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Abstract

UML sequence diagrams and similar notations are much used to specify and
analyze computer systems and their requirements. Probabilities are often es-
sential, in particular for capturing soft real-time constraints. It is also important
to be able to specify systems at different levels of abstraction. Refinement is a
means to relate abstract specifications to more concrete specifications in such a
way that constraints and analysis results are preserved through the transition.
In order to allow soft real-time constraints to be included as an integral part
of sequence diagram specifications, this paper presents an approach to extend
UML 2.x sequence diagrams to capture probabilistic choice in general and soft
real-time constraints in particular. The approach is supported by formal se-
mantics and pragmatic refinement relations with mathematical properties that
allow stepwise and modular development of specifications. An example focus-
ing on communication is provided to demonstrate the language and refinement
relations.

Keywords: Soft real-time specification, sequence diagram, refinement,
probabilistic choice

1. Introduction

UML 2.x sequence diagrams and similar notations are used to specify dy-
namic or behavioral aspects of computer systems. Sequence diagrams are par-
ticularly suited to model communication, which is an essential aspect of most
computer systems today. According to [1] and [2], sequence diagrams (and use
case diagrams) are the most popular UML languages for modeling the dynamic
aspects of a system. Sequence diagrams are used, for example, as specifica-
tions for programmers or as maintenance documentation, to verify and validate
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constraints with client representatives, and to clarify understanding of the ap-
plication among technical members of a project team [1]. [3] shows how MSC
(which are very similar to UML sequence diagrams) can be used in a number of
different parts that occur in most software development methods.

Probabilities sometimes play a major role when specifying and analyzing
computer systems. In particular, soft real-time constraints are often impor-
tant when specifying communication scenarios. By soft real-time constraints
we mean constraints such as “when sending a request, the probability of re-
ceiving a reply within 5 seconds should be at least 0.95”. In other words, soft
real-time constraints are real-time constraints that need only be fulfilled with
a certain (usually high) probability. Soft constraints are important because the
corresponding hard constraints may be impossible or too costly to fulfill.

Refinement relations define what it means for one specification to be a more
concrete or detailed representation of another specification. A suitable refine-
ment relation should facilitate abstraction in an intuitive manner and ensure
that constraints are preserved in the transition from the more abstract to the
more concrete specification. Furthermore, an analysis of constraints performed
at an abstract specification should remain valid for the more refined specifica-
tions. An important aspect of abstraction is the concept of underspecification.
Underspecification means that some choices are left to those responsible for re-
fining the specification or implementing the system, and is an essential feature
of specification languages. Reducing the amount of underspecification brings a
specification closer to an actual implementation, and is therefore an important
form of refinement.

Motivated by the suitability and popularity of sequence diagrams for specify-
ing behavior and communication, the importance of soft real-time constraints in
communication, and the usefulness of being able to specify systems at different
levels of abstraction, this paper presents an approach that allows soft real-time
constraints to be expressed in sequence diagram specifications. More specifically,
the approach extends UML 2.x sequence diagrams to capture soft real-time and
to support underspecification with respect to probabilities as well as behaviors.
We refer to this approach as probabilistic STAIRS, or pSTAIRS. The approach
is based on STAIRS [4, 5, 6], and extends STAIRS with the expressive power
to capture soft real-time constraints as well as other probabilistic constraints.
This is achieved through extensions to ordinary sequence diagram notation that
are, in our opinion, small and intuitive. The main contribution of this paper
is the consolidated theory of modular refinement for soft real-time facilitating
underspecification with respect to behavior as well as probability. Two different
relations capturing refinement with respect to both kinds of underspecification
are offered, each relation targeting a different part of a development process.
Both relations have essential transitivity and monotonicity properties allowing
the refinement to be conducted in a stepwise and modular fashion. Although
proving these properties for all the composition operators and refinement rela-
tions has been a major effort in developing pSTAIRS, we believe that it is the
results, rather than their proofs, that are of interest to most readers. There-
fore we have confined ourselves to providing proofs of selected key results in an
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appendix. References to formal proofs in technical reports are provided for all
results. For the main part of the paper, our emphasis is on providing a detailed,
stepwise and example-driven explanation of the semantics of the operator for
probabilistic choice, as well as refinement.

The rest of the paper is organized as follows: In Section 2 we introduce the
pSTAIRS approach. We focus on demonstrating the suitability of probabilistic
sequence diagrams to capture soft real-time constraints, as well as the stepwise
application of the refinement relations. For this purpose we use an example
addressing soft real-time constraints in a communication scenario. Section 3
presents the formal definition of probabilistic choice. In Section 4, we formally
define the two refinement relations and present theoretical results of practical
importance. In Section 5 we present related work before concluding in Section 6.
There are also three appendices: Appendix A provides the formal semantics of
the composition operators referred to (except for the operator for probabilistic
choice, which is covered by Section 3). Appendix B presents a system model
and defines what it means for a system to correctly implement a specification.
Finally, Appendix C presents proofs for the main results.

2. Probabilistic sequence diagrams – an informal introduction

In this section we demonstrate the suitability of probabilistic sequence di-
agrams as defined in pSTAIRS to capture interaction scenarios with hard and
soft real-time constraints, as well as the use and usefulness of the refinement
relations. Only informal explanations are given at this point; formal defini-
tions are provided in Section 3 and Section 4. The presentation is based on a
scenario describing SMS-based interaction between a web portal and a mobile
phone. We start with a simple diagram, which is further elaborated and refined
in subsequent diagrams. This simple diagram is shown in Figure 1. It describes
that a user sends an SMS message to a mobile phone from a web portal and
is based on [7]. We expand on the original specification in order to illustrate
more features of the specification language. The following examples are adopted
from specifications developed in cooperation with a representative from a large
Norwegian telecom operator and presented in [8].

There are four entities taking part in the interaction, each represented by a
vertical dashed line called a lifeline. The lifelines :User, :WebPortal, :SendSMS-
WS, and :MobilePhone represent the user, the web portal, the web service, and
the mobile phone, respectively. Messages sent between the lifelines are repre-
sented by arrows. Each message gives rise to two events; the arrow tail repre-
sents the transmission of the message and the arrow head represents reception.
All communication is assumed to be asynchronous. Events on each lifeline are
ordered from top to bottom. In addition, for each message, the transmission
event occurs before the reception event. There are no other ordering constraints,
unless there are real-time constraints in the diagram.

The first message enterTextAdr represents the user entering the SMS message
text and address (phone number) to the web portal. Next, the sendTextAdr mes-
sage represents the call to the web service from the web portal. The web service
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Figure 1: A scenario where an SMS message is sent from a web portal to a mobile phone.

responds by sending an SMS message identifier to the web portal, as shown by
the msgId message, before sending the SMS text to the mobile phone, as shown
by the text message. According to the above ordering rules, the reception of
this message may occur before or after the reception of the msgId message on
the web portal.

Next, the UML 2.x par operator for parallel composition is used to specify
two sub-scenarios (interaction fragments) that may happen in parallel, i.e. with
their events interleaved. The first sub-scenario states that after receiving the
text, the mobile phone acknowledges the SMS by sending an ack message. In the
second sub-scenario, after receiving the message id, the web portal asks the web
service for the current status of the SMS message, as shown by the getIdStatus
message. The web service then responds by sending a status message to the web
portal. The par operator allows the events of its operators to be interleaved in
any manner, as long as the ordering rules are followed for each operator. In
our example, this means that the web service will still receive the getIdStatus
message before sending the status message, but the ack message may be received
at any time with respect to these two other events.

After receiving the message status, the web portal then displays it to the
user, as shown by the displayStatus message. The status of an SMS message can
be, for example “MessageWaiting” (the message is still queued for delivery),
“DeliveredToNetwork” (the message has been successfully delivered to the net-
work), or “DeliveredToTerminal” (the message has been successfully delivered
to the mobile phone). However, we do not go further into this.
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Figure 2: A hard real-time constraint has been introduced, stating that there should be a delay
of at least 3 seconds from the msgId message is received by the web portal to the getIdStatus
is sent.

The diagram sendSMS1 in Figure 1 captures the scenario in an intuitive
and comprehensible manner. We now demonstrate how a refinement step may
introduce a hard real-time constraint, i.e. a real-time constraint that should
always be fulfilled. In order to allow the web service some time to send the
SMS message and receive an acknowledgment from the mobile phone before
it is asked for the status of the message, we introduce a constraint stating
that there should be a delay of at least 3 seconds from the msgId message is
received by the web portal to the getIdStatus message is sent. Figure 2 shows a
specification where this constraint has been added. The real-time constraint is
expressed in terms of so-called timestamp tags that are assigned to the events.
In this case the timestamp tag t1 has been assigned to the reception of the msgId
message and the timestamp tag t2 has been assigned to the transmission of the
getIdStatus message. The real-time constraint is expressed by a note associated
to the transmission of the getIdStatus message that contains a predicate over
timestamp tags.1 In this case the predicate is t2-t1 ≥ 3s. All events have
a timestamp tag, but only the timestamp tags referred to in a predicate are
shown explicitly in the diagram.

There are no real-time constraints in Figure 1. Hence, all time delays are

1We prefer to use this notation rather than the standard UML notation for real-time
constraints, as this makes it easier to specify real-time constraints in cases where the relevant
events occur in operands of operators.
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Figure 3: A soft real-time constraint has been added, stating that the probability of sending
the displayStatus message on the web portal within 8 seconds after receiving the enterTextAdr
message should be at least 0.8.

acceptable according to Figure 1, as long as the ordering of events is obeyed.
By introducing the real-time constraint in Figure 2, we narrow the range of
acceptable behavior by rejecting cases where it takes less than 3 seconds from
the msgId message is received by the web portal to the getIdStatus message is
sent. This kind of refinement, where previously positive behavior is redefined as
negative, for example through introduction of new or stronger constraints, we
call narrowing.

Next, we show how the specification can be further refined by the introduc-
tion of a soft real-time constraint. In pSTAIRS, soft real-time constraints are
captured by the use of the operator palt for probabilistic choice. Figure 3 shows
a diagram where we have imposed the soft real-time constraint that the proba-
bility of sending the displayStatus message from the web portal within 8 seconds
after receiving the enterTextAdr message should be at least 0.8. We use the palt
operator to achieve this. Both its operands contain the displayStatus message,
but only the first operand fulfills the desired real-time constraint. Sets of accept-
able probabilities are assigned to the operands after the operand name in the
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upper left-hand corner of the operator frame in the same order as the operands
occur, starting from the top. Hence, the alternative where the predicate t3-t0≤
8s is fulfilled should occur with a probability in the interval [0.8, 1], whereas
the alternative with the complimentary predicate t3-t0>8s should occur with
a probability in [0, 0.2]. The assignment of sets of acceptable probabilities to
alternatives, rather than exact probabilities, represents underspecification with
respect to probability. Without a means to represent underspecification with re-
spect to probability, we would not be able to capture soft real-time constraints,
as soft real-time constraints impose limits on acceptable probabilities, rather
than exact probabilities.

Note that the introduction of the soft real-time constraint in the diagram
sendSMS3 in Figure 3 is another example of narrowing refinement, as sendSMS3
does not allow behavior where the probability of a delay of more than 8 sec-
onds from transmission of the enterTextAdr to transmission of the displayStatus
message is higher than 0.2. This behavior was positive in sendSMS2 in Figure 2.

In the next refinement step, we add an optional report-message to be sent in
the cases where the sending of displayStatus takes more than 8 seconds from the
reception of enterTextAdr. This message may report the reason for the delay,
e.g. server problems or network congestion. The resulting diagram is sendSMS4
in Figure 4. In the second palt-operand, the reportMsg is enclosed by and opt
operator. This operator means that the content of its operand (in this case
transmission and reception of the reportMsg message) is optional. Essentially, it
describes two alternatives: one where the content of the operand is executed and
one where it is not. These alternatives represent underspecification with respect
to system behavior, as they constitute an implementation or design choice left
to those responsible of implementing or further refining the specification. In the
first palt-operand, the reportMsg is enclosed by a veto operator, used to express
that the behavior of its operand is not acceptable. In this case, the veto operator
means that a report-message should not be sent when the displayStatus is sent
within 8 seconds of the reception of sendTextAdr.

Comparing sendSMS4 with the previous specification sendSMS3 in Figure 3,
we see that all of the original behavior is still included in the diagram, but some
more positive and negative behaviors are added. Adding new behavior in this
way is a kind of refinement that we refer to as supplementing. Supplementing is
primarily aimed at the early stages of development, where alternative ways of
fulfilling a scenario are explored. To understand why we consider supplement-
ing a form of refinement, it is important to remember that sequence diagrams,
unlike most specification languages, give only partial descriptions of behavior.
By this we mean that a sequence diagram does not categorize all behavior as
either positive (acceptable) or negative (unacceptable). In most specification
languages, such as state machines, the positive behavior is described explicitly,
and all behavior that is not described explicitly is considered to be negative.
Sequence diagrams, on the other hand, allow behavior to be described explicitly
as positive or negative through dedicated operators. The remaining behavior,
which is not described as either positive or negative, is considered to be incon-
clusive, in the sense that is has not (yet) been decided whether this behavior
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Figure 4: Adding the possibility of sending a report-message if (and only if) the sending of
displayStatus takes more than 8 seconds from the reception of enterTextAdr.
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is acceptable. In Figure 4 we have reduced the set of inconclusive behavior
by specifying some of the behavior that was inconclusive according to Figure 3
as positive or negative. Hence, supplementing is a bit similar to broadening
the scope of a specification by weakening the pre-condition in the classical pre-
post specification paradigm [9], with the following correspondence: Positive
behavior in pSTAIRS corresponds to fulfilling both the pre-condition and the
post-condition. Negative behavior corresponds to fulfilling the pre-condition,
but not the post-condition. Inconclusive behavior corresponds to not fulfilling
the pre-condition. Weakening the pre-condition means that more cases fulfill
the pre-condition, thus becoming positive or negative, depending on whether
the post-condition is fulfilled or not.

At a certain point in the development process, we may decide that all relevant
behavior has been identified and captured by the specification. From this point
onwards, the task is to bring the specification closer to an implementation by
reducing underspecification (i.e. making design/implementation choices) and
possibly strengthening real-time constraints. Hence, supplementing with new
behavior is no longer acceptable, and we therefore adopt a more strict definition
of refinement hereafter.

We end the example by conducting a further narrowing of the diagram
sendSMS4 in Figure 4. The resulting diagram is sendSMS5 in Figure 5. Two
changes have been made, each of which constitutes a narrowing. In order to
save space we have included them both in a single diagram, rather than pre-
senting them in a stepwise fashion. First, the maximum acceptable probability
for the last palt-operand (with t3-t0>8s) has been reduced from 0.2 to 0.1. Sec-
ond, the first palt-operand has been split in two, requiring that the time delay
between reception of the enterTextAdr and transmission of the displayStatus mes-
sage should be at most 6 seconds with a probability of at least 0.8. Together,
these two changes constitute a strengthening of the soft real-time constraint that
was introduced in Figure 4. Clearly, any system that fulfills the constraints of
sendSMS5 also fulfills the constraints of sendSMS4. Thus the constraints of the
earlier specifications have also been preserved in this final refinement step.

We round off this informal presentation of pSTAIRS by a simple illustration
of how the result of an analysis of constraints remains valid through refinement.
Assume we are interested in how long the described scenario may take for the
web portal. That is, we ask the question “how long is the delay x from the
enterTextAdr message is received by the web portal to the displayStatus message
is transmitted?”. The specification sendSMS1 does not include any real-time
constraints, so the only result we get from analyzing this specification is the
trivial observation that “x is at least 0 seconds”. However, in sendSMS2 we
added the constraint that it should take at least 3 seconds from reception of
msgId to transmission of getIdStatus. As events are ordered from top to bottom
on the :WebPortal lifeline, this means that the delay is at least this long also
between the first and final events on this lifeline, even if this is not stated
explicitly as a real-time constraint. Hence, from analyzing sendSMS2 we get
“x is at least 3 seconds”, which is consistent with the previous result, but
more specific. After introduction of the soft real-time constraint in sendSMS3,
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Figure 5: Strengthening of the soft real-time constraint. The probability of sending the
displayStatus message on the web portal within 6 seconds after receiving the enterTextAdr
message should be at least 0.8, and the probability of sending it within more than 8 seconds
should be at most 0.1.
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we are able to obtain an even more specific result: “x is at least 3 seconds,
and the probability that x is less than or equal to 8 seconds is at least 0.8”.
The specification sendSMS4 does not add any new information with respect
to real-time constraints, and the result of analyzing sendSMS4 with respect to
our question remains the same as for sendSMS3. However, in sendSMS5 the
soft real-time constraint has been strengthened, allowing us to conclude that
“x is at least 3 seconds, and the probability that x is less than or equal to 6
seconds is at least 0.8”. Again, this is consistent with the previous analysis,
but more specific. Hence, for each refinement of the original specification we
have obtained an analysis result that is consistent with all earlier results, but
possibly more specific.

3. Probabilistic choice – its formal definition

In this section we first introduce the semantic domain of pSTAIRS, before
providing and explaining the formal definition of the operator for probabilistic
choice.

3.1. Semantic domain: probability obligations

As is done in STAIRS, we base our approach on the semantic model for
sequence diagrams taken from the UML 2.4 standard [10]. Here, behavior is
represented by traces, which are sequences of event occurrences. Sequence dia-
grams focus on communication, therefore we are primarily interested in events
representing transmission or reception of messages. Since sequence diagrams
give only a partial description of behavior, as discussed in the previous section,
UML categorizes the traces described by a sequence diagram as either valid
(positive) or invalid (negative); the traces not described are the inconclusive
ones as explained above. Hence, the semantics of a UML sequence diagram is
represented by a pair of trace sets (p, n) where p denotes the set of positive
traces and n denotes the set of negative traces. The inconclusive ones are im-
plicitly represented as the rest of the trace universe. In a sequence diagram, the
same trace may be categorized as both positive and negative, in which case we
will have p∩n 6= ∅. For practical purposes (e.g. in relation to refinement), such
traces will be treated in the same manner as the other negative traces.

In pSTAIRS we extend the semantic model above in order to capture prob-
ability. The semantics of a pSTAIRS specification is given as a set of probability
obligations, or p-obligations for short. A p-obligation is a pair (o,Q) where
o = (p, n) is a pair of a set of positive traces p and a set of negative traces n,
and Q is a set of probabilities, i.e. Q ⊆ [0, 1]. We use the name interaction obli-
gation for pairs (p, n) of sets of positive and negative traces. Every interaction
obligation represents an obligation for the specified system; the system is obliged
to produce behavior that represents the interaction obligation. An interaction
obligation still leaves freedom, as the interaction obligation does not in general
require any particular trace to be produced. Instead it allows a number of traces
from which the implementer may choose. In this way, an interaction obligation
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represents implementation freedom or underspecification with respect to system
behavior.

Thus, an interaction obligation represents an “abstract piece of behavior”
that may be implemented by a number of different traces. From the specifier’s
point of view, all these traces are considered to be equivalent. Conceptually,
it is therefore natural to assign probabilities to interaction obligations, rather
than to traces. This also gives a clean separation between underspecification
with respect to traces (system behavior) and probabilities; underspecification
with respect to traces is captured by the interaction obligation, while the as-
signment of a set of probabilities Q rather than a single probability to each
interaction obligation captures underspecification with respect to probability,
as the implementer is free to implement the p-obligation with any probability
in Q.

3.2. The palt operator for capturing probabilistic choice

The palt operator describes the probabilistic choice between two or more
alternative operands. Each operand is assigned a set of probabilities, and each
operand should be chosen with a probability in its probability set. The only
constraint is that the probabilities selected from each operand add up to 1. Using
sets of probabilities rather than a single probability for each operand allows us
to capture underspecification with respect to probabilities. In particular, it
allows us to specify a minimum probability for an operand, which is essential
to capture soft real-time constraints.

Note that an operand may have [0, 1] as its probability set. A palt where
operands all have [0, 1] as probability set leaves the selection of probabilities
completely open.

Any specification without a palt operator contains exactly one p-obligation,
and the probability set of this p-obligation is {1}. Thus, for specifications
without palt operators, the semantic representation according to pSTAIRS cor-
responds to the semantic representation according to UML, except that the
former assigns probability 1 to the pair of positive and negative trace sets. The
definition of the palt semantics involves some new operators on p-obligations
and probability sets. We therefore develop this definition in a stepwise manner.
First we give two preliminary definitions and explain why these do not work as
desired. The preliminary definitions are (3) and (5). Then we present Defini-
tion (10), which is the final one. Definition (5) is a strengthening of (3), and
(10) is a strengthening of (5).

For operators other than palt, we explain their semantics only to the extent
necessary for the examples to be understandable, in order to avoid cluttering
the presentation with details that are not important for the main issue of this
paper. For the full definitions of these operators, we refer to Appendix A.

We start by introducing the notion of probability decoration, which is used
to assign probabilities to each operand of the palt operator. A probability deco-
ration must occur in every operand of a palt, and cannot occur anywhere else. It
is denoted by d;Q, where d is a closed sequence diagram in the sense that both
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the transmitter and receiver lifelines are included for all messages, and Q is a
set of probabilities. Intuitively, d;Q states that the sequence diagram operand d
should be selected with a probability in Q. Semantically, probability decoration
is defined by:

[[ d;Q′ ]]
def
= {(o,Q ∗Q′) | (o,Q) ∈ [[ d ]]} (1)

where multiplication of probability sets is pointwise:

Q1 ∗Q2
def
= {q1 ∗ q2 | q1 ∈ Q1 ∧ q2 ∈ Q2} (2)

In the textual syntax, a palt operator and its operands is represented by
palt(d1;Q1, . . . , dn;Qn). This can be read as “at least one of the operands
d1, . . . , dn should be selected; operand d1 should be selected with a probability
in Q1 and . . . and the operand dn should be selected with a probability in Qn”.
It would be intuitively tempting to define the palt semantics as a simple union
of its operands. This would give the following definition:

[[ palt(d1;Q1, . . . , dn;Qn) ]]
pre
=

n⋃
j=1

[[ dj ;Qj ]] (3)

where we use
pre
= to highlight that this is a preliminary definition. However,

Definition (3) is not satisfactory. The reason is that the definition does not
ensure that the probabilities of the operands are chosen so that they add up to
one.

To see this, assume we want to specify a soft real-time constraint where there
is an upper limit to the time delay that should not be exceeded in any run.
Diagram paltEx in Figure 6 shows such a specification. Intuitively, the paltEx
specification requires that the probability is at least 0.8 that the displayStatus
message is transmitted from the web portal at most 8 seconds after reception of
enterTextAdr, and that the delay is between 8 and 12 seconds in the remaining
cases. Hence, the traces described by paltEx can be divided into three trace sets
s1, s2, s3, where s1 denotes the set of traces where the delay between reception of
enterTextAdr and transmission of displayStatus is at most 8 seconds, s2 denotes
the set of traces where the delay is more than 8 seconds but no more than 12
seconds, and s3 denotes the set where the delay is more than 12 seconds. With
Definition (3), we get

[[ paltEx ]] = {((s1, s2 ∪ s3), [0.8, 1]), ((s2, s1 ∪ s3), [0, 0.2])}

where the first p-obligation represents the first palt operand, and the second
p-obligation represents the second palt operand.

But this semantics does not ensure that probabilities are chosen from each
p-obligation in such a way that they add up to 1. For example we may select 0.8
as probability for the first operand, 0.1 for the second, and still have room for a
refinement step adding a third operand with probability 0.1 allowing delays of
more than 12 seconds.
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Figure 6: A specification of a soft real-time constraint with an absolute upper limit for the
time delay.

To ensure that the chosen probabilities of the operands add up to 1, we
strengthen the palt semantics with an additional p-obligation representing the
combination of all the p-obligations we obtain from the operands. The only ac-
ceptable probability for this combined p-obligation is 1. This formalizes that one
of the operands must be chosen; i.e. the probabilistic choice will be made among
the specified operands. For the paltEx specification this means that we add a
p-obligation ((p, n), {1}) representing the combination of the two alternatives.
The positive and negative traces of this combined p-obligation are determined
by the interaction obligations of the original p-obligations ((s1, s2 ∪ s3), [0.8, 1])
and ((s2, s1 ∪ s3), [0, 0.2]). If a trace is positive in one of these then it is ac-
ceptable for the system to produce this trace. Therefore, if a trace is positive
in at least one p-obligation (and not inconclusive in any p-obligation) then it is
positive in the combined p-obligation. For the paltEx specification this means
that traces in s1 ∪ s2 are positive. If a trace is negative in all the original p-
obligations then this means that it should not be produced at all. Hence it
is also negative in the combined p-obligation. For the paltEx specification this
means that traces in s3 are negative. If a trace is inconclusive in at least one of
the original p-obligations then it has not been considered for all alternatives. It
is therefore considered to be inconclusive also in the combined p-obligation.

The interaction obligation of the combined p-obligation is formalized by the
⊕ operator, whose operand is a set of p-obligations:

⊕S def
= ((

⋃
((p,n),Q)∈S

p) ∩ (
⋂

((p,n),Q)∈S

p ∪ n),
⋂

((p,n),Q)∈S

n) (4)

As explained, a trace is negative only if it is negative in all p-obligations; a trace
is inconclusive if it is inconclusive in at least one p-obligation; otherwise it is
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:User :Coin

sd Coin

heads

palt [0.4,0.6][0.4,0.6]

tails

Figure 7: A specification of a coin with different sets of inconclusive traces for the two palt-
operands.

positive. In the paltEx specification the interaction obligation of the combined
p-obligation is

⊕{((s1, s2 ∪ s3), [0.8, 1]), ((s2, s1 ∪ s3), [0, 0.2])} = (s1 ∪ s2, s3)

To include the combined p-obligation in the palt semantics we add another
line to the palt definition:

[[ palt(d1;Q1, . . . , dn;Qn) ]]
pre
= (5)

n⋃
j=1

[[ dj ;Qj ]] ∪ (a)

{(⊕
n⋃

j=1

[[ dj ;Qj ]], {1})} (b)

In the paltEx specification the set of inconclusive traces is the same for each p-
obligation — from a practical point of view this is normally advisable. Specifying
probabilistic alternatives does not make much sense unless they are mutually
exclusive in the sense that the positive traces in one operand are negative in
the other. For an example where this is not the case, consider the specification
of a coin toss in Figure 7, where heads and tails each should occur with a
probability between 0.4 and 0.6. However, as tails is inconclusive in the heads
alternative, a refinement step may result in tails being the only positive trace
in both palt-operands, with heads (and every other trace) negative in both
operands. This is obviously not the intention behind the specification, and
can be prevented by ensuring that the set of inconclusive traces for each palt-
operand is the same. When this is the case, we say that the palt is well-balanced.
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Formally, palt(d1;Q1, . . . , dk;Qk) is well-balanced if

∀((pi, ni), Qi), ((pj , nj), Qj) ∈
k⋃

l=1

[[ dl ]] : pi ∪ ni = pj ∪ nj (6)

Every palt occurring in this paper except from Figure 7 is well-balanced, and
well-balancedness may easily be imposed syntactically by using the following
macro operator:

[[ expalt(d1;Q1, . . . , dn;Qn) ]]
def
= (7)

[[ palt((d1 alt refuse(d2 alt . . . alt dn));Q1,

. . .

(dn alt refuse(d1 alt . . . alt dn−1));Qn) ]]

where the alt operator specifies alternative traces representing underspecifi-
cation, and the refuse operator specifies negative traces. For the fragment
d1 alt refuse(d2 alt . . . alt dn), the combined use of alt and refuse specifies
that the only positive traces are those that are positive in d1, while the negative
traces include both those that are negative in d1 and also all the positive and
negative traces in the other operands (d2, . . . , dn). In this paper, we use palt
in the examples in order to illustrate the basics of probabilistic choice and soft
real-time constraints in pSTAIRS. For all practical purposes, we recommend
using expalt and not palt.

Note that line (b) in Definition (5) implies that nesting of palt operators is
significant, as the sum of probabilities for the operands of each particular palt
operator should add up to 1. This means that a specification with nested palt
operators cannot in general be rewritten into an equivalent specification with
only a single palt operator. As an example, consider the specifications nested
and flat in Figure 8. The ref constructs are references to other diagrams whose
specifications are of no significance here and therefore left out. The specifica-
tion nested is stricter than flat, because nested requires that the probability of
selecting one of d3 and d4 is a value in Q. The reason is that the probability
set Q is assigned to the third operand of the outermost palt, which contains the
choice between d3 and d4 represented by the innermost palt. This constraint is
not present in flat. For example, let Q = [ 14 ,

1
2 ], which gives Q∗Q = [ 1

16 ,
1
4 ]. Ac-

cording to Flat, it would be acceptable to select d1 with probability 1
2 , d2 with

probability 3
8 , d3 with probability 1

16 and d4 with probability 1
16 . According to

nested, this is not acceptable, since the probability of selecting one of d3 and d4
is then 1

8 , which is not a value in [ 14 ,
1
2 ]. This illustrates the extra expressiveness

obtained by including line (b) in Definition (5).
But Definition (5) is also not fully satisfactory. The reason is that when

the palt has three (or more) operands, two of the operands may unintentionally
be interpreted to correspond to the same probabilistic choice in the implemen-
tation, thereby giving the implementation room to include additional behavior
not intended by the specification. As an example, consider the specification of
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:A :B

sd nested

palt Q Q Q

ref d1

ref d2

palt Q Q

ref d3

ref d4

:A :B

sd flat

palt Q Q Q*Q Q*Q

ref d1

ref d2

ref d3

ref d4

Figure 8: Specification nested, which contains a palt operator within a palt operand, is stricter
than specification flat. Q represents probability sets.

:User :Coin

sd Coin3

side1

expalt [0.3,0.4][0.3,0.4][0.3,0.4]

side2

side3

Figure 9: A 3-sided coin, using expalt to ensure well-balancedness.
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a three-sided coin in Figure 9. Here, expalt is used to ensure that the positive
traces of one operand are negative in the others. According to Coin3, each of the
three sides should occur with a probability between 0.3 and 0.4. Intuitively, each
side should not be produced with a probability higher than 0.4, since the side is
negative in the two other operands which together has a minimum probability
of 0.3 + 0.3 = 0.6. However, this is not ensured by Definition (5), which does
not consider constraints imposed by combining a subset of the palt-operands.

To avoid this problem we strengthen the semantics of palt with p-obligations
representing the combined sum of any subset of p-obligations from the origi-
nal specification. Two p-obligations can no longer be implemented (only) by
the same probabilistic choice since the implementation must also offer a choice
corresponding to their combination. As before, the interaction obligation of a
combined p-obligation is produced by the ⊕ operator. But since each new com-
bination represents only a subset of the original p-obligations, we cannot use 1
as the only acceptable probability. Instead we use the sum of the probability
sets of each p-obligation of the subset. The combined sum operator ⊕̄ com-
bines an indexed set {(oi, Qi)}i∈N of p-obligations into a single p-obligation as
follows:

⊕̄({(oi, Qi)}i∈N )
def
= (⊕{(oi, Qi) | i ∈ N},

∑
i∈N

Qi) (8)

Summation of probability sets is pointwise by choosing one value from each set
and then adding those combinations that do not exceed 1. Formally, summation
of n probability sets is defined by:

n∑
i=1

Qi
def
= {min(

n∑
j=1

qj , 1) | ∀j : qj ∈ Qj} (9)

Note that ⊕̄{(o,Q)} = (o,Q) for any Q ⊆ [0, 1].
The following definition of palt, in which line (a) in Definition (5) has been

replaced, ensures that all possible combinations of p-obligations coming from
the operands of the palt are included:

[[ palt(d1;Q1, . . . , dn;Qn) ]]
def
= (10)

{⊕̄({poi}i∈N ) | N ⊆ {1, . . . , n} ∧N 6= ∅ ∧ ∀i ∈ N : poi ∈ [[ di;Qi ]]} ∪ (a)

{(⊕
n⋃

j=1

[[ dj ;Qj ]], {1} ∩
n∑

j=1

Qj)} (b)

Note that the set of p-obligations we get from (10a) is a superset of the
set we get from (5a), since po = ⊕̄{po} for any p-obligation po. The palt
operator represents a complete probabilistic choice, in the sense that the sum
of the probabilities chosen for each operand can not be less than 1. If this
cannot be achieved, then no system should comply with the specification. We
ensure this by substituting {1} in (5b) with {1} ∩

∑n
j=1Qj . An implemented

computer system is assumed to be represented by a set of p-obligations whose
probability sets contain exactly one probability, as there is no underspecification
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s1

s2,s3

[0.3,0.4]

s2

s1,s3

[0.3,0.4]

s3

s1,s2

[0.3,0.4]

s1,s2,
s3

{1}

s1,s2

s3

[0.6,0.8]

s2,s3

s1

[0.6,0.8]

s1,s2,
s3

[0.9,1]

s1,s3

s2

[0.6,0.8]

Def (10a)
#N=1

Def (10a)
#N=2

Def (10a)
#N=3

Def (10b)

Figure 10: The semantics of Figure 9.

with respect to probability in an implementation. Therefore, no system can
comply with a specification whose semantics contains a p-obligation with an
empty probability set.

Using Definition (10), the semantics of the three-sided coin in Figure 9 may
be illustrated as in Figure 10. Here, each p-obligation is illustrated by a circle
representing the interaction obligation and a probability set. The upper part of
the circle contains the positive traces and the lower part contains the negative
traces. For simplicity, we have used s1, s2 and s3 as abbreviations for the traces
representing the three sides of the coin. The three left-most obligations are
those we get from considering each palt-operand in isolation, the four next p-
obligations are the results of combining two or more p-obligations, while the
final p-obligation is the result of line (b) in Definition (10).

4. Refinement of probabilistic sequence diagrams

Refinement means to add more information or stronger constraints to the
specification in order to bring it closer to a real system. In this section we define
the notion of refinement of probabilistic sequence diagrams formally. Two dif-
ferent refinement relations, aimed at different stages of the development process,
are provided.

Our strategy for defining refinement is the following: In Section 4.1 we first
define what it means for one interaction obligation to refine another interac-
tion obligation, and then we lift this definition from interaction obligations
to p-obligations. In Section 4.2 we use these definitions to define refinement
of pSTAIRS specifications, which are represented semantically by sets of p-
obligations. Note that this means that we use the term refinement for the
binary relations that are defined in Section 4.1 between single elements of the
semantic representations of specifications, as well as for the relations that are
defined in Section 4.2 between full specifications.

After giving the definitions, we present important theoretical results in Sec-
tion 4.3. Throughout the section, we also explain how the definitions and the-
oretical results may be applied to verify that each of the example diagrams in
Section 2 is a refinement of the previous one.
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4.1. Refinement relations for single interaction obligations and p-obligations

There are two ways in which an interaction obligation may be refined.
Firstly, the incompleteness of an interaction obligation may be reduced by sup-
plementing it with more positive and/or negative traces. This reduces the set
of inconclusive traces, thereby giving a more complete description of the be-
havior. Secondly, underspecification with respect to behavior may be reduced
by redefining positive traces as negative. This corresponds to making a design
decision by rejecting some of the alternative ways of fulfilling a task that are
described in the more abstract specification. These two possibilities are com-
bined in the refinement relation  r (where r stands for “refinement”), which is
defined as follows:

(p, n) r (p′, n′)
def
= n ⊆ n′ ∧ p ⊆ p′ ∪ n′ (11)

A refinement relation that allows a specification to be supplemented with
new positive or negative behavior, as well as reducing underspecification, is
suitable in the early stage of the development process. At this stage, alternative
ways of fulfilling the scenario in question (or failing to do so) are explored.
Hence, adding new positive or negative behavior to the specification should be
allowed.

Later, we may reach a point where all behavior we consider to be relevant
and interesting has been described. This includes normal behavior, exceptional
behavior and erroneous behavior. At this point, we may decide that supple-
menting (introducing new traces) is no longer allowed. However, the specifica-
tion may still include underspecification in the form of several positive traces in
the interaction obligation, as some design decisions may still be open. Hence,
narrowing the specification by redefining some of the positive traces as negative
should still be allowed. This is captured by the refinement relation  nr (where
nr stands for “narrowing refinement”), defined by:

(p, n) nr (p′, n′)
def
= (p, n) r (p′, n′) ∧ p ∪ n = p′ ∪ n′ (12)

We now lift the two definitions of refinement for interaction obligations to p-
obligations. A p-obligation is refined by either refining its interaction obligation,
or by reducing its set of acceptable probabilities, thus reducing underspecifica-
tion with respect to probability. This gives the following refinement relations
for p-obligations (where p stands for “probabilistic”):

((p, n), Q) pr ((p′, n′), Q′)
def
= (p, n) r (p′, n′) ∧Q′ ⊆ Q (13)

((p, n), Q) pnr ((p′, n′), Q′)
def
= (p, n) nr (p′, n′) ∧Q′ ⊆ Q (14)

As an example of refinement of a single p-obligation, consider the two se-
quence diagrams in Figure 11, where sendSMS1* is a subdiagram of sendSMS1
in Figure 1 and sendSMS2* is a subdiagram of sendSMS2 in Figure 2. As neither
diagram uses the palt operator, the semantics of each diagram contains a single
p-obligation with probability set {1}. sendSMS1* has an empty set of negative
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:Web
Portal

sd sendSMS1*

:SendSMS
WS

msgId

status

getIdStatus

:Mobile
Phone

text

ackpar

:Web
Portal

sd sendSMS2*

:SendSMS
WS

msgId

status

getIdStatus

:Mobile
Phone

text

ackpar

t1

t2

t2-t1 ≥ 3s

Figure 11: Subdiagrams of sendSMS1 and sendSMS2.

traces, while sendSMS2* has both positive and negative traces due to the use of
a time constraint.

The set p of positive traces for sendSMS1* consists of all traces where weak
sequencing is used to combine the messages msgId and text with the traces of the
par-fragment. Listing all these traces here would be tedious. For the purposes of
this section, it is sufficient to note that since sendSMS1* does not contain time
constraints, it allows any possible assignment of timestamps to the individual
events in its set of positive traces.2

The difference between sendSMS1* and sendSMS2*, is the addition of the
time constraint t2-t1 ≥ 3s, requiring that the message getIdStatus is sent at least
3 seconds after the msgId message has been received. Semantically, this has the
consequence of splitting the positive trace set p for sendSMS1* into two sets p′

and n′, where traces that are in accordance with this time constraint belong to
the positive trace set p′, and traces where the time between the two events is
less than 3 seconds belong to the set n′ of negative traces.

As p = p′ ∪ n′, it is easy to see that the p-obligation ((p′, n′), {1}) (for
sendSMS2*) is a narrowing refinement of the p-obligation ((p, ∅), {1}) (for
sendSMS1*) according to definition (14).

More examples of supplementing and narrowing of single obligations may be
found in previous work, e.g. [11] and [12].

2As long as there are no time constraints, the only constraint is that the events in a trace
are be ordered by time (but two events may happen at the same time). Traces where the
timestamps are assigned such that the events are not ordered by time are ill-formed, and
not included in the semantic domain (i.e. an ill-formed trace is neither positive, negative, nor
inconclusive).
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4.2. Refinement relations for pSTAIRS specifications

For general refinement of specifications, we define two relations  pg and
 png (where g stands for “general”). The refinement relation  pg is based
on the relation  pr for p-obligations and intended for the early stage of the
development process, while png is based on the relation pnr for p-obligations
and intended for the late stage of the development process.

As for the definition of palt, we develop the definitions of refinement for
specifications in a stepwise manner. We first give a preliminary definition (15)
and explain why this is insufficient. Definition (16) is the final definition.

As explained in Section 3.1, the semantics of a pSTAIRS specification is given
as a set of p-obligations. Intuitively, each p-obligation represents an abstract
class of similar behaviors of which at least one representative is required of the
system. Consequently, it is tempting to define refinement of a specification by
requiring that every p-obligation at the abstract level should be refined by a
p-obligation at the concrete level. This would give the following definition:

[[ d ]] x [[ d′ ]]
pre
= ∀po ∈ [[ d ]] : ∃po′ ∈ [[ d′ ]] : po y po

′ (15)

where (x, y) ∈ {(pg, pr), (png, pnr)}.
However, Definition (15) is not satisfactory for soft real-time constraints.

Consider the constraint “a request should be followed by a response within 5
seconds with a probability of at least 0.9”. A specification replacing this con-
straint with the corresponding hard real-time constraint (requiring the system
to always produce a response within 5 seconds) would certainly preserve the
original soft real-time constraint, and should therefore be considered a valid
refinement, even if the alternative where it takes more than 5 seconds is not
represented.

In the refinement definition, this is captured by adding an exception stating
that only p-obligations not having 0 as an acceptable probability need to be
represented at the concrete level:

[[ d ]] x [[ d′ ]]
def
= (16)

∀po ∈ [[ d ]] : 0 /∈ π2.po⇒ ∃po′ ∈ [[ d′ ]] : po y po
′

where (x, y) ∈ {(pg, pr), (png, pnr)} and π2.po denotes the second element of a
p-obligation, i.e. its probability set.

As a first example of refinement according to Definition 16, consider the two
diagrams sendSMS2- and sendSMS3- given in Figure 12. These are simplified
versions of sendSMS2 (in Figure 2) and sendSMS3 (in Figure 3), respectively,
showing only the communication between the :User and :WebPortal lifelines.
In sendSMS2- the :User lifeline first sends the enterTextAdr to the :WebPortal,
which then sends the dispayStatus message back. No time constraints are given
in sendSMS2-. In sendSMS3-, a soft real-time constraint is added, requiring that
the probability of the web portal transmitting the displayStatus message at most
8 seconds after receiving the enterTextAdr message, should be at least 0.8.

22



:User
:Web
Portal

sd sendSMS2-

enterTextAdr

displayStatus

:User
:Web
Portal

sd sendSMS3-

enterTextAdr

displayStatus

palt [0.8,1] [0,0.2]

t0

displayStatus

t3

t3

t3-t0 ≤ 8s

t3-t0 > 8s

Figure 12: Simplified versions of parts of sendSMS2 and sendSMS3.

Adding a soft real-time constraint like this should constitute a narrowing
refinement as the two diagrams describe the same behavior, with the difference
that some of the behavior that was valid in sendSMS2- (i.e. behavior where the
probability is higher than 0.2 for a delay of more than 8 seconds between the
reception of enterTextAdr and the transmission of displayStatus) is not allowed
in sendSMS3-.

To see that this is indeed a narrowing refinement, let s1 denote the set of
traces where the delay between reception of enterTextAdr and transmission of
displayStatus is at most 8 seconds, while s2 is the set of traces where the delay
is more than 8 seconds.

As sendSMS2- does not include any palt operators, time constraints or other
constructs defining negative behavior, it is easy to see that its semantics is a
single p-obligation with positive trace set s1 ∪ s2, i.e. [[ sendSMS2− ]] = ((s1 ∪
s2, ∅), {1}). For sendSMS3-, we get a total of four p-obligations:

po1 = ((s1, s2), [0.8, 1]) po2 = ((s2, s1), [0, 0.2])
po3 = ((s1 ∪ s2, ∅), [0.8, 1]) po4 = ((s1 ∪ s2, ∅), {1})

where po1 and po2 represent each of the two palt operands, resulting from using
Definition (10), part a, with N = 1, po3 represents their combination (using N =
2), while po4 is the final combined p-obligation resulting from Definition (10),
line (b).

As po4 is identical to the single p-obligation for sendSMS2-, Definition (16)
is satisfied for both  pg and  png.

As another example, this time involving supplementing, consider diagram
sendSMS4- in Figure 13. Compared to sendSMS3- in Figure 12, the difference is
that sendSMS4- also includes traces where displayStatus is followed by reportMsg.
To see that this constitutes a supplementing refinement, let s1 and s2 be as in
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displayStatus

displayStatus

t3

t3

t3-t0 ≤ 8s

t3-t0 > 8s

reportMsg

reportMsg

:User
:Web
Portal

sd sendSMS4-

enterTextAdr
t0

veto

opt

palt [0.8,1] [0,0.2]

Figure 13: Simplified version of sendSMS4.

the previous example, s3 be the traces with a delay of at most 8 seconds and
including reportMsg, and s4 be the traces with a delay of more than 8 seconds
and including reportMsg. The traces in s3 and s4 are all inconclusive in all
of the p-obligations for sendSMS3-. For sendSMS4-, we get the following four
p-obligations:

po′1 = ((s1, s2 ∪ s3 ∪ s4), [0.8, 1]) po′2 = ((s2 ∪ s4, s1 ∪ s3), [0, 0.2])
po′3 = ((s1 ∪ s2 ∪ s4, s3), [0.8, 1]) po′4 = ((s1 ∪ s2 ∪ s4, s3), {1})

We see that for each p-obligation poi in the semantics of sendSMS3-, it is
refined by po′i in the semantics of sendSMS4- according to  pr (but not  pnr),
and we may conclude that [[ sendSMS3− ]] pg [[ sendSMS4− ]].

As a final example, we demonstrate how the diagram sendSMS5- in Figure 14
is a narrowing refinement of the diagram sendSMS4- in Figure 13. The semantics
of the two diagrams are given in Figure 15. Here, u1 is the set of traces where
t3 − t0 ≤ 6 and reportMsg does not occur, while r1 is the set of traces where
t3− t0 ≤ 6 and reportMsg does occur. Similarly, u2 and r2 are the sets of traces
with 6 ≤ t3−t0 ≤ 8, respectively with and without reportMsg, and u3 and r3 are
the set of traces with t3− t0 ≥ 8, with and without reportMsg. The upper row
represents [[ sendSMS4− ]] and the lower row represents [[ sendSMS5− ]]. Each p-
obligation is illustrated by a circle representing the interaction obligation, with
the probability set above the circle.

From Figure 15, we see that each p-obligation for sendSMS4- that does not
include 0 in its probability set is refined by an p-obligation in sendSMS5-. In
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:User
:Web
Portal

sd sendSMS5-

enterTextAdr
t0

displayStatus

palt [0.8,1] [0,0.2] [0,0.1]

displayStatus

t3

t3

t3-t0 ≤ 6s

6s < t3-t0 ≤ 8s

reportMsg
veto

reportMsg
veto

displayStatus

t3

t3-t0 > 8s

reportMsg
opt

Figure 14: Simplified version of sendSMS5.
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[0,0.3]

u1 r1 r2 r1 r2

u1 u2 u3 
r3

[0.8,1]

[0.8,1]
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u1 u2 u3 r3
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Figure 15: sendSMS4- is refined by sendSMS5-.
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each case, it is a narrowing refinement, as the set of inconclusive traces remains
the same in the refinement. This means that Definition (16) is fulfilled, and we
conclude that sendSMS5- is a narrowing refinement of sendSMS4-. There are
also other refinements between the p-obligations in Figure 15, but as these are
not required by Definition (16), they are not shown here.

4.3. Properties of refinement – theoretical results

In the refinement examples in Sections 4.1 and 4.2, we considered subparts
of the diagrams from Section 2 and demonstrated how the local modifications
constituted valid refinements of those subparts. In this section, we present
essential properties of our refinement definitions, and show how these may be
used to establish refinement of the complete diagrams, without calculating the
full semantics for each diagram. For proofs we refer to Appendix C.

Since practical specifications may be large, it is important that different
parts of a sequence diagram may be refined separately, without considering the
rest of the diagram. These are the mathematical properties of monotonicity and
modularity, which are studied in Section 4.3.1.

When performing a series of refinement steps, it is also important that the
end result refines not only the previous specification, but also the original one.
This is the property of transitivity, which is studied in Section 4.3.2.

4.3.1. Monotonicity and modularity

A binary sequence diagram operator opsd is monotonic with respect to re-
finement if the following holds: If d1 is refined by d′1 and d2 is refined by d′2 then
d1 opsd d2 is refined by d′1 opsd d

′
2 (see e.g. [13, p. 281]). Formally, an operator

opsd with n operands is monotonic with respect to a refinement relation  if
the following holds:

(∀i ≤ n : [[ di ]] [[ d′i ]])⇒ opsd(d1, . . . , dn) opsd(d′1, . . . , d
′
n) (17)

Except for palt, all of the common sequence diagram operators used in this paper
(and formalized in Appendix A) are monotonic with respect to the refinement
relations defined in Section 4.2.

Theorem 1. The operators refuse, veto, par, seq, alt, loop and tc are monotonic
with respect to the refinement relations  pg and  png.

In the case of palt, there exist some syntactically correct specifications that
do not fulfill the monotonicity requirement, so we do not have full monotonic-
ity [14, p. 33]. However, we have a slightly weaker modularity result that,
under certain conditions that will normally hold for practical specifications, al-
lows us to ensure that any implementation of the more concrete specification
will also be an implementation of the more abstract specification by considering
the operands one by one.

For any given refinement relation  x, we assume that a corresponding “im-
plements” relation 7→x is defined in such a way that d 7→x I holds if and only
if
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1. every p-obligation in [[ d ]] whose set of acceptable probabilities does not
contain 0 is implemented by I, and

2. for any p-obligations po, po′, if po  y po′ and po′ is implemented by I
then po is also implemented by I,

where (x, y) ∈ {(pg, pr), (png, pnr)} and I is an implementation. As the focus
of this paper is on sequence diagram specifications and refinement, we do not
go into more detail here. An implementation model is presented in Appendix
B.

We say that a sequence diagram operator opsd with n operands is modular
with respect to the pair ( , 7→) if the following holds:

(∀i ≤ n : [[ di ]] [[ d′i ]]∧d′i 7→ Ii)⇒ opsd(d1, . . . , dn) 7→ opimp(I1, . . . , In) (18)

where opimp is a composition operator for implementations corresponding to
the sequence diagram operator opsd. For example, if opsd = par then opimp

will be an operator for parallel execution of implementations. This does not
mean that each Ii must be constructed in exactly the same way as di or d′i was
built. Definition (18) is just a rephrasing of monotonicity in the context of an
implementation relation.

For all operators except from palt, modularity follows directly from mono-
tonicity and the assumption that the ’implements’ relation is preserved through
abstraction. In the case of palt we have modularity under three conditions that
from a practical point of view are entirely reasonable:

1. The palt is well-balanced.

2. Each operand di is safe in the sense that the positive behavior of di at
infinite time is completely determined by the behavior of di at finite time.

3. The composition operator for implementations that corresponds to palt is
trace preserving in the sense that the traces produced by the composed
implementation I equals the union of the traces produced by the imple-
mentations Ii of each alternative.

Theorem 2. The operator palt is modular with respect to ( pg, 7→pg) and
( png, 7→png) if it is well-balanced, each of its operands is safe and the compo-
sition operator for implementations corresponding to palt is trace preserving.

It is normally advisable to make sure that every palt is well-balanced and
this condition may be imposed syntactically. The safety condition (formally
defined in Appendix A.2.2) restricts us from expressing liveness properties.
In a real-time notation like probabilistic STAIRS, progress may be expressed
directly as time constraint. Hence, in practice there is no need to express liveness
properties. As argued by Olderog and Dierks in [15, p. 6]: “Such liveness
property is not strong enough in the context of realtime systems. Here one
would like to see a time bound when the good state occurs.”

We now argue why each of the diagrams in Section 2 is a valid refinement
of the previous one.
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The diagram sendSMS1 in Figure 1 may be seen as consisting of three subdi-
agrams, the first (topmost) four messages above the par operator, the par frag-
ment itself, and the message displayStatus, all composed by the implicit weak
sequencing operator seq. The part of sendSMS1 that is changed by sendSMS2
in Figure 2 is given by sendSMS1* and sendSMS2* in Figure 11. In Section 4.1,
sendSMS2* was shown to be a valid narrowing refinement of sendSMS1*. By
monotonicity of seq, it follows that sendSMS2 is a valid narrowing refinement of
sendSMS1, as the other parts are the same in both diagrams.

By an argument similar to the one given for sendSMS2- and sendSMS3- in
Section 4.2, it is possible to show that sendSMS3 is a valid narrowing refine-
ment of sendSMS2. In this case, considering only parts of the diagrams and
then applying the monotonicity results is not possible, as the time constraints
introduced in sendSMS3 stretches across most of the diagram.

For sendSMS4 and sendSMS5, the only changes made are with respect to the
palt-fragment. These changes are valid refinements as shown in Section 4.2. By
monotonicity of seq, it follows that sendSMS4 is a valid refinement of sendSMS3,
and that sendSMS5 is a valid refinement of sendSMS4.

4.3.2. Transitivity

A refinement relation  is transitive if the following holds: If d1 is refined
by d2 and d2 is refined by d3, then d1 is refined by d3. Formally:

[[ d1 ]] [[ d2 ]] ∧ [[ d2 ]] [[ d3 ]]⇒ [[ d1 ]] [[ d3 ]] (19)

Theorem 3. The refinement relations  pg and  png are transitive.

In the previous subsection, we argued why each of the example diagrams in
Section 2 is a refinement of the previous one. By transitivity, we get that each
diagram is a refinement of all of the previous diagrams, and in particular that
the final specification in sendSMS5 is a refinement of the original specification
in sendSMS1.

5. Related work

This section on related work is organized in two subsections. First, in Sec-
tion 5.1, we address related work on UML 2.x sequence diagrams and similar no-
tations, including Message Sequence Charts (MSC). The few UML/MSC-related
approaches including probability-related constraints are discussed in Section 5.2.
As little work has been done on sequence diagrams with probability, we address
related work with respect to expressing probabilistic constraints in other kinds
of specification languages in Section 5.3.

5.1. Sequence diagrams and similar notations

Probabilistic STAIRS is built on the STAIRS approach as presented in [4, 5].
STAIRS assigns formal semantics to sequence diagrams and defines refinement
relations similar to the ones presented here. Time is introduced in STAIRS
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in [6]. An operational semantics for STAIRS is given in [16, 17], equivalent to
the denotational one. However, STAIRS does not have the expressive power
to capture constraints that depend on probabilities. The purpose of proba-
bilistic STAIRS is to extend STAIRS in order to be able to capture also soft
real-time constraints and other kinds of probabilistic constraints in the formal
specifications.

A recent survey of different semantics for UML 2.x sequence diagrams is
given by Micskei and Waeselynck in [18]. Probabilities are not covered, as they
are not included in the UML 2.x standard. In [12], we have compared STAIRS
and its refinement relations to related work on sequence diagrams, including
the most relevant from [18], as well as other similar notations, refinement and
nondeterminism. The discussion in this section is therefore restricted to aspects
concerning time and probabilities.

Of all the approaches discussed in [18] and [12], the one most closely related
to STAIRS is the trace-based semantics proposed by Cengarle and Knapp in [19].
Based on that approach, [20] develops a semantics for UML 2.0 Interactions with
support for (hard) real-time constraints. A refinement relation for constraints
is defined. As is the case in our approach, constraint introduction is shown
to be monotonic with respect to refinement. Unlike our approach, real-time
constraints or other forms of probabilistic constraints are not considered.

For Message Sequence Charts (MSC), a semantics for basic MSCs with time
is given in [21, 22]. The events of a basic MSC are assigned timestamps using
a timing function, and timing constraints are used to specify minimum and
maximum time intervals between events. In addition, algorithms are given for
checking the realizability of MSCs and the existence of a timing function that
is consistent with the timing constraints of an MSC. This issue has not been
addressed in our approach. In [23], a semantics with time for MSC-2000 is given,
based on partially ordered sets. Time is represented by a function mapping each
event in a diagram to a set of time values, giving the absolute time interval in
which the event should occur. Relative timing constraints are expressed by a
function mapping pairs of events to intervals of time values. Again, probabilities
are not considered, and soft real-time constraints can not be captured.

Live Sequence Charts (LSC) [24, 25] is an extension of MSC also discussed
in [12]. that allow a distinction between possible and necessary behavior, as well
as give explicit conditions under which the constraints of the diagram applies.
In [26], a time extension to LSCs is presented. Here, a clock variable Time is
added to the formalism so that time can be treated as data and time constraints
can be expressed by means of ordinary variables. [25] includes a construct for
probabilistic choice (which they call nondeterministic choice), where an exact
probability is assigned to each alternative. Unlike our approach, refinement is
not formally defined. However, [24] gives an example of refinement where a
system is described in increasing level of detail, and states that refinement can
easily be defined from the semantics of LSC.
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5.2. Expressing probabilities in UML/MSC

Probabilities are not included in the UML 2.x standard for sequence dia-
grams, and consequently most approaches relating to UML and other kinds of
sequence diagrams does not include probabilities of any kind.

Performance Message Sequence Chart (PMSC) [27, 28] extends MSC with
syntactic constructs for expressing performance constraints. The aim is to in-
tegrate performance characteristics, such as response time and throughput, in
functional specifications. Of particular interest to us is the new operator altprob
for probabilistic choice that is introduced in [28]. This operator allows exact
probabilities to be assigned to the alternatives represented by its operands. This
means that, unlike our palt operator, underspecification with respect to prob-
ability can not be captured by this operator. Apart from mentioning instance
decomposition, refinement is not discussed, and no definition is given of what
it means for a system to comply with a PMSC specification. The semantics of
PMSC is explained at a purely intuitive level.

The UML Profile for Schedulability, Performance, and Time Specification
[29] and the UML Profile for Modeling and Analysis of Real-Time Embedded
Systems (MARTE) [30] extend UML by adding stereotypes and annotations for
defining values for performance measures, and allow specification of probability-
related constraints, such as soft real-time constraints. The profiles can be used
to construct models that can be analyzed with respect to performance, such
as Markov chains. [31] presents a technique for constructing a Markov chain
model from a sequence diagram that is annotated with constructs from the
profile, thereby creating a model that can be analyzed by a suitable performance
analysis tool.

5.3. Expressing probabilities in other languages

We are not aware of any approach where probabilities are fully integrated
in a formal semantics of sequence diagrams. However, there are a number of
other languages where probabilities are fully integrated into the semantics. We
now review some of these. Since underspecification with respect to probability
and refinement are central issues in our work, we focus specifically on how other
approaches deal with these issues. It should be noted that all the approaches
differ from ours in that there is no concept of inconclusive behavior.

Two probabilistic variants of the process algebra CSP (Communicating Se-
quential Processes) [32], called PCSP0 and PCSP , are presented in [33]. For
both PCSP0 and PCSP , an axiomatic characterization of the operators is
offered, thus supporting algebraic reasoning about processes. In addition, a sat-
isfaction relation is defined between a specification expressed as a predicate R
over traces and a process P expressed in PGCL, as follows: A process P satis-
fies a specification R if R(t) holds for every trace t of P . In both PCSP0 and
PCSP , the operator u of CSP is replaced with an operator pu for probabilistic
choice, where p is the probability of choosing the left-hand process and 1 − p
is the probability of choosing the right-hand process. Underspecification with
respect to probabilities cannot be expressed, as only exact probabilities can be
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assigned to the operator for probabilistic choice, and there is no operator for let-
ting the system choose nondeterministically between two different probabilistic
choices.

The language pGCL [34, 35] is based on Dijkstra’s Guarded Command Lan-
guage (GCL) [36]. GCL and pGCL can be seen as programming languages
where states are represented by variable assignments. Both languages contains
an operator u for nondeterministic (demonic) choice3. This operator allows the
notion of abstraction, and therefore, also refinement, to be captured. A nonde-
terministic choice between alternatives gives the union of the alternatives, and
refinement is defined as reverse inclusion: prog′ refines prog if the behavior of
prog′ is included in the behavior of prog. Hence, the nondeterminism expressed
by u represents underspecification.

In addition to the GCL operators, pGCL contains an operator p⊕ for prob-
abilistic choice. Underspecification with respect to probability can be expressed
by a nondeterministic choice between two probabilistic choices whose alterna-
tives are identical, where the probability values represent the upper and lower
bounds on the acceptable probability. Hence, this differs from our approach in
that underspecification with respect to probability is captured through a special
combination of two operators, rather than allowing sets of probabilities directly
on the probabilistic alternatives. A nice feature of pGCL is that it also offers a
program logic that allows us to discover properties of the system via syntactic
manipulations on the pGCL program. For example, if S is a set of desirable
states, then we may find the probability that execution of the program will end
in a state in S.

In [37] it is shown how probabilistic reasoning can be applied to predicative
programs and specifications. The semantics of a standard (non-probabilistic)
predicative program is given in terms of first-order logic. For example, the
program statement if b then x := H else x := T is interpreted as (b ∧ x =
H) ∨ (¬b ∧ x = T ). This approach is generalized to the probabilistic case by
considering Booleans to be a subset of real numbers, where > = 1 and ⊥ = 0.
A probabilistic choice can then be expressed with the if . . . then . . . else . . .
construct. For example, an unfair coin biased toward the tails outcome can be
represented by the program statement if 0.4 then x := H else x := T . Nonde-
terminism is disjunction, and equivalent to an if . . . then . . . else . . . construct
where the condition is a variable of unknown value (probability); P ∨Q is equiv-
alent to ∃p ∈ [0, 1] : if p then P else Q. Nondeterminism gives freedom to the
implementer, who is intuitively free to choose p. A nondeterministic choice can
be refined either by a probabilistic choice (by ensuring that 0 < p < 1) or by a
deterministic choice (by ensuring that p = 1 or p = 0). As in [34], and unlike
our approach, underspecification with respect to probabilities can be expressed

3An operator t for angelic choice is also introduced. Intuitively, in a pGCL program, a
demonic choice is made by a demon who seeks to minimize the probability of reaching the
state under consideration, while an angelic choice is made by an angel who seeks to maximize
the same probability.
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by a nondeterministic choice between two probabilistic choices.
Probabilistic automata [38, 39] are extensions of labeled transition systems

designed to address the problem of modeling and verification of randomized dis-
tributed algorithms. Unlike ordinary automata, probabilistic automata allow
probabilistic choice to be represented in the form of probabilistic transitions.
A probabilistic transition is a transition from a state to a discrete distribu-
tion over pairs consisting of a label and a state. This means that, unlike the
pSTAIRS approach, each probabilistic alternative (here: pair of a label and
state) can only be assigned one exact probability, rather than a set of proba-
bilities. Nondeterminism is represented by the fact that there may be several
outgoing (probabilistic) transitions from any state. Underspecification with re-
spect to probabilities can be represented by nondeterministic choices between
probabilistic transitions that are identical, except for the probability values of
the distribution. [38] proposes hierarchical verification techniques based on ei-
ther preorders of trace distributions (set inclusion) or on simulation.

A trace-based model for systems with both probabilistic and nondetermin-
istic choice is presented in [40]. Here, a trace is a sequence of states, rather
than messages as is the case in pSTAIRS. A state is an assignment of values to
a set of variables. Semantically, a system is represented by a set of probabil-
ity distributions on traces, which are called bundles. The fact that the model
contains a set of bundles instead of a single bundle is due to nondeterministic
choices. As in, for example, [38], nondeterminism is resolved by a scheduler,
so underspecification with respect to probabilities can be expressed in a similar
way as in [38]. However, unlike [38] and other earlier work, [40] allows mul-
tiple schedulers for the resolution of the nondeterminism within a system in
order to achieve deep compositionality. This means that the semantics (set of
trace bundles) of a composite system can be obtained from the semantics of
its component systems, which is also the case in pSTAIRS, as all composition
operators are defined only in terms of the semantics of its operands. For each
scheduler, the set of variables it may affect and the set of variables that is visible
to the scheduler (the variables upon which the scheduler’s choice may depend)
must be specified by a so-called atom. As the atoms determine probabilistic
dependence between variable values, merging of atoms may increase the behav-
ior (bundles) of a system. Atoms form a part of the semantic representation
and are taken into consideration (by taking their union) when composing sys-
tems. Atoms also play a role with respect to refinement; refinement is basically
bundle containment, with the additional requirement that the concrete system
(implementation) cannot exhibit more variable dependencies than the abstract
system (specification).

In [41], Jonson and Larsen present a specification formalism in the form of
probabilistic (unlabeled) transition systems. A probabilistic transition system is
a transition system where transitions are assigned sets of allowed probabilities,
in the same way as sets of probabilities are assigned to the operands of a palt
in pSTAIRS. The use of sets of allowed probabilities instead of exact probabili-
ties represents underspecification with respect to probability, and is motivated
partly by the need to specify soft constraints, such as ‘the probability of losing
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a message in a communication channel should be no more than 0.01’. Two
different refinement relations between specifications are proposed. The stronger
criterion is based on the idea of simulation between specifications. The idea is
that a transition in one specification can be simulated by a set of transitions in
the other specification, as long as the combined probability of the transitions
in this set is an acceptable probability of the original transition. A similar idea
can also be reflected in pSTAIRS, as illustrated by the introduction of the palt
operator in Figure 4 as a valid refinement step. The weaker criterion views a
specification as a definition of a set of processes. Refinement is then defined as
set inclusion of processes. A specification S is refined by a specification S′ if all
the processes of S′ are also processes of S. A process (unlike a specification)
has exactly one probability assigned to each transition.

In [42, 43], labeled transition systems with both nondeterministic and prob-
abilistic choice are used for specifying systems. Nondeterministic choice is used
to represent underspecification, and refinement corresponds to restricting the
possible behavior. Refinement relations are defined based on testing. A test is
a labeled transition system with both nondeterministic and probabilistic choice,
where a subset of the states is defined as success states. A testing system P ‖ T
is the parallel composition of a process P and a test T , and from this we can
obtain the set of possible probabilities of reaching a success state. Based on this,
the concepts of may-refinement and must-refinement are defined as follows: A
process P2 is a may-refinement of a process P1 if for every test T the highest
probability of reaching a success state in P2 ‖ T is not higher than in P1 ‖ T . P2

is a must-refinement of P1 if for every test T the lowest probability of reaching a
success state in P2 ‖ T is not lower than in P1 ‖ T . P2 is a refinement of P1 if it
is both a may-refinement and a must-refinement of P1. Intuitively, this means
that P2 refines P1 if for every test, the interval of probabilities of reaching a
success state is made smaller. In other words, a refinement step may reduce
underspecification with respect to probability, as is also the case in pSTAIRS.
[43] shows that the refinement relations are compositional in the sense that if
P1 is refined by P2, then P1 ‖ P is refined by P2 ‖ P for any process P .

6. Conclusion

In this paper, we have presented probabilistic STAIRS (pSTAIRS), an ap-
proach to extend UML 2.x sequence diagrams to capture soft real-time con-
straints as well as probabilistic choice in general. Soft real-time constraints are
expressed by the combined use of operators for probabilistic choice (palt) and
real-time constraints (tc). Having separate operators for real-time constraints
and probabilistic choice allows us to capture all kinds of probabilistic choice in
the same manner, whether related to time or not. In order to obtain a simpler
notation for soft real-time constraints, one could easily introduce a macro opera-
tor for the combination of palt and tc used to capture such constraints. We have
chosen not to introduce such a macro operator, as we wish to emphasize the
similarity between soft real-time constraints and general probabilistic choice in
the underlying theory. Probabilistic choice is used to capture constraints where
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there for each alternative is given a set of probabilities for how often the al-
ternative may occur. Soft real-time constraints are a special case, where the
difference between the alternatives is the timing constraints.

Probabilistic STAIRS makes it possible to capture underspecification with
respect to probability as well as with respect to behavior/traces. Underspec-
ification with respect to probability is essential in order to capture real-time
constraints. It is also highly useful for other kinds of probabilistic choices,
as the specifier will typically be satisfied as long as a given alternative occurs
with a probability within a given interval, rather than with an exact probability.
Moreover, achieving an exact probability in the final implementation can be very
hard, meaning that specifications requiring exact probabilities may be almost
impossible to comply with. Underspecification with respect to behavior/traces
can be captured independently of underspecification with respect to probabil-
ity. This enables refining a (sub-)specification with respect to behavior/traces
without worrying about probabilities and vice versa.

Taking into account the incomplete nature of sequence diagrams, a formal
semantics consistent with the semi-formal trace semantics of UML 2.x sequence
diagrams has been provided for pSTAIRS. Based on this formal semantics, two
alternative refinement relations targeting different parts of a development pro-
cess have been presented. The first refinement relation ( pg), suitable early in
the development process, is used to reduce the amount of incompleteness and/or
underspecification in the specification. At a later stage, general narrowing re-
finement ( png) may be more suitable, assuming that all relevant behavior
is specified so that the only relevant refinement step is reducing underspecifi-
cation with respect to behavior/traces and/or probabilities. Both refinement
relations have been shown to have the mathematical properties of transitivity
and monotonicity, which makes it possible to develop and analyze specifications
in a stepwise and modular manner. The practical use of the refinement relations
and the exploitation of their mathematical properties in order to simplify the
analysis have been demonstrated on a scenario from the telecom industry.
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Appendix A. Formal semantics of composition operators

In this section we give a more detailed explanation of the semantic domain
of specifications, and provide formal definitions of the remaining composition
operators.

Appendix A.1. Events and traces

A trace is a sequence of events representing a system run. An event is a triple
(k,m, t) consisting of a kind k, a message m, and a timestamp tag t. The kind k
can be either !, denoting a transmission event, or ?, denoting a reception event.
A message is a triple (s, tr, re) consisting of a signal s, a transmitter lifeline
tr, and a receiver lifeline re. Every timestamp tag is assigned a timestamp,
which is a positive real number, to indicate the time of occurrence for the event.
Constraints on the timing of events are imposed by the use of logical formulas
with timestamp tags as free variables. We let E denote the set of all events.

The empty trace 〈〉 and all traces with only one event are well-formed. For
a trace h with two or more events to be well-formed, we require that:

• for all messages, if both the transmitter and receiver lifelines are present
in the trace (meaning that they occur as the transmitter or receiver of at
least one event in the trace), then both the transmit and receive events
are present in the trace, and the transmit event is ordered before its cor-
responding receive event;

• no event occurs more than once in the trace;

• if event e1 occurs before event e2 in the trace, then the timestamp assigned
to the timestamp tag of e2 is greater than or equal to the timestamp
assigned to the timestamp tag of e1.
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We let H denote the set of all traces that are well-formed. In addition, for an
infinite trace to be well-formed we require that time will eventually progress
beyond any finite point in time. The following constraint states that for each
lifeline l represented by infinitely many events in the trace h, there exists an
event in h that takes place on l and whose timestamp is greater than t for any
possible timestamp t:

∀l ∈ L : (#e.lsh =∞⇒ ∀t ∈ R : ∃i ∈ N : r.(e.lsh)[i] > t) (A.1)

where L denotes the set of all lifelines; e.l is the set of events that may take
place on the lifeline l, i.e. all transmission events where l is the transmitter and
all receive events where l is the receiver, e.lsh is the trace obtained from h
by removing all events not in e.l (meaning that all events on e.lsh take place
on l); and r.(e.lsh)[i] is the timestamp of the i’th event of e.lsh. In other
words, e. is a function returning the set of all events that may take place on
a given lifeline and r. is a function returning the timestamp of a given event.
s is a filtering operator for traces, i.e. Esh is the trace obtained from the
trace h by removing from h all events that are not in the set of events E. For
instance, assuming E = {ai | i ∈ N} ∪ {bi | i ∈ N} we have that

Es 〈a1, c1, c2, b1, b2, d1, a2, c3〉 = 〈a1, b1, b2, a2〉

A formal definition of s can be found in [44].

Appendix A.2. Semantics of composition operators

In this section we define the semantics of the composition operators. But
first we present the abstract/textual syntax of probabilistic sequence diagrams.

Appendix A.2.1. Abstract/textual syntax

The set of syntactically correct sequence diagrams, D, is defined inductively
as the least set such that4:

• E ⊂ D

• skip ∈ D

• d ∈ D ⇒ refuse d ∈ D ∧ veto d ∈ D ∧ opt d ∈ D

• d1, d2 ∈ D ⇒ d1 par d2 ∈ D ∧ d1 seq d2 ∈ D ∧ d1 alt d2 ∈ D

• d1, . . . , dm ∈ D ∧ Q1, . . . , Qm ⊆ [0, 1] ⇒ palt(d1;Q1, . . . , dm;Qm) ∈ D ∧
expalt(d1;Q1, . . . , dm;Qm) ∈ D

• d ∈ D ∧ I ⊆ N0 ∪ {∞} ⇒ loop I d ∈ D

• d ∈ D ∧ C ∈ F(tt.d)⇒ d tc C ∈ D

4We sometimes use infix notation also for palt when there are only two operands.
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where F(tt.d) denotes the set of logical formulas whose free variables are con-
tained in the set tt.d of all timestamp tags occurring in the diagram d.

The first two cases imply that any event, as well as the empty diagram, is
a sequence diagram. Any other sequence diagram is constructed by the use of
operators for negative behavior (refuse and veto), optional behavior (opt), par-
allel execution (par), weak sequencing (seq), potential choice/underspecification
(alt), probabilistic choice (palt and expalt), time constraint (tc) or loop (loop).
The semantics of these operators will be explained in Appendix A.2.2, except
from probabilistic choice, which was covered in the main section. Note that the
seq operator occurs implicitly in the graphical diagrams.

Appendix A.2.2. Parallel composition, sequential composition, underspecifica-
tion, negative behavior, time constraints and loop

We now define the operators that allow us to express parallel composition,
sequential composition, underspecification with respect to behavior, negative
behavior, and time constraints. But first we need to introduce some basic op-
erators on traces, trace sets, interaction obligations, and p-obligations.

Parallel composition (‖) of two trace sets corresponds to point-wise inter-
leaving of their individual traces. The ordering of events within each trace is
maintained in the result. For sequential composition (%) we require in addition
that for events on the same lifeline, all events from the first trace are ordered
before the events from the second trace. Formally:

s1 ‖ s2
def
= {h ∈ H | ∃p ∈ {1, 2}∞ : π2(({1} × E) T© (p, h)) ∈ s1 (A.2)

∧π2(({2} × E) T© (p, h)) ∈ s2}

s1 % s2
def
= {h ∈ H | ∃h1 ∈ s1, h2 ∈ s2 : (A.3)

∀l ∈ L : e.lsh = e.lsh1 _ e.lsh2}

where π2 is a projection operator returning the second element of a pair and _

is the concatenation operator for sequences. The operator T© is a generalization
of s filtering pairs of traces with respect to pairs of elements such that, for
instance

{(1, e1), (1, e2)} T© (〈1, 1, 2, 1, 2〉, 〈e1, e1, e1, e2, e2〉) = (〈1, 1, 1〉, 〈e1, e1, e2〉)

A formal definition of T© can be found in [44].
Time constraints are imposed by the use of a time constraint, denoted by oC,

where C is a predicate over timestamp tags. When a time constraint is applied
to a trace set, all traces not fulfilling the constraint are removed. Formally, time
constraint for a trace set s is defined as

s o C def
= {h ∈ s | h |= C} (A.4)

where h |= C holds if for all possible assignments of timestamps to timestamp
tags done by the trace h, there is an assignment of timestamps to the remaining
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timestamp tags in C (possibly none) such that C evaluates to true. For example,
assume that

h = 〈(k1,m1, t1 7→r1), (k2,m2, t2 7→r2), (k3,m3, t3 7→r3)〉 and C = t3 < t1 + 5

where ti 7→ rj denotes that timestamp rj is assigned to timestamp tag ti. Then
h |= C if r3 < r1 + 5.

For interaction obligations, parallel composition (‖), sequential composition
(%), inner union (]), refusal (†), and time constraint (o) are defined by:

(p1, n1) ‖ (p2, n2)
def
= (p1 ‖ p2, (n1 ‖ p2) ∪ (n1 ‖ n2) ∪ (p1 ‖ n2)) (A.5)

(p1, n1) % (p2, n2)
def
= (p1 % p2, (A.6)

(n1 % p2) ∪ (n1 % n2) ∪ (p1 % n2))

(p1, n1) ] (p2, n2)
def
= (p1 ∪ p2, n1 ∪ n2) (A.7)

†(p1, n1)
def
= (∅, p1 ∪ n1) (A.8)

(p, n) o C def
= (p o C, n ∪ (p o ¬C)) (A.9)

Notice that for ‖ and %, composing a positive and a negative trace always
yields a negative trace, while the result of composing an inconclusive trace with
a positive or negative trace is always inconclusive.

Inner union ] represents underspecification with respect to behavior/traces.
The idea is that two different interaction obligations represent behavior that
from the specifier’s point of view are equivalent with respect to their positive
and negative traces. Hence the interaction obligations can be combined into
a single interaction obligation, thus allowing us to introduce new positive or
negative traces in an interaction obligation.

Finally, time constraint o defines traces that do not fulfill the constraint as
negative, while traces that fulfill the constraint are positive.

Definitions (A.5) to (A.9) for interaction obligations are extended to p-
obligations as follows:

(o1, Q1) ‖ (o2, Q2)
def
= (o1 ‖ o2, Q1 ∗Q2) (A.10)

(o1, Q1) % (o2, Q2)
def
= (o1 % o2, Q1 ∗Q2) (A.11)

(o1, Q1) ] (o2, Q2)
def
= (o1 ] o2, Q1 ∗Q2) (A.12)

†(o,Q)
def
= (†o,Q) (A.13)

(o,Q) o C def
= (o o C,Q) (A.14)

where we write oi for an interaction obligation (pi, ni). The multiplication of
probability sets when composing two p-obligation with ‖, % or ] is motivated
by the fact that such compositions always occur in the context of composing
specifications represented by sets of p-obligations, where each p-obligation in
the resulting composed specification is obtained by choosing independently one
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p-obligation from each set. In other words, the composition of two sets of p-
obligations is the set we may obtain by choosing one p-obligation from each
set and composing these two p-obligations. Thus, the definitions of parallel
composition (‖), sequential composition (%), inner union (]), refusal (†), and
time constraint (o) are lifted from p-obligations to sets of p-obligations in a
straightforward manner:

O1 op O2
def
= {po1 op po2 | po1 ∈ O1 ∧ po2 ∈ O2} (A.15)

†O def
= {†po | po ∈ O} (A.16)

O o C def
= {po o C | po ∈ O} (A.17)

where op is one of ‖, % and ].
We are now ready to define the semantics of the pSTAIRS operators. The

semantics of an event (k,m, t) ∈ E is the interaction obligation whose positive
set consists of infinitely many unary positive traces – one for each possible
assignment of a timestamp to the timestamp tag of the event. The negative set
is empty, and 1 is the only allowed probability:

[[ (k,m, t) ]]
def
= {(({〈(k,m, t 7→ r)〉 | r ∈ R}, ∅), {1})} (A.18)

The empty diagram denotes an empty trace:

[[ skip ]]
def
= {(({〈〉}, ∅), {1})} (A.19)

The operators seq, par, alt and refuse are defined as follows:

[[ d1 seq d2 ]]
def
= [[ d1 ]] % [[ d2 ]] (A.20)

[[ d1 par d2 ]]
def
= [[ d1 ]] ‖ [[ d2 ]] (A.21)

[[ d1 alt d2 ]]
def
= [[ d1 ]] ] [[ d2 ]] (A.22)

[[ refuse d ]]
def
= †[[ d ]] (A.23)

[[ d tc C ]]
def
= [[ d ]] o C (A.24)

The macro operators veto and opt are defined by:

veto d
def
= skip alt refuse d (A.25)

opt d
def
= skip alt d (A.26)

Notice that the two operators refuse and veto are used instead of the UML
operator neg. The reason for this is explained in [45]. Space restrictions prevent
us from including the formal semantics of loop. Intuitively, any finite loop
corresponds to a finite number of seq operators, while the semantics of an infinite
loop is made up of p-obligations whose traces, when projected on each lifeline,
constitute the least upper bound with respect to prefixing of a sequence of
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Figure A.16: Example scenario for illustration of semantics.

traces obtained through any finite number of sequential compositions. The
formal definition can be found in [14].

Having defined the specification language, we now define formally what it
means for a specification to be safe, which was described intuitively in Sec-
tion 4.3.1. A chain c is an infinite sequence of traces such that ∀j ∈ N : c[j] v
c[j + 1], where c[j] denotes the jth element of c. Any chain has a least upper
bound with respect to v denoted by tc.

A specification d is safe iff the following holds for any chain c:

(∀j ∈ N : ∃t ∈ H\π2.⊕[[ d ]] : c[j] v t∧#tc =∞)⇒ tc ∈ H\π2.⊕[[ d ]] (A.27)

where # t c denotes the length of tc.

Appendix A.2.3. Example

We now illustrate the definitions of weak sequencing and time constraints
with an example. Consider the diagram example in Figure A.16, where we have
chosen to show the timestamp tags for all events explicitly. The semantics of
this specification contains only a single p-obligation, as the palt operator must
be employed to introduce more p-obligations (this is explained later). Hence,
we get [[ example ]] = {((p, n), {1})}, where p is the set of traces that is described
as positive by example and n is the set of traces that is described as negative by
example. We now explain which traces are contained in p and n.

The traces described by the diagram follows the restrictions on the ordering
of events imposed by weak sequencing. The first event to occur can only be
transmission of enterTextAdr on the :User lifeline, as the first event on all other
lifelines are reception events that cannot occur before their corresponding trans-
mission events. For the same reason, the second event can only be reception of
enterTextAdr on the :WebPortal lifeline, followed by transmission of sendTextAdr
on the same lifeline and reception of sendTextAdr on the :SendSMSWS lifeline.
Again, there is only one event that can occur next at this point, namely trans-
mission of msgId on the :SendSMSWS lifeline. However, after transmission of
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this message there are two possibilities for the next event: either the msgId
message is received by the web portal or the text message is sent from the web
service. As these events occur on different lifelines (and transmission of msgId
has already occurred), weak sequencing does not impose a particular order be-
tween these two events. In the case where the transmission event of text occurs
before the reception event of msgId, there are again two alternatives for the next
event: either reception of msgId occurs before reception of text, or vice versa.
This means that there are three alternative orderings that differ with respect
to the following: 1) Reception of msgId occurs before transmission of text. 2)
Transmission of text occurs before reception of msgId, and reception of msgId
occurs before reception of text. 3) Transmission of text occurs before reception
of msgId, and reception of text occurs before reception of msgId.

Before showing what the resulting traces look like we introduce the following
shorthand notation for messages:

et = (enterTextAdr,User,WebPortal)

st = (sendTextAdr,WebPortal,SendSMSWS)

mi = (msgId,SendSMSWS,WebPortal)

te = (text,SendSMSWS,MobilePhone).

Ignoring for the moment the difference between positive and negative traces, the
set s of all traces described by example equals the union s = s1 ∪ s2 ∪ s3 of the
trace sets we get by ordering the events according to the alternatives described
above. The trace sets s1, s2, s3 are then given by the following:

s1 = {〈(!, et, t1 7→ r1), (?, et, t2 7→ r2), (!, st, t3 7→ r3), (?, st, t4 7→ r4),

(!,mi, t5 7→ r5), (?,mi, t6 7→ r6), (!, te, t7 7→ r7), (?, te, t8 7→ r8)〉
| ∀i < 8 : ri ≤ ri+1}

s2 = {〈(!, et, t1 7→ r1), (?, et, t2 7→ r2), (!, st, t3 7→ r3), (?, st, t4 7→ r4),

(!,mi, t5 7→ r5), (!, te, t7 7→ r7), (?,mi, t6 7→ r6), (?, te, t8 7→ r8)〉
| ∀i < 8 : ri ≤ ri+1}

s3 = {〈(!, et, t1 7→ r1), (?, et, t2 7→ r2), (!, st, t3 7→ r3), (?, st, t4 7→ r4),

(!,mi, t5 7→ r5), (!, te, t7 7→ r7), (?, te, t8 7→ r8), (?,mi, t6 7→ r6)〉
| ∀i < 8 : ri ≤ ri+1}

Note that s1, s2, and s3 are infinite sets due to the fact that there are infinitely
many ways of assigning timestamps to the timestamp tags.

The positive traces according to example are the traces of s that also fulfills
the time constraint attached to the transmission event of text, while the negative
traces are those that do not fulfill this constraint. Hence, we have

p = {h ∈ s | r7 − r4 ≤ 2}
n = {h ∈ s | ¬(r7 − r4 ≤ 2)}
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Appendix B. Implementation model

Based on our work in [46] we present an implementation model and define
what it means for a system to implement a probabilistic sequence diagram. To
do this we need 1) a mathematical representation of the computer system, and 2)
a characterization of the relation between a specification and the mathematical
representation of the system. We present this implementation model in order to
provide examples (in Appendix B.2) of implementation relations fulfilling the
criteria in Section 4.3.1. However, there are many other possible implementation
models, and the modularity proofs in Appendix C are independent of the exact
implementation model used.

Appendix B.1. Representation of a system

In order to build an implementation model for a system I, we need to know
the set of traces traces(I) that the system I is able to produce, as well as infor-
mation about probabilities. A common mathematical model of a probabilistic
process is a probability space, i.e. a triple (Ω,F , f) where

• Ω is a sample space, i.e. a set of outcomes.

• F is a σ-field on Ω, i.e. a set of subsets of Ω that is closed under comple-
ment and countable union, and that contains Ω.

• f is a probability measure on F , i.e. a function from F to [0, 1] assign-
ing probabilities to the sets in F such that f(Ω) = 1 and for any se-
quence ω1, ω2, . . . of disjoint sets from F , the following holds: f(

⋃∞
i=1 ωi) =∑∞

i=1 f(ωi).

We assume that I is represented by a probability space (traces(I),FI , fI).
In other words, traces(I) is the sample space of our probability space. However,
we are not interested in an arbitrary FI . We want to ensure that the probability
space gives the necessary information with respect to probabilities. FI contains
all sets for which the probability is known, and we could for example let FI be
the σ-field {∅, traces(I)}. But a probability space with this σ-field would tell
us nothing about probabilities, except that the probability of producing a trace
in traces(I) is 1. To ensure that the necessary information about probabilities
is contained in the probability space we require FI to be the cone-σ-field of
traces(I).

The cone-σ-field is the smallest σ-field [47, p. 86] generated from the set CI

of cones we obtain from traces(I). The cone ct of a finite trace t is the set of
all traces with t as a prefix, formally defined by:

ct
def
= {t′ ∈ traces(I) | t v t′} (B.1)

where v is the standard prefix operator on traces. The set of cones CI contains
the cone of every finite trace that is a prefix of a trace in traces(I), formally
defined by:

CI
def
= {ct | #t ∈ N0 ∧ ∃t′ ∈ traces(I) : t v t′} (B.2)
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One may ask why we did not simply require FI to be the power set of
traces(I). This would ensure that a representation of a system would contain
information about the probability of every subset of traces(I). The answer is
that not all processes can be represented by a probability space whose σ-field is
the power set of its sample space. For example, assume I is a process that flips
a fair coin infinitely many times. Then the set traces(I) is uncountable, and
the probability of each single trace is 0. According to the continuum hypothesis
– which states that there is no set whose size is strictly between that of the
integers and that of the real numbers – the cardinality of traces(I) then equals
the cardinality of the real numbers, and hence of [0, 1]. The following theorem
taken from [47, Appendix C] by Banach and Kuratowski then implies that there
is no measure fI on P(traces(I)) such that fI({t}) = 0 for each t ∈ traces(I)
and fI(traces(I)) = 1:

Assuming the continuum hypothesis, there is no measure µ defined
on all subsets of Ω = [0, 1] with µ(Ω) = 1 and µ(x) = 0 for each
x ∈ Ω.

Our decision to use a cone-based probability space to represent probabilistic
systems is inspired by [38]. In [38, p. 52] probability spaces whose σ-fields are
cone-σ-fields are used to represent fully probabilistic automata, i.e. automata
with probabilistic choice but without nondeterminism. This is done in order
to define formally how to compute probabilities for trace sets. A cone-based
probability space is a suitable representation of a probabilistic system, since it
gives maximum information about probabilities while still allowing processes
such as an infinite coin toss to be represented.

Note that for any trace t in traces(I) we have {t} ∈ FI (which is proved in
[46]). As FI is closed under countable union, this means that for any countable
s ⊆ traces(I) we have s ∈ FI . Consequently, the probability of every finite
subset of traces(I) is included in the system representation, and if traces(I) is
finite then FI = P(traces(I)).

In order to check whether a system implements a pSTAIRS specification
we represent the system in the same way as a specification, i.e. as a set of
p-obligations. To ensure that all information from the cone-σ-field is contained
in the representation we generate one p-obligation from every trace set in FI .
The pSTAIRS representation 〈I〉d of the system I is defined by:

〈I〉d
def
= {((s,Hd \ s), {fI(s)}) | s ∈ FI ∧ s 6= ∅} (B.3)

The subscript d means that the representation is related to the specification
d, i.e. that only traces where all events occur exclusively on lifelines in d are
included as negative. Hd denotes the set of all traces where this holds.

Appendix B.2. Implementation relations

Having established a system representation on the same form as our spec-
ifications, we may now define what it means for a system I to implement a
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specification d in the same way as we defined refinement. Again, we start by
defining implementation relations for single p-obligations:

(o,Q) 7→pr (o′, Q′)
def
= o 7→r o

′ ∧Q′ ⊆ Q (B.4)

(o,Q) 7→pnr (o′, Q′)
def
= o 7→nr o

′ ∧Q′ ⊆ Q (B.5)

The implementation relations for interaction obligations are defined by:

(p, n) 7→r (p′, n′)
def
= n ⊆ n′ ∧ p ⊆ p′ ∪ n′ (B.6)

(p, n) 7→nr (p′, n′)
def
= (p, n) 7→r (p′, n′) ∧ p′ ⊆ p (B.7)

Note that the implementation relation 7→nr relaxes the requirement p∪n = p′∪n′
from its corresponding refinement relation. The reason is that, unlike the p-
obligations of [[ d ]], the p-obligations of 〈I〉d will always contain all traces in
Hd.

A system I implements a sequence diagram d if every p-obligation in [[ d ]]
where 0 is not an acceptable probability is implemented by at least one p-
obligation in 〈I〉d:

[[ d ]] 7→x 〈I〉d
def
= ∀po ∈ [[ d ]] : 0 /∈ π2.po⇒ ∃po′ ∈ 〈I〉d : po 7→y po

′ (B.8)

where (x, y) ∈ {(pg, pr), (png, pnr)}.

Appendix C. Proofs

In this section we present proofs for selected key results. The remaining
proofs are similar. Full proofs of Theorem 1 can be found in [46] (refuse, veto,
par, seq, alt), [48] (tc) and [14] (loop).5 The proof of Theorem 2 can be found
below, while full proofs of Theorem 3 can be found in [48].

Appendix C.1. Monotonicity of  pg with respect to seq.

Proof. To prove monotonicity of  pg with respect to seq, we assume

[[ d1 ]] pg [[ d′1 ]] ∧ [[ d2 ]] pg [[ d′2 ]] (C.1)

We need to prove
[[ d1 seq d2 ]] pg [[ d′1 seq d′2 ]]

i.e. that

∀po ∈ [[ d1 seq d2 ]] : 0 /∈ π2.po⇒ ∃po′ ∈ [[ d′1 seq d′2 ]] : po pr po
′ (C.2)

5In [14] we prove monotonicity of loop with respect to  pg . The proof can be straightfor-
wardly adapted to  png .
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Assume that
po ∈ [[ d1 seq d2 ]] ∧ 0 /∈ π2.po (C.3)

Then, by Definition (A.20) and Definition (2), there exists po1 ∈ [[ d1 ]], po2 ∈
[[ d2 ]] such that

po = po1 % po2 ∧ 0 /∈ π2.po1 ∧ 0 /∈ π2.po2 (C.4)

Hence, by assumption (C.1), there exists po′1 ∈ [[ d′1 ]], po′2 ∈ [[ d′2 ]] such that

po1  pr po
′
1 ∧ po2  pr po

′
2 (C.5)

A straightforward application of Definition (A.11) then gives

po1 % po2  pr po
′
1 % po

′
2 (C.6)

From po′1 ∈ [[ d′1 ]] and po′2 ∈ [[ d′2 ]] we get

po′1 % po
′
2 ∈ [[ d′1 seq d′2 ]] (C.7)

This means that po′1 % po
′
2 is the po′ we are looking for.

Appendix C.2. Conditional monotonicity of  pg with respect to palt

Proof. To prove monotonicity of  pg with respect to palt, we assume

∀i ≤ n : [[ di ]] pg [[ d′i ]] ∧Q′i ⊆ Qi (C.8)

∀i ≤ n : ⊕[[ di ]] r ⊕[[ d′i ]] (C.9)

We need to prove that this implies6

palt(d1;Q1, . . . , dn;Qn) pg palt(d′1;Q′1, . . . , d
′
n;Q′n)

i.e. that

∀po ∈ [[ palt(d1;Q1, . . . , dn;Qn) ]] : (C.10)

0 /∈ π2.po⇒ ∃po′ ∈ [[ palt(d′1;Q′1, . . . , d
′
n;Q′n) ]] : po pr po

′

Let po ∈ [[ palt(d1;Q1, . . . , dn;Qn) ]] such that 0 /∈ π2.po. We need to show that

∃po′ ∈ [[ palt(d′1;Q′1, . . . , d
′
n;Q′n) ]] : po pr po

′ (C.11)

As po ∈ [[ palt(d1;Q1, . . . , dn;Qn) ]], we know that po comes from either line (a)
or (b) of Definition (10). We first look at the first case, i.e. the case where po =
⊕̄({poi}i∈N ) for some N ⊆ {1, . . . , n} such that N 6= ∅∧∀i ∈ N : poi ∈ [[ di;Qi ]].
Let N ′ = N \ {i | 0 ∈ π2.poi}. Since N ′ = ∅ would imply that 0 was included
in the probability set of every poi such that i ∈ N , and hence 0 ∈ π2.po, we get

6Condition (C.9) is an extra condition that is required for the result to hold. Later we use
this result to prove modularity of palt.
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N ′ 6= ∅. For each i ∈ N ′ choose po′i ∈ [[ d′i;Q
′
i ]] such that poi  pr po

′
i. The

existence of such p-obligations is ensured by assumption (C.8), as 0 /∈ π2.poi for
all i ∈ N ′. From N ′ ⊆ N it follows (Lemma 29 in [46]) that

π1.po r ⊕{poi}i∈N ′ (C.12)

Now it can be shown by induction on the number of elements in N ′ that

⊕{poi}i∈N ′  r ⊕{po′i}i∈N ′ (C.13)

From (C.12) and (C.13) it follows that

π1.po r ⊕{po′i}i∈N ′ (C.14)

By the construction of N ′, which ensures that 0 is included in the probability
set of every p-obligation poj such that j ∈ N \N ′, together with Definition (9)
it follows that ∑

i∈N ′

Qi ⊆
∑
i∈N

Qi (C.15)

From (C.14) and (C.15) we get

po pr ⊕̄{po′i}i∈N ′ (C.16)

From line (a) of Definition (10) it follows that ⊕̄({po′i}i∈N ′) ∈ [[ palt(d′1;Q′1, . . . , d
′
n;Q′n) ]].

This means that (C.11) can be fulfilled by letting po′ = ⊕̄({po′i}i∈N ′).
We now look at the case where po comes from line (b) of Definition (10),

i.e. the case where po = (⊕
n⋃

j=1

[[ dj ;Qj ]], {1} ∩
n∑

j=1

Qj). Through a series of

set theoretic steps it can be shown that the following holds for all sets of p-
obligations S1, S

′
1, S2, S

′
2 (Lemma 6 in [14]):

⊕S1  r ⊕S′1 ∧ ⊕S2  r ⊕S′2 ⇒ ⊕(S1 ∪ S2) r ⊕(S′1 ∪ S′2) (C.17)

Now, from assumption (C.9) and (C.17) it can be shown by induction over n
that

⊕
n⋃

i=1

[[ di;Qi ]] r ⊕
n⋃

i=1

[[ d′i;Q
′
i ]] (C.18)

Furthermore, by the assumption that Q′i ⊆ Qi for all i we have that

{1} ∩
n∑

i=1

Q′i ⊆ {1} ∩
n∑

i=1

Qi (C.19)

Together, (C.18) and (C.19) mean that

(⊕
n⋃

i=1

[[ di;Qi ]], {1} ∩
n∑

i=1

Qi) pr (⊕
n⋃

i=1

[[ d′i;Q
′
i ]], {1} ∩

n∑
i=1

Q′i) (C.20)
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From Definition (10) it is clear that

(⊕
n⋃

i=1

[[ d′i;Q
′
i ]], {1} ∩

n∑
i=1

Q′i) ∈ [[ palt(d′1;Q′1, . . . , d
′
n;Q′n) ]] (C.21)

Hence, we ensure that (C.11) is fulfilled by letting po′ = (⊕
⋃n

i=1[[ d′i;Q
′
i ]], {1}∩∑n

i=1Q
′
i).

Appendix C.3. Modularity of palt w.r.t. ( pg, 7→pg)

We now prove the modularity result (Theorem 2) which shows that the
extra requirement (C.9) for monotonicity of refinement w.r.t. palt does not
have significant practical consequences as explained in Section 4.3.1. The proof
is general and applies to all implementation relations satisfying the criteria given
in Section 4.3.1. It does not rely on the special features of the implementation
model given as an example in Appendix B.

Proof. Let

d = palt(d1;Q1, . . . , dk;Qk) (C.22)

d′ = palt(d′1;Q′1, . . . , d
′
k;Q′k) (C.23)

Assume that

∀j ≤ k : [[ dj ]] pg [[ d′j ]] ∧Q′j ⊆ Qj (C.24)

∀j ≤ k : dj is safe as defined in (A.27) (C.25)

d′ is well-balanced (C.26)

d′ 7→pg I ∧ ∀j ≤ k : d′j 7→pg Ij (C.27)

where the implementation I is composed of the implementations Ij , i.e. I =
opimp(I1, . . . , Ik) for some suitable composition operator opimp for implementa-
tions that is trace preserving, meaning that the set of traces produced by I is
the union of the traces produced by each Ij . We need to prove that

d 7→pg I (C.28)

If [[ d ]]  pg [[ d′ ]] then (C.28) follows immediately from the first conjunct of
assumption (C.27) together with preservation of 7→pg through abstraction. In
the following we therefore assume

[[ d ]] 6 pg [[ d′ ]] (C.29)

This means that there exists a p-obligation ((p1, n1), Q1) ∈ [[ d ]] such that

∀((p′, n′), Q′) ∈ [[ d′ ]] : ((p1, n1), Q1) 6 pr ((p′, n′), Q′) (C.30)

As d = palt(d1;Q1, . . . , dk;Qk), it is clear that the p-obligation ((p1, n1), Q1)
comes either from line (a) or line (b) of Definition (10). Assume it comes from
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line (a). This means that ((p1, n1), Q1) = ⊕̄M , where M is a set of p-obligations
obtained by selecting at most one p-obligation poj from each operand dj ;Qj of
the palt. Then we can obtain a set of p-obligationsM ′ by selecting corresponding
p-obligations po′j from the corresponding operands of [[ d′ ]] such that ∀j ≤ k :
poj  pr po

′
j . But this means that ⊕̄M ′ ∈ [[ d′ ]] and ((p1, n1), Q1)  pr ⊕̄M ′,

which contradicts (C.30). Hence, ((p1, n1), Q1) must come from line (b) of
Definition (10), which means that

((p1, n1), Q1) = (⊕
k⋃

j=1

[[ dj ;Qj ]], {1} ∩
k∑

j=1

Qj) (C.31)

Since p-obligations with an empty probability set are not implementable, it
follows from the first conjunct of assumption (C.27) that

∀((p, n), Q) ∈ [[ d′ ]] : Q 6= ∅ (C.32)

From this together with assumption (C.24) it then follows that

∀((p, n), Q) ∈ [[ d ]] : Q 6= ∅ (C.33)

From this, (C.31) and the fact that ⊕
k⋃

j=1

[[ dj ;Qj ]] = ⊕[[ d ]] it then follows that

((p1, n1), Q1) = (⊕[[ d ]], {1}) (C.34)

From (C.32) and Definition (10) it follows that

(⊕[[ d′ ]], {1}) ∈ [[ d′ ]] (C.35)

Together with (C.30), this implies that

⊕[[ d ]] 6 r ⊕[[ d′ ]] (C.36)

This means that we have either π2. ⊕ [[ d ]] 6⊆ π2. ⊕ [[ d′ ]] or π1. ⊕ [[ d ]] 6⊆
π1.⊕ [[ d′ ]] ∪ π2.⊕ [[ d′ ]]. From assumptions (C.24) (first conjunct) and (C.26)
it follows that the latter alternative is not possible, as this would mean that
there exists a trace that is included in all p-obligations in [[ d ]], but not in all p-
obligations in [[ d′ ]]. As d′ is well-balanced, this would imply that this trace is not
included in any p-obligation in [[ d′ ]]. This would, however, contradict the first
conjunct of assumption (C.24), since a p-obligation where a trace t is included
in either the positive or negative set cannot be refined by a p-obligation where t
is inconclusive, which follows from (11). Hence, the first alternative must hold,
i.e. π2.⊕ [[ d ]] 6⊆ π2.⊕ [[ d′ ]]. This means that there exists a trace t such that

t ∈ π2.⊕ [[ d ]] ∧ t /∈ π2.⊕ [[ d′ ]] (C.37)

From the second conjunct of (C.37) it follows that there is at least one palt-
operand d′i of d′ that contains a p-obligation whose negative set does not include
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t. From the first conjunct it follows that the negative sets of all p-obligations
of all palt operands of d contain t. This means that there exists an i ≤ k such
that

t ∈ π2.⊕ [[ di ]] ∧ t /∈ π2.⊕ [[ d′i ]] (C.38)

From (C.33) it follows that ∀((p, n), Q) ∈ [[ di ]] : Q 6= ∅, and hence that there
exists a p-obligation ((p, n), {1}) such that

((p, n), {1}) ∈ [[ di ]] (C.39)

To see this, observe that if di is of the form palt(. . .), then (C.39) follows from the
second line of Definition (10), as the probability set of the resulting p-obligation
is either ∅ or {1}. In all other cases, the composition operators ensure that if all
operands contain at least one p-obligation whose probability set is {1}, then the
composition also contains such a p-obligation, as composition of p-obligations
involves either multiplication or (in the case of unary operators) preservation of
probability sets (see definitions (A.10)-(A.17)). Therefore, (C.39) can be proved
by induction over the syntactic structure of di, with the one-event diagram
(Definition (A.18)) and the empty diagram (Definition (A.19)) as base cases.

Together, (C.39), (C.32) and (C.24) imply that there exists a p-obligation
((p′, n′), {1}) such that

((p′, n′), {1}) ∈ [[ d′i ]] ∧ (p, n) r (p′, n′) (C.40)

From the first conjunct of (C.38) together with (C.39) we get

t ∈ n (C.41)

Together, (C.41) and (C.40) imply that

t ∈ n′ (C.42)

From (C.40) and (C.42) we have that t is negative in a p-obligation in [[ d′i ]] with
1 as the only allowed probability. This means that in any implementation of d′i,
t can only be produced with probability 0. Now assume for contradiction that
Ii is able to produce t. No execution that terminates can occur with probability
0, as such an execution can only result from a finite number of choices, where
the probability of each selected alternative is greater than 0. Since any trace
in the semantics of a probabilistic STAIRS specification by definition is either
infinite or represents an execution that terminates, it follows that

#t =∞ (C.43)

From the first conjunct of (C.38) it follows that

t /∈ H \ π2.⊕ [[ di ]] (C.44)

From (C.25) it follows that di is safe. Together with (C.43), (C.44) and definition
(A.27), this means that there exists m ∈ N such that

∀t′ ∈ H \ π2.⊕ [[ di ]] : t|m 6v t′ (C.45)
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To see this, assume that (C.45) did not hold, i.e. that ∀j ∈ N : ∃t′ ∈ H \
π2. ⊕ [[ di ]] : t|j v t′. As t is the least upper bound for the chain defined by
∀j ∈ N : c[j] = t|j , (C.25) would then imply that t ∈ H \ π2. ⊕ [[ di ]], which
contradicts (C.44).

Let S be the set of all traces with t|m as a prefix, i.e. S = {t′ ∈ H | t|m v t′}.
Note that since t|m is finite it follows that either Ii does not produce any traces
in S at all, or the probability that Ii will produce a trace in S is greater than
0. From (C.45) it follows that

(H \ π2.⊕ [[ di ]]) ∩ S = ∅ (C.46)

From (C.39) it follows that
π2.⊕ [[ di ]] ⊆ n (C.47)

Together with the second conjunct of (C.40), (C.47) implies that

π2.⊕ [[ di ]] ⊆ n′ (C.48)

From (C.46) we get
S ⊆ π2.⊕ [[ di ]] (C.49)

Together, (C.49) and (C.48) imply that

S ⊆ n′ (C.50)

From the definition of S it follows that t ∈ S, which means that Ii is able to
produce a trace in S, and hence that the probability that Ii produces a trace in
S is greater than 0. But together with (C.50) this means that the probability
of producing n′ is greater than 0, which contradicts the first conjunct of (C.40).
Hence, the assumption that Ii is able to produce t cannot hold.

From the left conjunct of (C.37) it follows that t ∈ π2.⊕ [[ dj ]] for any j ≤ k.
Hence, what we have shown from (C.36) and onwards is essentially that for any
trace t that breaks the condition for ⊕[[ d ]] r ⊕[[ d ]] to hold there is no j ≤ k
such that t is produced by Ij , even in the cases where t /∈ π2.⊕ [[ d′j ]]. Hence, t
is not produced by I. But this means that if I implements (⊕[[ d′ ]], {1}), it also
implements (⊕[[ d ]], {1}). Since it follows from (C.35) and the first conjunct
of (C.27) that I implements (⊕[[ d′ ]], {1}), it then follows that I implements
(⊕[[ d ]], {1}). As this is the only p-obligation in [[ d ]] not refined by any p-
obligation in [[ d′ ]] (which is clear from the fact that (C.34) could be derived
from (C.30)), this means that (C.28) must also hold.

Appendix C.4. Modularity of palt w.r.t. ( png, 7→png)

The proof is similar to the proof in Appendix C.3, with  pg everywhere
replaced by  png,  r everywhere replaced by  nr and 7→pg everywhere re-
placed by 7→png. Apart from this, the only difference is that there is an ex-
tra alternative π1. ⊕ [[ d ]] ∪ π2. ⊕ [[ d ]] 6= π1. ⊕ [[ d′ ]] ∪ π2. ⊕ [[ d′ ]] that
must be considered after step (C.36). However, from the assumptions that
d′ is well-balanced and that ∀j ≤ k : [[ dj ]]  png [[ dj ]], it is clear that
π1.⊕ [[ d ]]∪π2.⊕ [[ d ]] 6= π1.⊕ [[ d′ ]]∪π2.⊕ [[ d′ ]] cannot hold. We may therefore
continue the proof from step (C.37) in the same manner as in Appendix C.3.
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