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Abstract When injecting CO2 or other fluids into a
geological formation, pressure plays an important role

both as a driver of flow and as a risk factor for me-
chanical integrity. The full effect of geomechanics on
aquifer flow can only be captured using a coupled flow-

geomechanics model. In order to solve this computa-
tionally expensive system, various strategies have been
put forwards over the years, with some of the best
current methods based on sequential splitting. In the

present work, we seek to approximate the full geome-
chanical effect on flow without the need of coupling
with a geomechanics solver during simulation, and at a

computational cost comparable to that of an uncoupled
model. We do this by means of precomputed pressure
response functions. At grid model generation time, a

geomechanics solver is used to compute the mechani-
cal response of the aquifer for a set of pressure fields.
The relevant information from these responses is then
stored in a compact form and embedded with the grid

model. We test the accuracy and computational per-
formance of our approach on a simple 2D and a more
complex 3D model, and compare the results with those
produced by a fully coupled approach as well as from a
simple decoupled method based on Geertsma’s uniaxial
expansion coefficient.
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1 Introduction

1.1 Background

In order for carbon capture and storage (CCS) to play a
significant role in the mitigation of climate change, hun-
dreds or even thousands of megatonnes of CO2 would

have to be injected annually into geological formations
on a worldwide basis [9]. This represents a huge scale-
up from current practice and experience, which means

that we to a large extent need to rely on theoretical
knowledge and computer simulations to gain insight
into storage-related issues such as injectivity, capac-
ity or long-term migration. Frequently, the use of com-
puter models to investigate such questions will involve
working with sparse or poorly constrained data, and
address issues that relate to a wide range of spatial and

temporal scales. The ability to run a large number of
simulations in a reasonable amount of time is crucial,
as it allows efficient exploration of different hypotheses
and choices of parameters, evaluation of various injec-
tion scenarios and assessment of potential risk factors.
Examples are workflows that include inverse modeling,
optimization of storage operations, or risk analysis in

the face of a large number of unknown or uncertain pa-
rameters. For this reason, the case for simplified tools
for modeling CO2 storage, less demanding than the use
of traditional reservoir simulators, has previously been
argued [28,26]. Significant effort has been spent on the
development of simplified tools for predicting subsur-
face flow of CO2 at large scales. Over time, the capa-
bilities of such tools have been expanded to account for
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a considerable range of physical phenomena [29,18,17,

27,1]. However, reduced models that properly account

for the two-way coupling between fluid flow and rock

mechanics have so far received less attention, although

recent work in this field includes the linear vertical de-

flection model of [6].

Geomechanical issues have proved to be important

even in the context of current, limited size CO2 storage

operations [42,13], and will be even more important to

understand for the larger-scale operations envisioned in

a global mitigation scenario. Potential geomechanical

risks associated with CO2 storage include seismicity,

fault reactivation, rock fracturing and unwanted fluid

displacement [34]. Understanding these risks will be im-

portant for any discussion regarding injectivity, storage

capacity or long-term safety.

Investigating geomechanical effects requires the abil-

ity to model the interplay between fluid flow, pressure,

mechanical stresses and strains, as well as the impact of

deformation on rock properties. The theoretical frame-

work of poromechanics was first introduced in the for-

ties by the work of Karl von Terzaghi and Maurice Biot.

Significant attention has later been paid to how this

framework can be applied to reservoir engineering, and

how the resulting system of coupled equations describ-

ing pressure and mechanical displacement can be effi-

ciently solved [39,38,23,12,20,24,19].

Many studies have been carried out on the topic

of geomechanics and CO2 injection over the years. At

the theoretical level, the poromechanical framework has

been used to investigate the risk of fracturing or fault

slip caused by elevated pressure and reduced effective

stress [36,35,8], and assess the risk of induced seismicity

[7]. A reduced model for coupled flow and geomechan-

ics, adapted to the case of CO2 storage, was proposed

by [6], whereas [10] situates geomechanics within a com-

prehensive modeling framework for CO2 storage, where

different physical processes are modeled depending on

the spatial and temporal scale. Specific case-studies in-

volving CO2 injection and geomechanical impacts in-

clude Ketzin [30], In-Salah [37,32,5], Vedsted [41] and

the CO2CRC Otway Project [3].

When fluid is injected into a geological formation,

the resulting change in underground pore pressure is

accompanied by some degree of mechanical deforma-

tion of the rock matrix caused by a change in the un-

derground balance between mechanical and pressure

forces. The rock deformation also has an impact on the

evolution of the pressure field itself, as the expansion or

contraction of the rock matrix modifies material param-

eters that affect fluid flow, in particular porosity and

permeability [11]. Whereas the influence of pressure on

rock deformation is fundamental in any combined sim-

ulation of geomechanics and fluid flow, the impact of

geomechanics on the pressure field is often simplified

or neglected. In reservoir modeling, the most common

practice is to simulate reservoir flow in isolation, and

compute the corresponding mechanical deformation as

a post-processing step if desired. Under this approach,

the full impact of rock mechanics on fluid flow is not

explicitly modeled, but the effect is approximated by

modeling rock properties as (typically linear) functions

of local pressure or assumed stress. In particular, the

effect of rock expansion is frequently modeled using a

pore volume compressibility coefficient, which affects

the accumulation term of the governing mass-balance

equations [39,12,23]. This approach is standard prac-

tice in most commercial and academic reservoir simu-

lation software, and may often provide a sufficient ap-

proximation of the real behavior of the poromechanical

system. In the context of geomechanics and CO2 stor-

age, it has been utilized in e.g. [30,3,41].

On the other hand, a full account of geomechan-

ical effects requires explicit modeling of the two-way

coupling between the flow and mechanical subsystems.

This requires embedding the reservoir simulation grid

within a larger mechanical grid that includes the over-

and underburden, and solving the equations of the com-

bined system together. In this setting, flow is frequently

restricted to the reservoir part of the model, whereas

mechanical deformations occur throughout the model.

Under the fully coupled approach, each discrete el-

ement (node, face or cell, depending on the numeri-

cal discretization) in the mechanical model comes with

three displacement unknowns that must be solved for,

alongside with the unknowns of the flow equation. The

full flow/mechanical system is thus described by two

coupled equations of elliptic character. This leads to

a numerical model with a large number of unknowns,

which is computationally heavy to solve. Various strate-

gies based on sequential splitting have been proposed

for computing the solution in an efficient manner, e.g.

[38,23,12], and the “fixed-stress split” approach has

been shown to have particularly favorable convergence

properties [20,24]. In addition to being attractive from a

computational viewpoint, sequential splitting approaches

have the additional advantage that they allow flow and

mechanics equations to be separately addressed by stan-

dard solvers that have been highly adapted to their spe-

cific fields over the years. Examples where fully coupled

geomechanical modeling has been used in the context

of CO2 storage include [36], [10] and [32].

The general need for fully coupled models versus the

more common practice of one-way coupling has been

argued both ways in the past in the context of aquifer

pumping and subsidence problems [22,15]. Regarding
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CO2 injection, the geomechanical feedback on fluid flow

was observed to be weak and localized around the injec-

tion well for the test cases explored in [10]. In any case,

there seems to be a general recognition in the research

community that the full geomechanical impact on flow

is of relevance in at least some situations, as brought

to witness by the significant amount of related research

activity in recent years.

1.2 Our proposed approach

Sequential splitting strategies in combination with iter-

ative linear solvers provide a significant gain in compu-

tational efficiency compared to solving all equations as a

single system. However, the problem remains consider-

ably more computationally demanding than the mod-

eling of aquifer flow in isolation, as is common prac-

tice in reservoir engineering. This is because the se-

quential splitting approach still requires the mechan-

ics equations to be solved repeatedly throughout the

simulation. In the case of iterative strategies, both the

flow and mechanics equations have to be solved multiple

times for every timestep until convergence is achieved.

Moreover, even though the splitting approach permits

the flow simulator and geomechanics solver to be cho-

sen independently, it is still necessary to have access to

both types of software at runtime.

In the approach we propose in this paper, we aim

to include the full effect of geomechanics on fluid flow

to different degrees of approximation, without the need

of a mechanics solver at simulation time. As such, the

computational requirements become comparable to that
of standard reservoir modeling, whereas the solution ap-

proaches that of a two-way coupled system. This advan-

tage comes at the expense of a precomputation step at

grid generation time, where the mechanical responses

of the grid for a large set of discrete pressure fields

are determined and stored for re-use at flow simulation

time. The approach is based on the theory of linear

poroelasticity [43]. Its practical feasibility relies on the

observation that although a local change in a pressure

field can have significant non-local mechanical effects

in terms of displacements, the impact on rock expan-

sion (i.e. the divergence of displacements), is typically

much more local in the case of boundary conditions rel-

evant to CO2 injection, as will be discussed in the next

section.

An approach to approximating the full poromechan-

ical system using only a flow simulator has previously

been proposed in [31]. In that work, an optimal coupling

term based solely on local fluid pressure was estimated

for each cell in the aquifer, and can be understood as

a non-linear generalization of the numerical parameter

c̄m discussed in Section 2.3 below.

For simplicity, our focus is limited to one-phase flow,

although the proposed method is extendable to multi-

phase flow under the assumption that mechanical re-

sponse is tied to effective fluid pressure. In [2], we ex-

tend and apply this method to a two-phase, dimension-

ally reduced flow model for CO2 storage. Moreover, we

have chosen to omit the impact of geomechanical stress

on rock permeability. This effect could also be easily

included in the model, but merits a separate analysis

and is thus considered future work.

2 Conceptual system, theory and basic idea

We consider a fluid injection or extraction operation

into/out from a subterranean reservoir or aquifer. We

neglect fluid flow through aquifer top and bottom bound-

aries, and impose either no-flow or fixed pressure along

lateral boundaries. To model mechanical deformation,

the aquifer model is embedded within a larger rock

matrix that includes the over- and underburden (col-

lectively referred to as the surrounding domain). The

overburden zone extends up to the surface, where the

mechanical boundary condition is that of fixed, normal

traction, while the underburden zone extends down to

some specified deeper level where zero mechanical dis-

placements are assumed. The lateral boundary condi-

tions can be of any type; for the purpose of the examples

presented in this paper, we use the ‘roller’ type with

zero lateral displacements and constant vertical stress.

Fig. 1 Left: The conceptual model. The aquifer is illustrated
as a light band within a darker matrix of surrounding rock
that extends up to the ground level (green surface). Fluid flow
only takes place in the aquifer, whereas mechanical deforma-
tions are computed for the full model. Right: Cross-section
view of the model, with mechanical boundary conditions in-
dicated. Lateral boundaries can be of any type (‘roller’ type
indicated on figure)

The complete model domain is denoted Ω, with bound-

ary ∂Ω. The domain Ω is subdivided in two separate

zones, the aquifer Ωaq and the surrounding domain Ωsd.

For simplicity, we model Ωaq and Ωsd as having separate
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but spatially homogeneous sets of poroelastic moduli.

In the presentation of the method and the examples of

this paper, we restrict fluid flow to the aquifer, so the

associated pressure field is only defined on Ωaq. Accord-

ingly, drained poroelastic moduli are used to describe

Ωaq, whereas Ωsb is described in terms of undrained

moduli. We thereby neglect the effect of fluid flow oc-

curring outside the aquifer as a result of mechanical

deformations induced by the pressure field inside the

aquifer. A basic, layered structure similar to Figure 1

is assumed, but Ωaq and Ωsd can be of arbitrary geo-

metrical shape and topology, including pinch-outs. In

practice, one will often want to also model fluid flow in

the confining layers, in order to capture the coupling

effect between the stress field and slow-moving fluid in

low-permeability rock. The basic method described in

this paper can be generalized to this case by introduc-

ing additional low-permeability layers above/below the

aquifer in the regions of interest (e.g. around wells), and

applying the same approach to these layers as described

for the aquifer itself in the following sections.

2.1 Linear poroelasticity formulation

We here assume that mechanical equilibrium is reached

on a time scale much shorter than that of fluid flow, and

that mechanical deformations are sufficiently small to

remain within a linear elastic regime. This allows us to

model the coupled flow-mechanical system within the

framework of linear poroelasticity. (For models that in-

clude regions with nonlinear behavior, our model can be

applied on the linearly-behaving parts, coupled with a

full model for the nonlinear part, c.f. discussion in Sec-

tion 4). The governing equations of linear poroelasticity

consist of the force equilibrium equations for mechanics

and an inhomogeneous diffusion equation for fluid pres-

sure. Coupling between equations arise as the gradient

of pore pressure plays the role as a body force in the

mechanical equilibrium equations, whereas mechanical

strain appears in the accumulation term of the pressure

diffusion equation. In our formulation, the independent

unknown variables consist of the mechanical displace-

ment field u = [ux, uy, uz]
T defined on Ω, and the fluid

pressure p defined on Ωaq.

The mechanical system is assumed to be in trans-

lational and rotational equilibrium at any time. Rota-

tional equilibrium implies that the total stress tensor,

σ, should be symmetrical, i.e.:

σ = σT (1)

whereas translational equilibrium requires that the di-

vergence of this tensor counterbalances the body forces

F acting on it:

∇ · σ + F = 0 (2)

In linear poroelasticity, provided tensile stresses are taken

to be positive, total stress equals the difference between

effective stress σ′ and a term proportional to fluid pres-

sure:

σ = σ′ − αpI (3)

where α is the Biot-Willis coefficient and I is the iden-

tity matrix in R3. Effective stress is linked to elastic

strain ε through Hooke’s law:

σ′ = Cε (4)

where C is the fourth-order elasticity tensor, and the

elastic strain tensor ε is defined as:

ε =
1

2
(∇u +∇uT ) (5)

For an isotropic material, (4) reduces to:

σ′ = 2Gε+ (K − 2

3
G)tr(ε)I (6)

where K and G denote respectively the drained bulk

and shear moduli of the material, and tr(ε) denotes

the trace of ε. K and G can be space-dependent. By

combining the equilibrium equation (2) with (3), (5)

and (6), we obtain the displacement formulation of the

force balance equation for an isotropic material:

∇ · (G∇u) +∇
(

(K +
1

3
G)∇ · u

)
− α∇p = ρbg (7)

Here, we have considered that the body force F from

(2) consists of the gravity force only, i.e. F = −ρbg,

where ρb is the bulk density of the medium and g is

gravitational acceleration.

In addition, boundary conditions must be specified.

Boundary conditions can be of different type for differ-

ent spatial components of the displacement vector u.

For instance, lateral roller boundary conditions spec-

ify zero displacement (Dirichlet) for ux and uy, but

fixed-stress (Neumann) for uz. Each spatial component

i ∈ {x, y, z} of u thus has its own subdivision of ∂Ω

into a Neumann (Γit) and a Dirichlet (Γig) part. For

each spatial component i, fulfillment of the boundary

conditions requires:

ui = gi on Γig (8)

σjinj = ti on Γit (9)

Regarding rotational equilibrium, from (3), (5) and (6)

it is easy to see that the symmetry requirement of (1)

is automatically fulfilled.
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The pressure equation governing single-phase fluid

flow is obtained by combining the fluid continuity equa-

tion with Darcy’s constitutive relationship between pres-

sure and flow. The fluid continuity equation with volu-

metric source term Q can be written:

ζ̇ +∇ · q = Q (10)

Here, q represents the volumetric fluid flux and ζ de-

notes the accumulation term. In poroelastic literature,

starting with [4], ζ is commonly referred to as the incre-

ment of fluid content, and represents the volume of fluid

imported into a control volume, per control volume. It

is modeled as depending linearly on fluid pressure p and

volumetric strain ε = tr(ε) = ∇ · u, so that the time

derivative becomes:

ζ̇ =
∂ζ

∂p
ṗ+

∂ζ

∂ε
ε̇ = Sεṗ+ αε̇ (11)

Here Sε is called the specific storage coefficient at con-

stant strain and α is the Biot-Willis coefficient that was

already introduced in (3). The following expression can

be derived for Sε [43]:

Sε =
1

K
(1− α)(α− φ) +

φ

Kf
(12)

Here, φ is the porosity of the medium and 1
Kf

represents

fluid compressibility.

The flux q is linked to the fluid pressure through

Darcy’s law:

q = −k
µ

(∇p− ρfg) (13)

where k is the permeability of the medium, µ represents

fluid viscosity and ρf fluid density. Combining Darcy’s

law with (10) and (11), we obtain the pressure equation

for single-phase flow:

αε̇+ Sεṗ−∇ ·
k

µ
(∇p− ρfg) = Q (14)

In our model, this equation governs fluid flow in

Ωaq. Fluid flow is neglected in Ωsd, where we instead

use the undrained bulk modulus Ku = K+ α2

Sε
, and the

corresponding force balance equation reduces to that of

linear elasticity.

The combined poroelastic equation system, with u

and p as unknowns, becomes:

∇ · (G∇u) +∇
(

(K +
1

3
G)∇ · u

)
− α∇p = ρbg (15)

αε̇+ Sεṗ−∇ ·
k

µ
(∇p− ρfg) = Q (16)

in the aquifer (Ωaq), and:

∇ · (G∇u) +∇
(

(Ku +
1

3
G)∇ · u

)
= ρbg (17)

in the surrounding domain (Ωsd). Ku here represents

the undrained bulk modulus in Ωsd.

Poroelastic parameters are here allowed to be spa-

tially heterogeneous. In particular, they may vary be-

tween the aquifer and its surroundings, or between dif-

ferent geological layers. We see that (15) is coupled to

(16) through the term α∇p, whereas (16) is coupled to

(15) and (17) through the term αε̇ (= α∇ · u̇).

Mechanical boundary conditions at ∂Ω are given by

(8). Material continuity dictates the boundary condi-

tions at the interfaces between Ωaq and Ωsd. Boundary

conditions for flow in Ωaq are:

p = p0 on Γp (constant pressure) (18)

q = 0 on Γq (no-flow) (19)

where it is understood that the top and bottom bound-

aries of the aquifer are both part of Γq.

2.2 timestepping and linear system

A backwards-Euler time discretization of (16) yields:

(20)α∇ · un+ 1 + Sεp
n+1 −∆t

K

µ
∇2pn+1

= ∆tQn+1 + α∇ · un + Sεp
n

where ∆t is the timestep size, and (un, pn) and (un+1, pn+1)

are the values of (u, p) at timestep n and n + 1 re-

spectively. Given an applicable spatial discretization

scheme, the resulting linear system can be expressed

as:[
G S + ∆tP

] [un+1

pn+1

]
=
[
G S

] [un
pn

]
+ ∆tQ (21)

where G is a discretization of α∇·u restricted to aquifer

cells, S is a discretization of Sεp, P is a discretization of
K
µ∇

2p and Q is a discretization of the source term Q.

If we moreover use M to represent a discretization of

∇ · (G∇u) +∇
(
(K + 1

3G)∇ · u
)

and Fu to represent a

combined discretization of body forces ρbg and bound-

ary forces t, we get the linear system for the complete

poroelastic problem:[
M GT

G S + ∆tP

] [
un+1

pn+1

]
=

[
0 0

G S

] [
un

pn

]
+

[
Fu

∆tQ

]
(22)

Since the gradient operator is the negative adjoint of

the divergence operator away from the boundary, the
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discretization of α∇p is here −GT . It is assumed that

the matrices M, S and P are symmetrical.

It is worth noting that the number of aquifer cells in

a discrete model, Naq, is usually significantly less than

the total number of cells in the model N = Naq +Nsd.

Moreover, since pressure is scalar whereas u has 3 com-

ponents (in 3D), the number of discrete values ui is

approximately 3N , whereas the number of discrete val-

ues pi is only about Naq. As a consequence, the square

matrix M is much larger than S+∆tP and G, and the

system block matrix takes on the following shape:

M GT

G
S +

∆tP

Another important observation is that the influence

of the displacement field u on the pressure equation is

only in terms of its divergence ε. As we argue in the

next subsection, the impact of a local pressure change

on ε is generally localized, even though the influence on

u can be far-reaching. This is key to the practicality of

our proposed method when applied to large models.

Finally, we note that if one were to eliminate u

from (22) using the Schur complement, we define E =

−GM−1GT and obtain:

(E + S + ∆tP)pn+1 = (E + S)pn + ∆tQ (23)

The matrix E ∈ MNaq here represents volumetric

strain ε as a function of p only. It is a symmetric matrix

whose size is significantly smaller than the full system

matrix (M3N+Naq ). On the other hand, E is non-sparse,

making it impractical to store and invert directly. As

becomes apparent in the discussion of our method be-

low, our approach can be numerically interpreted as the

use of a truncated form of the Schur complement.

2.3 Decoupled flow simulation and Geertsma’s

uniaxial poroelastic expansion coefficient

Under the assumption of zero lateral strain and con-

stant vertical stress, the pressure equation (16) com-

pletely uncouples from the mechanical equations (15)

and (17) [43]. With this assumption, often made in hy-

drogeology, changes in local strain ∆ε, now limited to

the vertical direction, become directly proportional to

changes in local pressure ∆p through the relation:

∆ε = cm∆p (24)

The factor cm is called Geertsma’s uniaxial poroelastic

expansion coefficient. It is related to the elastic moduli

K and G as follows:

cm =
α

Kv
(25)

where Kv = K+ 4
3G is the (drained) uniaxial bulk mod-

ulus of the material. By combining (24) with (16), we

obtain the uncoupled pressure equation:

(αcm + Sε)ṗ−
K

µ
∇2p = Q (26)

The only unknown in this equation is pressure. This is

equivalent to the standard transient flow equation used

in hydrogeology:

Sṗ− K

µ
∇2p = Q (27)

where S = αcm + Sε is the uniaxial specific storage

parameter. Combining (26) with the expression for Sε
in (12), we see that S can be divided into two parts

S = S1+S2, where S1 = αcm+ 1
K (1−α)(α−φ) accounts

for rock expansion and grain compressibility, whereas

S2 = φ
Kf

accounts for fluid compressibility. Such a pre-

sentation of the accumulation term is frequently made

in commercial and academic reservoir simulation code

(although not necessarily derived in the same way),

where the equivalent of S1 is interpreted as a pore vol-

ume compressibility coefficient, and S2 can be easily

generalized to the nonlinear case where fluid density is

obtained from an equation of state.

We refer to this decoupled approach, popular in

reservoir modeling, as the local model, since the rela-

tionship between aquifer volumetric strain and pressure

(24) is completely local. After solving for pressure us-

ing (26), mechanical displacements can be subsequently

obtained using (15) and (17), in which case it can be

considered a one-way coupled approach.

As demonstrated in the next section, the local model

often produces good results despite its simplicity and

low computational requirements. Nevertheless, it is clear

that the assumption of zero lateral strain can be only

approximately true throughout a problem domain. The

assumption breaks down in the presence of strong lat-

eral pressure gradients, e.g. in the vicinity of injecting

or producing wells. The model’s tendency to produce
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good results even in the presence of strong pressure

gradients can also be understood through a different

interpretation. As shown in the Appendix, the ana-

lytical solution of (7) in an infinite domain with con-

stant elastic moduli leads to relation (24) without any

further assumptions on stresses and strains. In other

words, any changes in strain that are non-locally de-

pendent on pressure must in some way be related to

material heterogeneities and/or influence from the im-

posed boundary conditions. For instance, if the system

as a whole is not allowed to expand, internal changes

in volume would always be zero-sum, so a local expan-

sion of a given internal volume would necessarily have

non-local impact. We here point out that decoupling

of the pressure and force balance equations also occur

under other assumptions, such as that of constant total

volumetric stress, or of highly compressible fluids. In

any case, as the system tends towards steady state, the

time-dependent term in (16) vanishes and the flow and

mechanical systems decouple, in which case (16) and

(27) become equivalent. However, in the general case

where the rock exhibits nonlinear behavior, coupled

and uncoupled simulations may produce significantly

different solutions at steady state.

Since cm is derived from the assumption of zero lat-

eral strain, it represents the increase in pore volume re-

sulting from a uniform vertical expansion of the aquifer,

as would approximately result from a uniform pressure

increase throughout the aquifer domain. This means

that we can use our poroelastic formulation to compute

a numerical generalization of cm, which we note c̄m,

and which can account for arbitrary boundary condi-

tions and heterogeneous rock parameters. This is done

by solving the elastic equations (15), and (17) a single

time for p equal to a uniform, unit pressure increase,

and using the obtained displacement field to compute

the corresponding volumetric strain ε for each individ-

ual aquifer cell. An example is presented in Figure 2,

where we have computed c̄m using a 2D (x, z) model

of a horizontal aquifer embedded in a larger rock ma-

trix, at a depth of 950 m. The aquifer is 10 km long

and 100 m thick, and the poroelastic parameters are

α=0.9, Kaq=1 GPa, Gaq=0.8 GPa, Ksd=40 GPa and

Gsd=10 GPa. We plot ∆ε/∆p for two different speci-

fied lateral boundary conditions, and compare with the

theoretical value of cm. With roller boundary condi-

tions, c̄m here reproduces the theoretical value of cm,

whereas clamped boundaries leads to strong variation

of c̄m towards the lateral boundaries, reflecting the local

breakdown of the assumption of zero lateral strain and

constant vertical stress. The numerically obtained pa-

rameter c̄m is thus able to model more general boundary

conditions than the underlying assumptions behind the

analytical parameter cm suggests. As an extreme exam-

ple, c̄m would equal zero for a materially uniform do-

main constrained with zero-displacements on all sides.

Material heterogeneities are also taken into account in

the numerical value of c̄m.
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Fig. 2 Numerical estimation of Geertsma’s uniaxial poroe-
lastic expansion coefficient cm for a two-dimensional (x, z)
flat and horizontal aquifer. The x-axis represents spatial po-
sition along the aquifer, whereas the y-axis represents the
local change in volumetric strain for a unit, global pressure
increase throughout the aquifer domain

2.4 The use of precomputed response functions

The local model just described relies on simplifying as-

sumptions that are at best approximately true, and fails

to capture non-local relations between pressure and vol-

umetric strain. On the other hand, solving the fully

coupled linear poroelastic system represented by (22)

quickly becomes computationally demanding. We here

seek to establish a method that retains much of the

computational efficiency of the local model, that does

not require any assumptions on strains or stresses, and

that is capable of producing results that are close to

those obtained by a fully-coupled model.

The force balance equation of linear poroelasticity

(7) establishes a relation between displacement field u,

pressure p, body force F = ρg and boundary condi-

tions bc, such that we can consider u to be uniquely

determined from the others:

u = u(p,F,bc) (28)

Moreover, as (7) is linear, the superposition principle

applies. As such, if p0 represents initial pressure and

p = p0 + p̃ is a different pressure, we have:

u(p,F,bc) = u(p0,F,bc) + u(p̃, 0, 0) (29)
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where u(p0,F,bc) represents initial deformation. As-

suming body forces and boundary conditions remain

constant, we can directly relate a change in displace-

ments ũ = u(p,F,bc)− u(p0,F,bc) to a change in pres-

sure p̃:

ũ = u(p̃, 0, 0) (30)

When solving a discretized system based on (7), the

pressure field is defined using a linear combination of a

set ofM basis functions {φ1, ...φM}, and can be written:

p(x) =
∑M
i=1 piφi(x). Using the notation p̃i = pi − p0

i ,

the superposition principle allows us to write:

ũ =

M∑
i=1

p̃iu(φi, 0, 0) (31)

The corresponding change in volumetric strain ε̃ = ∇·ũ
can thus be expressed:

ε̃ =

M∑
i=1

p̃iΨi (32)

where Ψi = ∇ ·u(φi, 0, 0) represents the system’s volu-

metric strain response to pressure perturbation φi. This

means that knowledge of the set of (scalar) functions

{Ψ1, ...ΨM} enables us to insert (32) into (16) to ob-

tain an equation that only depends on pressure. Solving

this single equation thus provides the same pressure so-

lution as solving the fully-coupled equation system that

also involves (15) and (17).

In the context of volumetric strain, we will refer

to the pressure basis functions {φi}i=1...M as impulse

functions and {Ψi}i=1...M as response functions. Our

proposed approach consists of precomputing and stor-

ing a set of approximated volumetric strain response

functions that corresponds to our set of pressure basis

functions. At simulation time, we can then solve (16)

using (32) to eliminate volumetric strain from the equa-

tion.

For the purpose of solving the pressure equation (16)

of our model problem, we only need the values of the re-

sponse functions {Ψi}i=1...M restricted to Ωaq. As the

number of aquifer grid cells in Ωaq is generally much

lower than the total number of cells in Ω, this allows us

to cut down significantly on the amount of information

that must be precomputed and stored. A natural choice

for the set of impulse functions {φi} is to let φi rep-

resent a unit pressure increase limited to aquifer grid

cell i. However, for the examples given in the follow-

ing section, a coarser set of impulse functions has been

chosen, where φi represents an unit pressure increase in

an entire vertical column of aquifer cells. This partic-

ular choice relies on the assumption that overpressure

does not vary in a significant way across the vertical

thickness of the aquifer. Given the large horizontal-to-

vertical aspect ratio of a typical aquifer, we find that

this approximation tends to work well in practice, while

cutting back on the required amount of precomputation

work.

In principle, the support of each response function

Ψi covers the entire Ωaq. However, for the physical

conditions relevant to injection scenarios, in particular

the presence of a free-moving top (land or sea) sur-

face, Ψi decays relatively quickly away from the sup-

port of the corresponding impulse φi. This means it

can be truncated at some distance beyond which its

value falls below some defined threshold. The remain-

ing function Ψ̃i has local support, and can be rescaled

so that
∫

Ωaq
Ψ̃idx =

∫
Ωaq

Ψidx. It is worth noting that

if φi represents a unit pressure increase in cell i and

Ψi is discretized as a cell-wise constant function, then

necessarily
∫

Ωaq
Ψidx = c̄m,i, where c̄m,i is the value of

c̄m for cell i, as explained in the Appendix. As such,

the truncated form Ψ̃i represents some intermediary

between the fully cell-restricted coefficient c̄m and the

function with full global support Ψi, where all three

entities represent the same total amount of aquifer vol-

umetric strain.

As a consequence, the use of c̄m in combination with

the previously described local model can be understood

as a limit case of using precomputed responses with a

sufficiently high threshold, so that the full support of Ψ̃i

falls within a single cell. However, in this case we know

that the value of c̄m for each and every aquifer cell can

be determined by solving equations (15) and (17) once,

as previously explained. Therefore, the required amount

of precomputation is much less for this limit case.

In the general case, the support of a truncated re-

sponse function Ψ̃i will extend across several cells, which

means that the flow simulator must be adapted to allow

for non-local pore volume compressibility coefficients in

order to support this approach.

A sample response function computed for a 2D model

is presented in Figure 3. We here plot the height-averaged

volumetric strain response as a function of lateral dis-

tance from a unit pressure perturbation (1 Pa) in a

100 meter thick, horizontal aquifer at a depth of 1000

meters. The aquifer consists of soft rock with a Young’s

modulus value of 1 GPa, embedded in a stiffer rock with

a Young’s modulus value of 10 GPa. A high resolution

is used (10 m size grid blocks) in order to produce visu-

ally smooth curves. Comparing the red and blue curves,

it is clear that the response function looks quite differ-

ent depending on whether a single or ten layers were

used in the vertical discretization of the aquifer region.

This is because the full mechanical effect of the pressure

perturbation cannot be properly captured without mul-
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tiple vertical cell layers. Using multiple different sets of

input parameters, we observe that response functions

generally consist of an inner negative part followed by

a local positive maximum, and finally an attenuation

region where the response decays towards zero. These

qualitative features can be explained as resulting from

the counteracting effects of arching and bulging. The

arching effect is produced by the elevated pressure of

the impulse region pushing vertically against the over-

and underburden regions, forcing them apart and caus-

ing nearby aquifer regions to expand (Figure 4, top).

This effect becomes more spatially spread out for higher

stiffness ratios between the surrounding domain and the

aquifer rock. On the other hand, there is a counteract-

ing pushing and bulging effect where the elevated pres-

sure of the impulse region causes it to expand laterally

into its neighborhood, thereby compressing the nearby

aquifer region (Figure 4, bottom). At sufficiently short

distances, this effect dominates over the arching effect,

resulting in a region with negative volumetric strain. At

longer distances, the arching effect prevails, resulting in

the local peak and attenuation regions of the response

function curves.
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Fig. 3 An example of a response function in 2D. Volumetric
strain plotted as a function of distance from a central pressure
perturbation. The left plot includes the value of perturbed
grid cell itself. On the right plot, we have suppressed the
perturbed grid cell and rescaled the curves to show percent-
wise response magnitude compared with the central value. A
vertical aquifer resolution of 10 cells was used to compute
the blue curves, whereas the red curves were computed using
a vertical aquifer resolution consisting of a single cell. With
just one vertical cell, the bulging effect (c.f. Figure 4) is not
properly captured

3 Results

In this section, we present a couple of cases where we

compare the solutions obtained using the fully coupled

model (full model) with those obtained using our pro-

posed method using precomputed response functions

p > p0p = p0 p = p0

Ωaq

Ωsd

Ωsd

p > p0
p = p0 p = p0

Ωaq

Ωsd

Ωsd

Fig. 4 Above: arching effect - local pressure perturbation
pushes caprock upwards, causing surrounding aquifer region
to stretch. Below: bulging effect - local pressure perturba-
tion causes the region to expand into the surrounding aquifer,
causing compression of the neighboring rock

(PR model) and using the standard one-way coupled

approach based on the use of local pore volume com-

pressibility coefficients (local model).

For the computations, we use the simulation frame-

work provided by Matlab Reservoir Simulation Toolbox

[25]. Fluid flow is modeled using a first order finite-

volume upstream-weighted two-point flux approxima-

tion numerical scheme, whereas mechanics is modeled

using a discretization based on first-order virtual ele-

ments [14] supplemented with approximate higher-order

energies to avoid artifacts that have been shown to arise

for high cell aspect ratios. Although for the simple ex-

amples below this makes our discretization equivalent

with a first-order finite element method, we belive the

virtual element method has promising potential for ge-

omechancial applications due to its applicability to very

general cell shapes. The interested reader is referred to

[33] or [21] for related discussion.

In the full model, flow and mechanics equations are

solved simultaneously as a full linear system. For the lo-

cal model, the computed values of c̄m are used for pore

volume compressibility coefficients. For the PR model,

an adapted simulator was used. This simulator com-
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putes (and caches) the truncated response functions as

an initial step before using them in a modified imple-

mentation of the system equations that allows non-local

compressibility coefficients. Although the code is not

optimized for speed, the use of preconditioned iterative

linear solvers (the conjugated gradient method with in-

complete Cholesky factorization; the biconjugate gra-

dients stabilized method with ILU factorization using

threshold and pivoting) significantly helped improve

performance for all three models.

3.1 Simple 2D example

We begin by studying a very simple 2D injection exam-

ple where fluid is injected into a 100 m thick aquifer at

a depth of 1000 m. We consider pressure development

for a constant bottom hole overpressure of 1 MPa over

a period of 50 days, and compare the results calculated

from our three models (full model, local model and PR

model). We use constant stress for lateral boundary

conditions. Other relevant simulation parameters are

listed in Table 1. This particular example was chosen

to illustrate the existence of two-way coupling effects in

the near-well region.

Table 1 Parameter values for simple 2D example

Lateral extent 5 kilometers
Lateral resolution 31 cells
Vertical extent (over, aquifer, under) 1000 m, 100 m, 800 m
Vertical resolution 10 cells, 5 cells, 10 cells
Young’s modulus, Ωaq,Ωsd 1 GPa, 10 GPa
Poisson ratio, Ω 0.3
Permeability, Ωaq 100 mD
Porosity, Ωaq 0.3
Fluid compressibility 4 · 10−5bar−1

Fluid viscosity 0.8 cP
Well bottom-hole overpressure 1 MPa
Duration of simulation 50 days
Timestep size 1 day
Biot-Willis coefficient α 1

The cutoff threshold used to compute the truncated

response functions Ψ̃i of the PR model is 10−2 times

the maximum value of Ψi.

Aquifer pressure and corresponding pore volume changes

for day 5 and day 50 are plotted in Figure 5 and 6. From

the left plot of Figure 5, we see that the PR model re-

produces aquite well the result of the full model. In

particular, we observe two zones with a local decrease

in pressure, situated at either side of the injection well,

which are fully captured by the PR model but not by

the local model. These pressure drops are associated

with the arching effect where an uplift of the caprock

caused by high pressure around the well leads to stretch-

ing and expansion of the aquifer rock in a wider area.

In our scenario, the full model and PR model are thus

able to predict a brief inflow and accumulation of fluid

into these regions at early times, an effect that cannot

be captured by the local model.

The right plot of Figure 5 shows the fractional change

in aquifer pore volume (current minus pre-injection) for

day 5, i.e. the time-integrated first two terms of (14).

For the full model, the volumetric strain ε is imme-

diately available since we have access to the displace-

ments at simulation time. For the PR model, ε is ap-

proximated using our precomputed response functions

{Ψ̃i}i=1,...,M with (32). For the local model, we use (24).

In other words, we plot the pore volume changes as they

are computed with regards to the accumulation term of

the pressure equation, not in terms of the displacements

that can be computed post-hoc from one-way coupling

with mechanics system.

We note that the local model significantly overpre-

dicts pore volume change closest to the well, and slightly

underpredicts it for about a kilometer before reaching

zero. At very early times, the overprediction close to

the well means that the corresponding pressure is less

than what is obtained with a two-way coupled model.

When day 5 is reached, the increase in pore volume is

still significantly overestimated. Nevertheless, the cor-

responding pressure is very close to the correct value.

This is because the pore volume in itself does not mat-

ter for the accumulation term in (14), only its time

derivative, which is already considerably smaller than

for the first couple of timesteps. These results are con-

sistent with observations made in [31], where simulated

pressure profiles from a fully coupled and an optimal

local model were virtually indistinguishable, whereas

discrepancies in pore volume were somewhat larger.

At 50 days (Figure 6), we see that the three models

all produce practically similar pressure profiles, whereas

a large discrepancy remains in terms of pore volumes.

It is interesting to note that the local model, with its

additional assumptions and computational simplicity,

already after 50 days produce results that are virtually

identical to those given by the two-way coupled models

for this scenario.

Maximal and mean squared errors are presented in

Table 2.

Finally, we look at how discrepancies in pressure be-

tween the different models impact the mechanics part

of the solution. As an example, we examine changes in

vertical stress. The top plot in Figure 7 visualizes the

change from initial state in vertical stress field at day

5 using the full model. The following two plots show

the error between the vertical stress field produced by
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Fig. 5 Pressure and pore volume change profiles at day 5 for
the simple 2D injection example of this section
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Fig. 6 Pressure and pore volume change profiles at day 50
for the simple 2D injection example of this section

Table 2 Maximal and mean squared error for the simple 2D
example, in percent of total aquifer pressure variation (0.93
MPa for day 5 and 0.96 MPa for day 50)

Day 5 Day 50
Model Max err. Mean sq. err. Max err. Mean sq err.
Local 5.32 3.19 0.79 0.43
PR 0.29 0.15 0.23 0.15

the full model and those produced by the local and PR

models, respectively. We note that the maximum error

of the local model is about twenty times higher than

that of the PR model, for this timestep. From the bot-

tom plot, we can see that the vertical stress field from

the PR model closely matches that of the full model

in the middle two kilometers or so. The largest error

is located at a distance of about 1500 meters, which

is related to the truncation of the response functions

associated with cells closest to the injection well.

3.2 3D injection example

We will now apply and compare our three methods on a

3D injection example that borrows from the first bench-

mark problem in [16], whose details are largely based

on previous injection operations at the In Salah Car-

bon Capture and Storage site [37]. We chose this exam-

ple because of its relation to a real injection scenario

where geomechanics issues have played an important

role. However, for simplicity we restrict ourselves to

one-phase flow.
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Fig. 7 Change in vertical stress for aquifer, overburden and
underburden at day 5 for the simple 2D injection example
of this section. Contrary to the sign convention used in the
linear elasticity formulation in the previous section, we here
employ the convention more prevalent in geomechanics litera-
ture where a positive sign indicates compressive stress. Units
are in bar. Top: Vertical stress change computed using the full
model. Grid has been deformed to indicate the corresponding
displacements (exaggerated). Middle: Error between vertical
stress computed from the full model and the local model.
Bottom: Error between vertical stress computed from the full
model and the PR model

For the flow simulation, we consider injection into

a uniformly 20 m thick, horizontal aquifer. Our model

covers 10 km of this aquifer in each lateral direction

(Ωaq). The aquifer is located at a depth of 1800 m,

with fixed pressure imposed at lateral boundaries and

an impermeable top and bottom. In addition to the

aquifer, the mechanical system includes the over- and

underburden. The overburden consists of a “shallow”

and a “deep” part with different elastic properties. The

shallow part (Ωob,s) extends from the surface down to

a depth of 900 meters, whereas the deep part (Ωob,d)

consists of the zone from 900 m to the aquifer depth of
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1800 m. The underburden (Ωub) extends from the bot-

tom aquifer boundary to a depth of 4000 m, where we

impose a zero displacement boundary condition. Lat-

eral and top boundary conditions are of the fixed-stress

type. At the beginning, we consider the aquifer and sur-

rounding domain to be in mechanical and hydrostatic

equilibrium. Further specifics on simulation grid and

parameters used are given in Table 3.

We simulate injection of fluid into the aquifer through

a vertical well located at the horizontal center of the

modeled domain. The well is perforated along the full

vertical extent of the aquifer. In a first simulation case

(CASE 1), we consider a long-term, constant-rate injec-

tion for a total duration of 3 years (1 month timesteps).

The volumetric injection rate is set to 0.02 m3/s at

aquifer conditions, which has been chosen to approxi-

mate the volumetric injection rate of CO2 considered

in [37], taking the inherent density differences between

the injected fluids (water vs. CO2) at aquifer conditions

into account. In a second simulation case (CASE 2), we

consider a staggered injection pattern where 10 days of

injection are followed by 10 days of shut-off before the

cycle is repeated, for a total simulated period of 90 days

(5 day timesteps). In a third simulation case (CASE

3), we repeat the situation of (CASE 1), this time with

hererogeneous rock properties within the aquifer.

Table 3 Parameter values for 3D injection example. Where
multiple values are provided, these are respectively listed for
shallow overburden (Ωob,s), deep overburden (Ωob,d), aquifer
(Ωaq) and underburden (Ωub)

Lateral extent 10 x 10 kilometers
Lateral resolution 21 x 21 cells
Layer thicknesses 900 m, 900 m, 20 m, 2180 m
Vertical resolution 3 cells, 4 cells, 3 cells, 7 cells
Young’s modulus 1.5 GPa, 20 GPa, 6 GPa, 20 GPa
Poisson ratio 0.2, 0.15, 0.2, 0.15
Aquifer porosity 0.1, 0.01, 0.17, 0.15
Aquifer permeability 13 mD
Fluid compressibility 4 · 10−5bar−1

Fluid viscosity 0.32 cP
Fluid density 1000 kg/m3

Rock density 3000 kg/m3

Biot-Willis coefficient α 1

The cutoff threshold for truncating the response func-

tions Ψ̃i of the PR model was set to 10−3 of the Ψi

maximum value.

On Figure 8 we compare the outcomes of our three

different simulation approaches in terms of the com-

puted aquifer pressure field at selected points in time

after injection start for CASE 1. From the top row we

can see that after the first day, the local model under-

estimates the pressure in the central grid cell by about

40%, whereas the maximum error introduced by the PR
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Fig. 8 Top view of aquifer pressure at caprock level, for the
continuous injection scenario (CASE 1). Rows represent the
status at one day, one month and three years after injection
start, respectively. The first column presents the pressure so-
lution computed by the full (two-way coupled) model, with
units in Pascal. The second column shows the discrepancy
between the full and the PR model, and the third column the
discrepancy between the full and the local model, measured
as fraction of total pressure change in aquifer (unitless)

model is on the order of 10−4, measured as a fraction

of maximum overpressure. After 1 month, the error in

the local model has shrunk to 6%, whereas the error

using the PR model remains around 10−4. At 3 years

(end of simulation), the local model and PR model both

produce results that are very close to the fully coupled

solution.

A similar trend can be seen in Figure 9, where we

present the corresponding changes in effective normal

stress at the top of the aquifer for CASE 1. Again, we

see that for all timesteps, the error made by the PR

model remains on the order of 10−4 or less of total stress

change, whereas the error resulting from the local model

progressively shrinks from about 30% after day one to

6% after a month and 10−3 at the end of simulation.

On figure 10, we track maximum change in pore

volume and maximum overpressure measured in the

aquifer over time for CASE 1. We see that the three

approaches produce curves that are very close, and only

for the first few timesteps is it possible to see any ap-

preciable difference. From all plots presented so far for

CASE 1, it seems clear that the PR model produce

consistent, good results, but that the local model also

produce good results except for the very early period

after injection start.

Vertical uplift around the injection area is a feature

of the In Salah injection operation that has been ex-

tensively studied and presented in past literature. For
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Fig. 9 Top view of change in effective vertical stress in
aquifer at caprock level, for the continuous injection scenario
(CASE 1). Rows represent the status at one day, one month
and three years after injection start, respectively. On the fig-
ure, a positive sign indicates compressive stress. The first col-
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our CASE 1, the simulated uplift after 3 years is pre-

sented in Figure 11. Regardless of approach, we arrive

at a maximum surface uplift of about 1.5 cm (z-axis

oriented downwards). This is consistent with the range

of values arrived at in [37] which is also based on a cou-

pled flow and geomechanics model. However, it should

be noted that our example is limited to one-phase flow

and thus not directly comparable.

We now look at the corresponding results for CASE

2, which is a shorter-term scenario with a non-uniform

injection rate that prevents the system from converging

towards a long-term steady state. As such, we would

expect that the impact of using a fully-coupled model

will be stronger. The total period modeled is 90 days.

Using a timestep duration of 5 days, the well switches

between on and off status each second timestep.

On Figure 12, we plot aquifer pressure at 5 days,

15 days and 90 days for CASE 2. Similar to CASE 1,

the discrepancy introduced by using the PR model re-

mains at the order of 10−4 of maximum overpressure

for all three timesteps. On the other hand, the local

model error has a maximum error of about 20% af-

ter five days, and the error remains at 8% at the end

of simulation. The error is largely confined to the first

few kilomters around the well. Similar observations re-

garding the overall error behavior from the PR and lo-
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Fig. 10 Temporal development of maximum pore volume
change and maximum overpressure in aquifer for the con-
tinuous injection scenario (CASE 1). Maximum pore volume
change expressed as fraction of bulk volume

cal models can be made looking at the vertical stress

change plots in Figure 13, although the error in the lo-

cal model is here less strongly concentrated around the

well.

From the CASE 2 temporal plots of maximum pore

volume change and overpressure in Figure 14, we note

that the curves representing the outcomes from the

full and PR models remain close together, whereas the

curves representing the local model are noticeably dif-

ferent. Qualitatively, we observe that the variations both

in pore volume and pressure obtained from the local

model are weaker than those obtained from the other

two models, which take two-way coupling into account.

However, it should be noted that grid resolution seems

to have some impact on the magnitude of this discrep-

ancy. Figure 15 present the corresponding curves after

re-running our simulations on a grid with about three

times higher lateral resolution (61 x 61). As we can see,
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the difference between the local model and the full and

PR model is now considerably smaller.

In CASE 3, we assess the impact of heterogeneity

in the aquifer rock. The situation is similar to CASE

1 in all aspects, except that we have introduced 30%

variation in the Young’s modulus and a four orders

5
 d

a
y
s

fully coupled

-10

-5

0

×10
5

PR model (error)

-2

0

2

4

6

×10
-4 local model (error)

0

0.05

0.1

0.15

0.2

1
5
 d

a
y
s

-10

-5

0

×10
5

-2

0

2

4

×10
-4

0

0.02

0.04

9
0
 d

a
y
s

-3

-2

-1

0

×10
6

-1

0

1

2

×10
-4

0

0.02

0.04

0.06

Effective vertical stress change (aquifer top)

Fig. 13 Top view of effective vertical stress in aquifer at
caprock level, for the staggered injection scenario (CASE
2). Rows represent the status at one day, one month and
three years after injection start, respectively. On the figure,
a positive sign indicates compressive stress. The first col-
umn presents the effective vertical stress computed by the
full (two-way coupled) model, with units in Pascal. The sec-
ond column shows the discrepancy between the full and the
PR model, and the third column the discrepancy between the
full and the local model, measured as fraction of total vertical
stress change in aquifer (unitless)

of magnitude variation in the permeability field, both

modeled using Gaussian random fields. The mean val-

ues remain close to those for CASE 1. In addition, we

introduce a large, circular region of very low perme-

ability (on average 10−2 times the surrounding aquifer

rock) in the western part of the aquifer (Figure 16). The

results in terms of pressure and vertical effective stress

are shown in Figure 17 and Figure 18. Compared with

the corresponding figures for CASE 1 (Figures 8 and

9) , we note that the introduced heterogeneity appears

to have no significant impact on the error of the PR

model. The long-term accuracy of the local model, on

the other hand, has been significantly impacted. Both

in terms of pressure and vertical stress, the error at 3

years remains at about 6 percent in CASE 3, whereas by

that time is had reached insiginificant levels in CASE

1. The main cause of effects that cannot be captured

by the local model in CASE 3 is related to the large

low-permeability region that has been introduced in the

western part of the aquifer. Fluid propagation and pres-

sure diffusion is very slow in this region, meaning that

pressure changes induced by non-local deformations be-

come more important and persist longer.

The computational time for running CASE 1 and

CASE 2 are presented in Table 4. The simulations were

run on a standard workstation equipped with a six-
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Fig. 14 Temporal development of maximum pore volume
change and maximum overpressure in aquifer for the stag-
gered injection scenario (CASE 2). Maximum pore volume
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Table 4 Computational runtimes (seconds) for simulating
CASE 1 and CASE 2 using the full, PR and local model

Model Case Flow Mechanics Total Timesteps
Full 1 - - 683.0 37
PR 1 8.8 85.0 93.8 37
Local 1 4.4 84.6 89.0 37
Full 2 - - 382.7 18
PR 2 6.0 38.7 44.7 18
Local 2 2.7 46.7 49.4 18

core Intel Core i7-3930K CPU and 20 GB RAM. For

the PR and local models, runtime is broken down into

“Flow” (time to run the flow simulation) and “Mechan-

ics” (time spent in post-hoc computation of displace-

ments, strains and stresses). It is important to keep in

mind the prototype nature of the simulation software

used. Neither model has been optimized with regards to

speed. For instance, very conservative tolerances were

used for the fixed-stress split solver used to compute

the fully coupled solution, resulting in a number of lin-
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Fig. 15 Temporal development of maximum pore volume
change and maximum overpressure in aquifer for the stag-
gered injection scenario (CASE 2), as simulated using a grid
model with three times higher lateral resolution than in Fig-
ure 14. Maximum pore volume change expressed as fraction
of bulk volume

ear and nonlinear iterations that might be higher than

necessary. Nevertheless, the figures in the table suggest

that solving the system using the PR model may pro-

vide an important gain in efficiency compared with the

full model, and remains computationally comparable

with the local model. In our test cases, the computing

time required for solving the flow equation using the

PR model was about twice the time spent using the

local model. The difference is caused by a larger num-

ber of nonzeros in the linear system to solve, as further

discussed below.

Prior to running the simulations, the response func-

tions had to be computed as a preprocessing step. This

calculation took 147 seconds for our grid. The response

functions can be reused for any simulation on this grid

as long as elastic moduli or mechanical boundary con-

ditions do not change.
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3.3 Practical computational issues

The precomputation of response functions, which hap-

pen once and can be associated with the initial grid

generation step, does incur significant computational

cost. In theory, each response function Ψi requires solv-

ing the linear system consisting of the discretized force

balance equations (7) for a given right-hand side that

represents the impulse φi. For large aquifer models, the

number of response functions can be very high (one per

aquifer cell or one per vertical column of aquifer cells).

There are however some ways to mitigate this cost.

First, the linear system to solve, as represented by

matrix M in (22), is symmetric, and can be efficiently

solved using a preconditioned iterative solver for sym-

metric systems. For the work presented in this paper,

we used the conjugated gradient algorithm precondi-

tioned with incomplete Cholesky factorization, which

we found to work well in practice. Howeer, an alge-

braic multigrid solver should be considered if available,

as this family of solvers are usually most efficient for

elliptic problems.

Second, the task of computing response functions

is trivial to parallelize. All computations work on the

same immutable data and are completely independent

of each other. The task of computing the full set of
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response functions can therefore be spread out across

as many computational cores as is available, whether

one is working on a standard modern multi-core laptop

or using a high performance computing cluster.

Third, due to our use of thresholding, each trun-

cated response function has limited support. Moreover,

we know exactly what its rescaling factor is, namely c̄m.

This allows us to compute several response functions

at a time for each single solution of the linear system,

as long as they are sufficiently spatially separated that

their overlaps are practically negligible.

All three strategies above were used in combination

when computing the response functions used in the nu-

merical examples presented in this article.

It should be emphasized that thresholding has an-

other important computational aspect. As the thresh-

old is tightened, the support of each Ψi widens, leading

to more coefficients to store but also a larger number of

nonzeros in the system matrix of the flow equation, i.e.

the sparse approximation of the matrix E + S + ∆tP

in (23). As the number of nonzeros of this matrix in-

creases, iterative linear solvers will generally require

more computing time to solve the associated linear sys-

tem. The threshold should therefore not be set too low.

In our experience, setting threshold to 10−3 appeared

to be a good compromise for the examples presented

above.

4 Conclusions

Investigation of issues related to geological storage of

CO2 will in many cases require the ability to run a large

number of numerical simulations within a reasonable

amount of time. This necessitates the development of

computationally lightweight models. The approach pro-

posed in this paper, the use of precomputed response

functions, is an attempt to extend the current range of

simplified modeling capabilities for CO2 storage [40,28]

to situations where full coupling between fluid flow and

rock mechanics is desired.

The work we have presented here suggests that this

approach can reproduce, to a good degree of approxi-

mation, the results from a fully-coupled fluid flow and

geomechanics simulation within the framework of lin-

ear poroelasticity, while remaining comparable to a tra-

ditional flow simulation in terms of computational re-

quirements. The work required for adapting traditional

reservoir simulator software to our approach amounts

to simple modification of the accumulation term in the

mass conservation equation(s), so that the pore volume

of a given grid cell depends not only on pressure within

that cell, but also on neighboring pressures within a

certain distance. This can be seen as a generalization

of the common use of pore volume compressibility co-

efficients.

On the other hand, the approach where a traditional

flow simulation is one-way coupled with a mechanics

solver seems to perform very well in many situations,

Moreover, the use of an numerically computed c̄m does

allow to account to a certain extent for material het-

erogeneities and different boundary conditions, and the

corresponding local model can indeed be seen as a limit

case of our proposed approach based on precomputed

responses.

In our experience the need for full coupling thus

appears to be most relevant for models of limited spa-

tial extent, short-term temporal scale, or to cases that

involve significant temporal variation or significant het-

erogeneities. As we saw for the 3D example above, the

use of varying injection rates leads to a system that does

not rapidly approach quasi-steady state conditions, and

thus the non-local geomechanical impact on flow per-

sists over time. Similarly, low-permeability regions where

pressure diffuses slowly may increase the relative im-

portance of non-local deformation effects. It is worth to

mention that real-life injection operations will almost

always involve varying injection rates, whether it be for

regular maintenance, or by design, as is the case of off-

shore injection by ship.

It is also possible that more complex simulation

models than those examined herein will exhibit stronger

coupling behavior, e.g. when using strain-dependent per-

meability. Whenever this coupling is strong enough to

justify the extra computational and algorithmic over-

head, the use of precomputed response functions can

allow this coupling to be accounted for within the flow

simulator itself in a computationally efficient way.

In the context of CO2 storage, geomechanical stud-

ies are often associated with the need to understand the

risk posed by nearby faults, whose mechanical behavior

might not be properly described within a linear poroe-

lastic framework. In that case a hybrid model might

be used, where the aquifer and rock matrix away from

the fault is described using the linear theory, whereas

the fault itself is modeled using nonlinear constitutive

relationships. In such situations, precomputed response

functions might still be used to describe the mechani-

cal behavior of the part of the aquifer system that be-

haves linearly, away from the fault itself. More gener-

ally, such hybrid models may be necessary whenever

nonlinear rock behavior cannot be ignored in parts of

the modeled system, for instance in regions where the

mechanical behavior of the caprock is not adequately

represented by a linear model. However, this has not

yet been tried and remains a topic for future research.
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We conclude that the use of precomputed response

functions offers the possibility to include the full im-

pact of two-way geomechanical coupling into a stand-

alone flow simulation in a computationally efficient way.

The method appears to work well and to offer signif-

icant advantages, in particular for cases where many

simulations need to be carried out. However, the local

approach based on pore volume compressibility coeffi-

cients, computed using c̄m, may already provide a sat-

isfactory approximation for many practical cases.
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6 Appendix

6.1 Analytical solution of the force equilibrium

equation on an unbounded domain

This argument is adapted from the discussion at the

beginning of Chapter 5 of [43]. We consider the poroe-

lastic force equilibrium equation on an unbounded 3D

domain:

∇·(G∇u)+∇
(

(K +
1

3
G)∇ · u

)
= α∇p−F in Ω = R3

(33)

where F represent some body force. Using cm = α
Kv

along with standard relations between poroelastic pa-
rameters, it can be readily verified that a particular

solution to (33) is given by:

ui =
∂Φ

∂xi
(34)

if Φ is some scalar potential that satisfies:

∇2Φ = cmp (35)

However, the Laplacian of Φ is then the volumetric

strain, since:

∇2Φ =
∂uk
∂xk

= εkk = ε (36)

Thus, the solution obtained implies that ε = cmp. In

other words, volumetric strain at any given point is di-

rectly proportional to the pressure at that point, and

consequently the relation between volumetric strain and

pressure is purely local, assuming an unbounded do-

main and constant values of K,G and α.

6.2 Demonstration that
∫

Ωaq
Ψidx = c̄m on a discrete

grid

We depart from expression (32). We assume that Ψi

represents the volumetric strain response to a unit pres-

sure increase in cell i (i.e. the impulse function φi equals

1 on cell i and zero elsewhere). We further consider that

ε̃ and Ψi are cell-wise constant, in which case we write

ε̃j and Ψi,j to represent their values on grid cell j. (32)

can then be written:

ε̃j =

M∑
i=1

p̃iΨi,j (37)

As we have previously specified c̄m,j to represent the

local volumetric strain response in cell j for a aquifer-

wide unit pressure increase, we obtain:

c̄m,j =
M∑
i=1

Ψi,j (38)

However, from its definition, Ψi,j is also element

(i, j) of matrix E in (23), which is symmetric. Hence:

c̄m,j =

M∑
i=1

Ψi,j =

M∑
i=1

Ψj,i =

∫
Ωaq

Ψjdx

In other words, the total volumetric strain across

the aquifer resulting from a pressure increase in cell j

also equals cm,j . When cm is used as a pore volume

compressibility coefficient in a decoupled flow simula-

tion, this is equivalent to considering that all volumetric

strain caused by a pressure increase in a cell i is con-

centrated to that cell.

We now present an informal argument to suggest a

similar result in the continuous case. We start by con-

sidering (33) on the form:

L(ũ) = α∇p̃ (39)

where L is the linear, self-adjoint differential operator

associated with the left hand side of (33) with specified

boundary conditions, and we ignore the body force F

since we are only concerned with changes in u (which

we denote ũ), with respect to changes in p (which we

denote p̃). If we assume that the zero displacement

(Dirichlet) part of the boundary has nonzero measure,

Korn’s inequality assures a trivial kernel of L. The as-

sociated Green’s function G(x, ξ) satisfies:

LG(x, ξ) = δ(x− ξ) (40)

where δ denotes the delta function. G(x, ξ) is a rank

two tensor that expresses the displacement vector at x
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caused by a force applied at ξ. Since L is self-adjoint,

G is symmetric, i.e. G(x, ξ) = G(ξ, x). This also imme-

diately follows from Maxwell’s reciprocity relation.

The displacement ũ caused by a pressure variation

p̃ in the domain can be written:

ũ(x) = α

∫
Ω

G(x, ξ)∇p̃(ξ)dξ = −α
∫

Ω

∇ξ ·G(x, ξ)p̃(ξ)dξ

(41)

We have here loaded the differential operator ∇ onto G

in the ξ argument. For a unit pressure increase across

Ω, we thus have:

ũ(x) = −α
∫

Ω

∇ξ ·G(x, ξ)dξ (42)

Using the symmetry of G, the divergence of ũ at x for

a unit pressure increase across Ω can be developed as

follows:

∇ · ũ(x) =

∫
Ω

∇ · u(s)δ(s− x)ds

= −
∫

Ω

∇s ·
(
α

∫
Ω

∇ξ ·G(s, ξ)dξ

)
δ(s− x)ds

= −
∫

Ω

∇ξ ·
(
α

∫
Ω

∇s ·G(ξ, s)δ(s− x)ds

)
dξ

(43)

Comparing with (41), the expression inside the paren-

theses on the last line of (43) expresses the displace-

ment at ξ resulting from a delta pressure at x. The full

expression of the last line thus represent the integrated

divergence of displacement (volumetric strain) across Ω

associated with a delta pressure at x.

Thus the volumetric strain at x resulting from unit

pressure increase across Ω equals the integrated volu-

metric strain across Ω resulting from a delta pressure

in x.
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