figures
11 and 12 give a zoomed-in view of the Cp plot towards the leading and trailing
edges respectively. The comparisons for p = 1, p = 2 and p = 3 are in good
agreement.

4.2. Results for α = 6◦

As the angle of attack increases to α = 6◦ the flow becomes asymmetric. Fig-
ure 21b shows that a relatively large surface area now tries to obstruct the flow
resulting in the development of high pressure zone on the bottom-leading side
of the airfoil. The asymmetric distribution of the pressure on the airfoil results
not only in a net upward lift but also a positive drag force. The experiments
confirm the results.

4.2.1. Lift and drag coefficients for α = 6◦

For α = 6◦, lift and drag coefficients are shown in Table 7 along with ex-
perimental results available in the literature. The results are also presented
in Figure 13. The drag coefficients seem to be somewhat higher than the ex-
perimental results. This overprediction is again due to the Spalart-Allmaras
turbulence model assuming fully turbulent flow. Again, drag coefficients for

Table 6: NACA0015: Lift and drag coefficients for flow past a fixed NACA0015 airfoil at
α = 0◦ and Re = 2.5 × 106.

Grid p ∆t CL CD

IFEM (SA) B0 1 0.0005 −0.00009 0.01031
IFEM (SA) B0 2 0.0005 0.00001 0.01047
IFEM (SA) B0 3 0.0005 −0.00005 0.01054
IFEM (SA) B1 1 0.0005 0.00007 0.01040
IFEM (SA) B1 2 0.0005 0.00020 0.01045
IFEM (SA) B1 3 0.0005 0.00000 0.01049
IFEM (SA) B2 1 0.0005 −0.00016 0.01041
IFEM (SA) B2 2 0.0005 0.00001 0.01046
IFEM (SA) B2 3 0.0005 −0.00003 0.01047
Exp: McAlister et al. [37] -0.01 - 0.00 0.00
Exp: Sheldal et al. [36] 0.000 0.0070
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(a) Lift coefficients (α = 0◦).

B0 B1 B2
Mesh

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

C
D

 [
-]

p=1

p=2

p=3

McAlister

Sheldal

(b) Drag coefficients (α = 0◦).

Figure 9: NACA0015: Lift and drag coefficients for flow past a fixed NACA0015 airfoil at
α = 0◦ and Re = 2.5 × 106.

p = 2 and p = 3 are higher than for p = 1. The lift coefficients obtained for all
three grids are closer to the experiments in [36] than in [37]. Lift coefficients
obtained with p = 1 are lower than for p = 2 and p = 3.

4.2.2. Surface pressure plots for α = 6◦

Surface pressure coefficient plots for IFEM runs with the Spalart-Allmaras
turbulence model are presented in Figure 14 for grid B2, alongside comparisons
with surface pressure distributions from experiments in [37]. Figure 15 and 16
once again gives a zoomed in view of the Cp plot towards the leading and trailing
edges respectively. In this case, even for sufficiently fine mesh the coefficients
are not accurately predicted towards both the edges. There are only minor
differences in the Cp-curves for different polynomial orders.
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Figure 10: NACA0015: Surface pressure plot for α = 0◦. Simulation run for grid B2 with
p = 1, p = 2 and p = 3, ∆t = 0.0005.
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Figure 11: NACA0015: Surface pressure plot of leading edge for α = 0◦. Simulation run for
grid B2 with p = 1, p = 2 and p = 3, ∆t = 0.0005.
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Figure 12: NACA0015: Surface pressure plot of trailing edge for α = 0◦. Simulation run for
grid B2 with p = 1, p = 2 and p = 3, ∆t = 0.0005.

Table 7: NACA0015: Lift and drag coefficients for flow past a fixed NACA0015 airfoil at
α = 6◦ and Re = 2.5 × 106.

Grid p ∆t CL CD

IFEM (SA) B0 1 0.0005 0.66101 0.01315
IFEM (SA) B0 2 0.0005 0.64599 0.01323
IFEM (SA) B0 3 0.0005 0.64000 0.01330
IFEM (SA) B1 1 0.0005 0.64732 0.01306
IFEM (SA) B1 2 0.0005 0.63829 0.01310
IFEM (SA) B1 3 0.0005 0.63419 0.01311
IFEM (SA) B2 1 0.0005 0.64573 0.01299
IFEM (SA) B2 2 0.0005 0.63758 0.01298
IFEM (SA) B2 3 0.0005 0.63409 0.01301
Exp: McAlister et al. [37] 0.69 - 0.71 0.01
Exp: Sheldal et al. [36] 0.660 0.0089

4.3. Results for α = 12◦

As the angle of attack is further increased to α = 12◦ more of the bottom
surface of the airfoil is exposed to the incident flow and hence higher pressure.
Contrary to that, the top surface is shielded from the incident flow and hence
relatively much lower pressure is experienced. As in the previous case it results
in positive lift and drag forces albeit much bigger in magnitude. Once again the
prediction is confirmed by experimental observations.
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(a) Lift coefficients (α = 6◦).
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(b) Drag coefficients (α = 6◦).

Figure 13: NACA0015: Lift and drag coefficients for flow past a fixed NACA0015 airfoil at
α = 6◦ and Re = 2.5 × 106.

4.3.1. Lift and drag coefficients for α = 12◦

Lift and drag coefficients for α = 12◦ are shown in Table 8 along with
experimental results available in the literature. The results are also presented
in Figure 17. The drag coefficients are once again overpredicted compared to
the experimental results. For the lift coefficients the differences between p = 1
on the one hand and p = 2 and p = 3 on the other are more pronounced than for
lower angles of attack. Lift coefficients are in between the experimental results
in [36] and [37] and thus show reasonable agreement.

4.3.2. Surface pressure plots for α = 12◦

Surface pressure coefficient plots for IFEM run with the Spalart-Allmaras
turbulence model are presented in Figure 18, alongside comparisons with surface
pressure distributions from experiments in [37].
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As for the two lower angles of attack, there are only minor differences in
the prediction of pressure coefficients along the whole airfoil when using spline
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Figure 14: NACA0015: Surface pressure plot for α = 6◦. Simulation run for grid B2 with
p = 1, p = 2 and p = 3, ∆t = 0.0005.
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Figure 15: NACA0015: Surface pressure plot of leading edge for α = 6◦. Simulation run for
grid B2 with p = 1, p = 2 and p = 3, ∆t = 0.0005.
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Figure 16: NACA0015: Surface pressure plot of trailing edge for α = 6◦. Simulation run for
grid B2 with p = 1, p = 2 and p = 3, ∆t = 0.0005.

Table 8: NACA0015: Lift and drag coefficients for flow past a fixed NACA0015 airfoil at
α = 12◦ and Re = 2.5 × 106.

Grid p ∆t CL CD

IFEM (SA) B0 1 0.0005 1.22001 0.02446
IFEM (SA) B0 2 0.0005 1.20042 0.02443
IFEM (SA) B0 3 0.0005 1.19376 0.02451
IFEM (SA) B1 1 0.0005 1.21490 0.02352
IFEM (SA) B1 2 0.0005 1.20243 0.02344
IFEM (SA) B1 3 0.0005 1.19667 0.02343
IFEM (SA) B2 1 0.0005 1.21902 0.02286
IFEM (SA) B2 2 0.0005 1.20819 0.02276
IFEM (SA) B2 3 0.00035 1.20745 0.02187
Exp: McAlister et al. [37] 1.24 - 1.39 0.03 - 0.06
Exp: Sheldal et al. [36] 1.177 0.0157

elements of order polynomial order p = 1, 2, 3.

4.4. Low Re investigations
As all results presented so far have shown only little or no improvement for

the surface pressure distributions with increasing spline element order, we make
some additional investigations at a low Reynolds number, Re = 250. This is
done for two grids. The first is B0 as presented earlier, with a distance to the first
knotline designed for y+ = 1 at Re = 2.5 × 106 The other is B3, much coarser
than grids B0-B2 and designed for Re = 250, with 10890 elements. Distance
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(a) Lift coefficients (α = 12◦).
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(b) Drag coefficients (α = 12◦).

Figure 17: NACA0015: Lift and drag coefficients for flow past a fixed NACA0015 airfoil at
α = 12◦ and Re = 2.5 × 106.

to the first knotline for B3 is 0.2/
√

(Re), and all investigations are carried out
at an angle of attack α = 12◦. The resulting surface pressure distributions
are shown in Figure 22. From the figure is it clear that polynomial order has
an impact only for grid B3, not for grid B0 which is designed to resolve the
boundary layer for Re = 2.5× 106. The significant difference is between linear
elements on the one side and quadratic and cubic elements on the other.

5. Conclusions

The major contribution of this work has been the demonstration of the usage
of a Navier-Stokes solver based on an isogeometric finite element method using a
Chorin projection method and Spalart-Allmaras turbulence model to simulate
high Reynolds number flow (Re = 2.5 × 106) around the NACA0015 airfoil
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for three different angles of attack. Also, another original contribution is the
design of meshes for isogeometric computation of airfoil flows. Most significant
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Figure 18: NACA0015: Surface pressure plot for α = 12◦. Simulation run for grid B2 with
p = 1, p = 2 and p = 3, ∆t = 0.0005 for p = 1, 2, ∆t = 0.00035 for p = 3.
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Figure 19: NACA0015: Surface pressure plot of trailing edge for α = 12◦. Simulation run for
grid B2 with p = 1, p = 2 and p = 3, ∆t = 0.0005 for p = 1, 2, ∆t = 0.00035 for p = 3.
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Figure 20: NACA0015: Surface pressure plot of leading edge for α = 12◦. Simulation run for
grid B2 with p = 1, p = 2 and p = 3, ∆t = 0.0005 for p = 1, 2, ∆t = 0.00035 for p = 3.

concluding remarks are enumerated as follows:

• The solver presented computes lift, drag and pressure coefficients which are
in reasonable agreement with the experimental observations. The pressure
coefficients were underpredicted for all the angles of attack.

• The work also investigates in detail and comes up with a choice of do-
main size, mesh resolution, time step and simulation length for the flow
investigated.

• It gets increasingly more difficult numerically to predict drag, lift and
pressure coefficients with increasing angle of attack.

• There is very little benefit evident from the usage of higher order splines,
particularly for prediction of Cp.

• It appears that the gain in numerical accuracy is more than offset by
the modeling error associated with RANS-based turbulence modeling ap-
proach. This is perhaps the reason no improvement in accuracy was ob-
served when the simulations were conducted with high Reynolds number
and Spalart-Allmaras turbulence model. On the contrary, at low Reynolds
number when no turbulence model was activated, the added value due to
higher order splines was observed for the coarse mesh. This explanation
can be taken to argue in favor of a turbulence resolving approach in com-
parison to a turbulence modeling approach.

• The numerical results have been compared to experimental observations
which can itself have errors associated with them which have not been
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(a) α = 0◦

(b) α = 6◦

(c) α = 12◦

(d) Common legend

Figure 21: NACA0015: Pressure contours with streamlines around the airfoil for different
angles of attack.

taken into account while a comparison is being made. There is definitely
a need for more accurate experiments with quantified uncertainties and
errors.

• In spite of some shortfalls the results from our study give a promising
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Figure 22: NACA0015: Surface pressure distributions for Re = 250.

outlook for further work towards fluid-structure interaction simulations
of wind turbine blades using the developed isogeometric finite element
Navier-Stokes solver IFEM. The possibility to use RANS-based turbulence
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model in addition to VMS and LES can make the methodology attractive
to a wider community, many of whom will be interested in quick results.
In particular, 2D airfoil sections as studied here can be coupled through
a beam element in a strip theory approach as in [10] and [8].

However, flow around an airfoil, particularly at higher angles of attack, is
characterized by three-dimensional flow phenomena like vorticity fluctuation
and vortex stretching. A combination of a RANS approach and two-dimensional
simulations suppresses all the three-dimensional flow phenomena. Even in three-
dimensional flow simulations, owing to the diffusive nature of any RANS model,
these phenomena will remain unresolved. An LES or VMS approach will be more
suited to accurately model such flow. Weak enforcement of boundary conditions,
such as in [38], appears a promising proposition as it is computationally less
demanding and stable compared to the more conventional approach.
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