
A Genetic Search-based Heuristic for a Fleet Size and Peri-
odic Routing Problem with Application to Offshore Supply
Planning

Thomas Borthen1

Henrik Loennechen1

Xin Wang1

Kjetil Fagerholt1,2

Thibaut Vidal3

1Department of Industrial Economics and Technology Management, Norwegian University of Science and

Technology, Trondheim, Norway
2SINTEF Ocean, Trondheim, Norway
3Departamento de Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro (PUC-Rio), Brazil

T. Borthen, H. Loennechen, X. Wang, K. Fagerholt and T. Vidal (2017). A Genetic Search-based

Heuristic for a Fleet Size and Periodic Routing Problem with Application to Offshore Supply

Planning. EURO Journal on Transportation and Logistics.

doi: 10.1007/s13676-017-0111-x

For view-only full text, click here (powered by Springer Nature SharedIt Initiative).

Abstract

This paper introduces a genetic search-based heuristic to solve an offshore supply vessel planning

problem (SVPP) faced by the Norwegian oil and gas company Statoil. The aim is to help the

company in determining the optimal size of supply vessels to charter in and their corresponding

voyages and schedules. We take inspiration from the hybrid genetic search with adaptive diversity

control (HGSADC) algorithm of Vidal et al. (2012), which successfully addresses a large class of

vehicle routing problems, including the multi-period VRP (PVRP), and adapt it to account for

some special features that are recurrent in maritime transportation but scarcely found in classical

PVRPs, in particular, the possibility of having voyages spanning over multiple time periods in the

planning horizon. Our computational experiments show that the proposed heuristic is scalable and

stable, being able to solve industrial SVPPs of realistic size while significantly outperforming the

existing approaches.

1

https://doi.org/10.1007/s13676-017-0111-x
http://rdcu.be/vcM4
http://www.springernature.com/gp/researchers/sharedit

A Genetic Search-based Heuristic for a Fleet Size

and Periodic Routing Problem with Application

to Offshore Supply Planning

Thomas Borthen1, Henrik Loennechen1, Xin Wang∗1, Kjetil Fagerholt1,2, and

Thibaut Vidal3

1Department of Industrial Economics and Technology Management, Norwegian

University of Science and Technology (NTNU), Trondheim, Norway
2SINTEF Ocean, Trondheim, Norway

3Departamento de Informática, Pontif́ıcia Universidade Católica do Rio de Janeiro

(PUC-Rio), Brazil

August 2017

Abstract

This paper introduces a genetic search-based heuristic to solve an offshore supply

vessel planning problem (SVPP) faced by the Norwegian oil and gas company Statoil.

The aim is to help the company in determining the optimal size of supply vessels

to charter in and their corresponding voyages and schedules. We take inspiration

from the hybrid genetic search with adaptive diversity control (HGSADC) algorithm

of Vidal et al. (2012), which successfully addresses a large class of vehicle routing

problems, including the multi-period VRP (PVRP), and adapt it to account for some

special features that are recurrent in maritime transportation but scarcely found in

classical PVRPs, in particular, the possibility of having voyages spanning over multiple

time periods in the planning horizon. Our computational experiments show that the

proposed heuristic is scalable and stable, being able to solve industrial SVPPs of

realistic size while significantly outperforming the existing approaches.

Keywords: offshore supply vessel planning, fleet sizing, periodic vehicle routing, genetic

algorithm.

∗Corresponding author. E-mail address: xin.wang@iot.ntnu.no

1

1 Introduction

The offshore oil and gas industry is Norway’s largest industry in terms of investments

and value creation, and is highly important for the Norwegian economy. The Norwegian

State Oil Company, Statoil, is the leading operator on the Norwegian continental shelf,

with offshore installations at the fields for exploring, extracting and processing oil and gas.

The offshore installations require regular delivery of supplies in order to operate. These

supplies are transported from onshore supply depots using Platform Supply Vessels (PSVs,

or simply referred to as vessels in this paper) that are specially designed to supply offshore

installations. Statoil acquires the PSVs on time charter, and the expenses related to

chartering and operating these PSVs represent a major part of the costs in their upstream

supply chain.

Figure 1: Example of geographic location of the onshore supply depot and offshore
installations.

To achieve a cost-efficient service for the offshore installations, Statoil has been using

an optimization tool which was developed based on a previous study by Halvorsen-Weare

et al. (2012). The study addressed a Supply Vessel Planning Problem (SVPP) with several

offshore installations, each requiring several services per week, and one onshore supply

depot where PSVs load supply cargoes (and discharge back-loads from the installations).

See Figure 1 for an example of the geographic location of the supply depot and offshore

installations. The aim is to determine the optimal fleet of PSVs to charter in and their

corresponding weekly voyages and schedules from the onshore supply depot. The authors

proposed a two-stage approach to solve the SVPP, which is an extension of the method

used in Fagerholt and Lindstad (2000). In the first stage the shortest sequences for all

2

feasible voyages (where each voyage starts from and ends at the supply depot, and services

several installations) are generated, which are then used as input to a voyage-based model,

in the second stage, to find the optimal fleet composition and routing decisions using a

commercial integer-programming solver. This method has been practically successful in

solving problems with up to around 14 installations and 48 weekly services. However, in

recent years Statoil merged the operations of several supply depots, leading to a significant

increase in problem size, e.g., the number of installations supplied by one depot increased

from 14 to 27, and the number of total weekly services from 48 to 80 in a typical case.

As a result, the previous two-stage approach can no longer handle the larger problems in

reasonable time.

In this paper, we present a new heuristic approach to address this challenge. This

approach is inspired by the Hybrid Genetic Search with Adaptive Diversity Control

(HGSADC) algorithm (Vidal et al., 2012), which was also generalized into the Unified

Hybrid Genetic Search (UHGS) framework in Vidal et al. (2014). HGSADC successfully

addresses several Vehicle Routing Problem (VRP) variants including the Multidepot VRP

and the Periodic VRP (PVRP). The SVPP considered in this paper shares many similarities

with the classic PVRP: a planning horizon over several time units, and multiple possible

visits to the customers, over the horizon, subject to some schedule restrictions. These

similarities allow us to use a solution representation analogous to the one of HGSADC and

to take advantage of its advanced diversity-management mechanisms.

On the other hand, the SVPP presents a distinctive feature which is recurrent in

maritime transportation applications but scarcely found in classic PVRPs: each voyage

performed by a PSV (vehicle) normally lasts for several days (time units). As a consequence,

extra care needs to be taken when modeling the inter-dependencies between voyages, to

ensure that a vessel has returned from its previous voyage before embarking on a new one.

Therefore, we have made several adaptations and extensions of the framework in order to

efficiently address this special feature. We tested the heuristic on instances based on real

problems faced by Statoil; a first set of similar size as in Halvorsen-Weare et al. (2012)

with up to 14 installations and 48 weekly services, and a second set of larger size with

up to 27 installations and 80 weekly services. As highlighted in these experiments, the

proposed heuristic significantly outperforms the previous two-stage approach, providing

equal or better results in a smaller time, while being more scalable and stable.

The contributions of this paper are twofold. First, we develop a new metaheuristic for

the SVPP, which greatly improves upon previous literature and solves industrial supply

vessel planning problems of realistic size. Second, by adapting the HGSADC to the SVPP,

we demonstrate new possibilities of extensions to account for routes (voyages in SVPP) that

span more than one unit of time. This is especially relevant in maritime shipping, which is

a a slower transportation mode compared to other sectors. Moreover, we emphasize that

3

the proposed approach is not limited to shipping, and can also be applied to land-based

transportation problems with similar features.

The remainder of this paper is organized as follows. We first give a brief literature

review in Section 2. The problem description and mathematical model of SVPP are given

in Section 3. The proposed heuristic is introduced in Section 4. Its performances are tested

and analyzed in Section 5, and we conclude in Section 6.

2 Literature review

Fagerholt and Lindstad (2000) were among the first to study the supply service in the

Norwegian Sea, solving a relaxed version of the SVPP. The relaxed version excludes some

key constraints that are essential when planning offshore supply vessels in practice, such as

the need to spread the departures of supplies from the depot to each installation as evenly as

possible throughout the week to provide a steady supply. Later on, Aas et al. (2009) studied

the sourcing strategy of PSVs and their role in the offshore logistics. Halvorsen-Weare

et al. (2012) presented a voyage-based model using pre-generated voyages, taking into

account constraints that ensure evenly spread departures. Based on the voyage-based

model, Shyshou et al. (2012) proposed a slightly improved formulation for the SVPP

and a large neighborhood search (LNS) heuristic to solve the problem instead of using a

commercial solver. For moderate-sized instances (with around 14 installations), the LNS

heuristic provides solutions with similar or slightly worse quality and reduced computational

time compared with the two-stage approach used by Halvorsen-Weare et al. (2012). In

this paper, we use the same voyage-based model to describe the SVPP faced by Statoil,

and the proposed genetic search-based heuristic provides consistently better solutions to

moderate-sized problems using only a fraction of time required by the previous two-stage

or LNS methods. Halvorsen-Weare and Fagerholt (2017) also studied an arc-flow model for

the SVPP, but their experiments show that a voyage-based model remains more efficient.

Additional studies have been conducted to integrate other problem attributes into the

SVPP, such as uncertain weather conditions, schedule robustness and emission reduction.

Halvorsen-Weare and Fagerholt (2011) used simulations to investigate the impact of weather

conditions. This study aims to generate more robust PSV voyages that allow for unforeseen

events (e.g., adverse weather conditions), to avoid installation shut-downs due to lack of

supplies. Norlund and Gribkovskaia (2013) studied the reduction of CO2-emissions and

fuel consumption through speed optimization. Norlund et al. (2015) further evaluated the

robustness of the schedules, seeking to identify the trade-offs between low emissions and

robust schedules.

The SVPP is a type of fleet composition and vehicle routing problem which involves a

simultaneous optimization of fleet size, routing and scheduling decisions. The literature on

4

fleet composition problems is extensive, and we refer to the survey of Hoff et al. (2010) for

a presentation of fleet composition problems in both maritime and land-based contexts, as

well as a discussion on the industrial aspects related to combined fleet composition and

routing. Pantuso et al. (2014) presented another literature survey on fleet size and mix

problems in maritime transportation.

As mentioned earlier, the SVPP shares many common features with the Periodic Vehicle

Routing Problem (PVRP), surveyed in Francis et al. (2008). Vidal et al. (2012) presented

a hybrid algorithm for solving a large class of VRPs, including the PVRP. The authors

defined the algorithm as a Hybrid Genetic Search Algorithm with Advanced Diversity

Control (HGSADC), where the “hybrid” term refers to a greater exploitation of problem-

specific knowledge via a local-search technique which is systematically applied on new

individuals. Later on, Vidal et al. (2014) generalized the HGSADC into a Unified Hybrid

Genetic Search (UHGS) metaheuristic for solving more than 40 VRP variants with various

attributes. The framework matches or outperforms the current state-of-the-art algorithms

for all classical benchmark instances, including the PVRP instances. In this paper, we

extend the HGSADC framework with special adaptations aiming to accommodate voyages

that span multiple time periods.

3 The supply vessel planning problem

Problem description. In the SVPP, a fleet of PSVs operating from one common onshore

supply depot is used to supply a given number of offshore installations on a periodic

(weekly) basis. The available PSVs are currently considered to be identical by Statoil, since

they only present small differences. The sailing distances between any pair of installations

(and between the depot and each installation) are given, and all PSVs sail at the same

constant speed. The goal is to identify the optimal size of PSV fleet to acquire and, at the

same time, determine the weekly voyages and schedules for the selected vessels, which are

usually valid for months until some changes occur (e.g., the arrival or removal of drilling

rigs).

During the planning period (one week) each PSV can sail one or more voyages. All

voyages start and end at the supply depot, and should respect a minimum and maximum

duration limit, as well as a minimum and maximum limit on the number of installations

visited. These constraints are imposed to avoid voyages that are too short or too long, since

short voyages lead to unexploited capacity, and long ones involve too much uncertainty.

The PSVs are characterized by their deck capacity (in square meters), sailing speed, service

speed (when unloading supplies at the installations) and time charter rate. Based on the

PSV’s capacities and the company’s rules, the supply quantity on board upon departure

must be within a minimum and maximum bound. Each PSV also needs a given number of

5

hours at the supply depot before departure in order to prepare for a new voyage. Therefore,

a limited number of PSVs can be prepared for a new voyage in any given day, depending

on the opening hours of the supply depot on that day.

Each installation is characterized by a weekly demand for supplies, expressed in square

meters, a service frequency (number of visits during a week), and a service duration. The

demand of an installation, at each service, is then computed as its weekly demand divided

by its service frequency. In practice, some backhauls are also carried from the offshore

installations to the onshore depot. Still, these backhauls can be neglected in the problem

definition since their volume is almost always smaller than the demand.

Finally, for each installation, the departures of the voyages servicing this installation

from the depot must be evenly spread throughout the week. Consider, for example, an

installation that requires two services a week, and a solution in which the PSVs servicing it

are scheduled to depart from the depot on two consecutive days. If the installation places

a delivery request just after the second vessel has left, the next departure may occur six

days later, leading to very significant delays. As such, we require to spread the departures

from the depot rather than the actual visits to the installations, to mitigate some of the

worst-case situations resulting from bad planning and unforeseen events.

Given these definitions, the objective of the SVPP is to minimize the total cost and

satisfy the weekly supply requirements of all installations. The total cost includes the sum

of the time charter costs of the selected PSVs and the variable costs for sailing the vessels,

proportional to the distance traveled.

Figure 2: Example of weekly voyages and schedules for two vessels servicing seven installa-
tions with properly spread departures (Halvorsen-Weare et al., 2012).

Figure 2 illustrates an example of solution with well spread departures. In this example,

6

installations 1, 5, and 7 require servicing once a week, and installations 2, 3, 4, and 6 twice

a week. Two vessels and in total four voyages are used to supply these seven installations.

We observe that the departures towards the installations that require a bi-weekly service

are spread, such that the next departure is always four days away at most whenever a

supply request is reported.

Mathematical formulation. The current solution approach for the SVPP (Halvorsen-

Weare et al., 2012) consists in enumerating the (exponential-sized) set of all feasible voyages,

and using it as input of a voyage-based model, described in the following.

Let R be the set of all candidate voyages, V the set of PSVs, N the set of all offshore

installations, T the set of days in the planning horizon, L the set of all possible voyage

duration (in days), and F the set of all possible visit frequencies (number of weekly visits)

for installations. We then denote by Nf ⊆ N the set of installations with frequency f ,

Rv ⊆ R the candidate voyages that PSV v may sail, Rvi ⊆ R the set of candidate voyages

of PSV v that visit installation i, and Rvl ⊆ R the set of candidate voyages of PSV v that

has duration l.

Let CTCv represent the weekly charter cost for using PSV v, and CSvr the sailing cost

of PSV v when sailing voyage r. Let Si be the number of visits required by installation

i, Fv the number of days PSV v is available during the planning horizon, and Bt the

maximum number of PSVs that may be prepared at the supply depot on day t. To ensure

evenly spread departures we use the modeling approach proposed in Shyshou et al. (2012),

where 0 ≤ hf ≤ |T | is defined to represent the length of an auxiliary sub-horizon for those

installations requiring f visits per week. During any sub-horizon hf , there must be at

least Pf and no more than Pf departures to an installation whose visit frequency is f . For

example, to ensure even spread of departures, if the planning horizon is seven days then

an installation that requires three visits (i.e., f = 3) would need at least one and no more

than two departures every three days. This corresponds to h3 = 3, Pf = 1 and Pf = 2.

We also define the following decision variables. Let δv be a binary decision variable

which equals one if PSV v is chartered, and zero otherwise; and xvrt be a binary decision

variable which equals one if PSV v sails voyage r starting on day t, and zero otherwise.

Based on these definitions, the voyage-based model can be formulated as:

minimize
∑

v∈V
CTCv δv +

∑

v∈V

∑

r∈Rv

∑

t∈T
CSvrxvrt, (1)

7

subject to
∑

v∈V

∑

r∈Rvi

∑

t∈T
xvrt ≥ Si i ∈ N (2)

∑

l∈L

∑

r∈Rvl

∑

t∈T
lxvrt − Fvδv ≤ 0 v ∈ V (3)

∑

v∈V

∑

r∈Rv

xvrt ≤ Bt t ∈ T (4)

∑

r∈Rvl

xvrt +
∑

r∈Rv

l−1∑

τ=1

xvr,(t+τ)mod|T | ≤ δv v ∈ V, t ∈ T , l ∈ L (5)

Pf ≤
∑

v∈V

∑

r∈Rvi

hf−1∑

h=0

xvr,(t+h)mod|T | ≤ Pf f ∈ F , i ∈ Nf , t ∈ T (6)

δv ∈ {0, 1} v ∈ V (7)

xvrt ∈ {0, 1} v ∈ V, r ∈ Rv, t ∈ T . (8)

Objective function (1) minimizes the sum of the chartering costs and sailing costs.

Constraints (2) ensure the required service frequency for each installation. Constraints (3)

ensure that each PSV does not sail more days than allowed. Constraints (4) restrict the

number of PSVs prepared at the supply depot on every given day, where a mod b denotes

the remainder when dividing a ∈ N by b ∈ N. Constraints (5) state that a PSV cannot

begin a new voyage before returning from its previous one. Constraints (6) make sure that

the departures to each installation are properly spread. The variable domains are given by

Constraints (7) and (8).

4 Proposed methodology

A complete solution of the SVPP should specify a suitable number of PSVs to charter

in, as well as routing and scheduling decisions for the selected fleet. In the supply vessel

planning problem faced by Statoil, however, the PSV charter costs exceed significantly

the variable sailing costs. The total sailing costs make up for less than 50% of one PSV’s

charter cost in the largest problem instances solved by the decision makers. Therefore,

fleet size minimization is the primary objective whereas sailing costs minimization comes

second.

In accordance with this problem structure, we propose a lexicographic method consisting

of two main components. Sections 4.1 to 4.7 describe the first component, a hybrid genetic

search which works on a fixed fleet, and produces near-optimal voyages and schedules for

this fleet. Second, Section 4.8 describes our fleet minimization approach, which uses the

genetic search as a sub-procedure.

8

Algorithm 1 The Hybrid Genetic Search Procedure

1: Initialize population . Section 4.4

2: while Iterations without improvement < INI and time < TMAX do

3: Select parent individuals s1 and s2 . Section 4.5

4: Generate offspring snew from s1 and s2 (crossover) . Section 4.5

5: Educate offspring snew . Section 4.6

6: if snew is infeasible then

7: Repair snew with probability ρREP . Section 4.6

8: end if

9: if snew is still infeasible then

10: Insert snew into infeasible subpopulation

11: else

12: Insert snew into feasible subpopulation

13: end if

14: if maximum subpopulation size µ+ λ reached then

15: Select survivors . Section 4.7

16: end if

17: Adjust penalty parameters for violating feasibility conditions . Section 4.7

18: if best individual not improved for IDIV iterations then

19: Diversify population . Section 4.7

20: end if

21: Return best feasible individual

22: end while

4.1 Overview of the hybrid genetic search procedure

Inspired by the Darwinian principle of the survival of the fittest and the natural process of

evolution through reproduction, a genetic algorithm (Mitchell, 1998) for an optimization

problem evolves a population of individuals, representing solutions, through variation

operators (crossover, selection, and mutation) with the goal of producing better ones.

To solve the SVPP, we propose a hybrid genetic algorithm based on the Hybrid Genetic

Search with Adaptive Diversity Control (HGSADC) metaheuristic introduced in Vidal

et al. (2012). The general structure of the method is summarized in Algorithm 1.

Our algorithm works on a population of individuals, where each individual corresponds

to a (feasible or infeasible) solution of the SVPP with a given fixed fleet, specifying the

decisions related to installation-to-PSV assignments, the visit sequences, as well as the

departure dates of each PSV. The initialization of the population is described in Section 4.4.

It keeps the population S separated in two disjoint subpopulations: a subpopulation

of feasible individuals, and a subpopulation of infeasible individuals. The algorithm

keeps creating new individuals (offspring) until there have been INI iterations without

improvement of the best solution, or the maximum running time limit TMAX is attained.

One iteration here refers to the creation and improvement of one solution. The size of

9

each subpopulation is governed by parameters µ and λ, µ is the minimum size and λ is the

generation size (number of offspring), such that the maximum subpopulation size is µ+ λ.

When the maximum size of any subpopulation is reached, its individuals are removed using

a survivor selection process until there are only µ individuals left in the subpopulation

again. We now describe the algorithm’s individual representation and evaluation as well as

the other search components.

4.2 Individual representation

In the proposed method, each individual is represented as a set of three chromosomes:

tour chromosome, installation chromosome, and PSV chromosome. Figure 3 illustrates a

small example of an individual, representing a solution s of a problem instance with four

days, four installations and two PSVs. Each voyage has a duration of at most two days.

The top of the figure displays the tour chromosome, which contains an ordered sequence

of installations for every combination of day t and PSV v, representing a voyage rvt (an

empty sequence would indicate that PSV v does not start a voyage on day t).

Day 1
PSV 1

Day 1
PSV 2

Day 2
PSV 1

Day 2
PSV 2

Day 3
PSV 1

Day 3
PSV 2

Day 4
PSV 1

Day 4
PSV 2

1

2
3

4

0

2
3

4

0

2
3

4

0

2
3

4

0

2
3

4

0

1 1 11

2
3

4

0

1

2
3

4

0

1

2
3

4

0

1

1 2 - - 3 4 4 3 2 - - 1 2

𝑟11(𝑠) 𝑟23(𝑠)𝑟12(𝑠) 𝑟22(𝑠) 𝑟13(𝑠)𝑟21 𝑠 𝑟14(𝑠) 𝑟24(𝑠)

(a) Tour chromosome
Table 1: Installation chromosome of the example individual shown in Figure 3.

Inst i 1 2 3 4

Pat πi(s) {1, 4} {1, 3, 4} {2, 3} {2, 3}

the algorithm, keeping track of the status of each PSV to make sure it has returned to the

depot before starting a new voyage. This contrasts with the classic PVRPs, in which each

route never requires more than one time period. This chromosome could also be easily

extended to accommodate heterogeneous fleet decisions.

Table 2: PSV chromosome of the example individual shown in Figure 3.

PSV v 1 2

Pat βv(s) {1, 3} {2, 4}

4.3 Evaluation of individuals

In the combinatorial optimization literature, various studies (e.g., Glover and Laguna,

1997; Cordeau et al., 2001; Vidal et al., 2015) have underlined the fact that optimal

solutions often lie at the boundary of feasibility, such that allowing a controlled explo-

ration of infeasible solutions in the search process can improve its performance. In line

with these observations, we allow infeasible individuals in order to diversify the search,

but penalize them proportionally to their amount of infeasibility. Choosing the right

set of constraints to relax is critical for the search performance. We opted to always

satisfy pattern restrictions and maintain a complete solution with visits to all installations.

However, the lower and upper limits on voyage duration, supply quantity and number of

installations visited during each voyage can be breached with some associated penalty costs.

Penalized solution cost. Let cvt be the sailing and service cost of a voyage rvt sailed

by PSV v departing on day t. Let TMIN and TMAX
vt be the minimum and maximum

duration for the voyage rvt, respectively. The maximum duration TMAX
vt depends on the

PSV-pattern choices for the vessel (Section 4.2), and can be calculated as

TMAX
vt =

∑

p∈PPSV
v

TMAX
pt uvp, (9)

where PPSVv represents the set of feasible departure patterns for PSV v; and uvp indicates

that PSV v uses pattern p when equal to one, and zero otherwise. TMAX
pt is the maximum

duration of a voyage departing on day t and using PSV pattern p. For example, if a PSV

departs on Monday, Wednesday and Saturday, the maximum duration of the voyages sailed

by this PSV departing on Monday and Saturday will be of two days, in order to be ready

11

(b) Installation chromosome

Table 1: Installation chromosome of the example individual shown in Figure 3.

Inst i 1 2 3 4

Pat πi(s) {1, 4} {1, 3, 4} {2, 3} {2, 3}

the algorithm, keeping track of the status of each PSV to make sure it has returned to the

depot before starting a new voyage. This contrasts with the classic PVRPs, in which each

route never requires more than one time period. This chromosome could also be easily

extended to accommodate heterogeneous fleet decisions.

Table 2: PSV chromosome of the example individual shown in Figure 3.

PSV v 1 2

Pat βv(s) {1, 3} {2, 4}

4.3 Evaluation of individuals

In the combinatorial optimization literature, various studies (e.g., Glover and Laguna,

1997; Cordeau et al., 2001; Vidal et al., 2015) have underlined the fact that optimal

solutions often lie at the boundary of feasibility, such that allowing a controlled explo-

ration of infeasible solutions in the search process can improve its performance. In line

with these observations, we allow infeasible individuals in order to diversify the search,

but penalize them proportionally to their amount of infeasibility. Choosing the right

set of constraints to relax is critical for the search performance. We opted to always

satisfy pattern restrictions and maintain a complete solution with visits to all installations.

However, the lower and upper limits on voyage duration, supply quantity and number of

installations visited during each voyage can be breached with some associated penalty costs.

Penalized solution cost. Let cvt be the sailing and service cost of a voyage rvt sailed

by PSV v departing on day t. Let TMIN and TMAX
vt be the minimum and maximum

duration for the voyage rvt, respectively. The maximum duration TMAX
vt depends on the

PSV-pattern choices for the vessel (Section 4.2), and can be calculated as

TMAX
vt =

∑

p∈PPSV
v

TMAX
pt uvp, (9)

where PPSVv represents the set of feasible departure patterns for PSV v; and uvp indicates

that PSV v uses pattern p when equal to one, and zero otherwise. TMAX
pt is the maximum

duration of a voyage departing on day t and using PSV pattern p. For example, if a PSV

departs on Monday, Wednesday and Saturday, the maximum duration of the voyages sailed

by this PSV departing on Monday and Saturday will be of two days, in order to be ready

11

(c) PSV chromosome

Figure 3: Illustration of an individual and its tour, installation, and PSV chromosomes.

Then, the installation chromosome represented on the bottom left of Figure 3 provides

the installation pattern πi(s), i.e., the current departure days to service each installation.

For example, pattern {1, 4, 6} on a planning horizon of a week indicates that there are

voyages servicing the installation departing every Monday, Thursday and Saturday from

the depot. Observe that we can preprocess, for each installation, the set of admissible

patterns that satisfy the service frequency and spread departures conditions. Then, checking

feasibility with respect to these constraints simply consists in verifying that the pattern of

each installation is admissible.

10

Finally, the PSV chromosome represented in the bottom right of Figure 3 contains, for

each PSV v, a PSV pattern βv(s) containing the days on which v departs from the depot.

The PSV chromosome plays an essential role in the algorithm, as it keeps track of the

status of each PSV, to make sure it has returned to the depot before starting a new voyage.

This contrasts with the classic PVRP, in which the routes never exceed one time period.

4.3 Evaluation of individuals

In the combinatorial optimization literature, various studies (e.g., Glover and Laguna, 1997;

Cordeau et al., 2001; Vidal et al., 2015) have underlined the fact that optimal solutions

often lie at the boundary of feasibility, such that allowing a controlled exploration of

infeasible solutions in the search process can improve its performance. In line with these

observations, we allow infeasible individuals in order to diversify the search, but penalize

them proportionally to their amount of infeasibility.

Choosing the right set of constraints to relax is critical for the search performance.

We opted to always satisfy the pattern restrictions (i.e., the departure pattern for every

installation must be one of its admissible patterns) and maintain a complete solution with

visits to all installations. However, the lower and upper limits on voyage duration, supply

quantity and number of installations visited during each voyage can be breached with some

associated penalty costs.

Penalized solution cost. Let cvt be the sailing cost of a voyage rvt sailed by PSV v

departing on day t. Let TMIN
vt and TMAX

vt be the minimum and maximum duration for

the voyage rvt, respectively. The maximum duration TMAX
vt depends on the PSV pattern

choices for the vessel (Section 4.2), and can be calculated as:

TMAX
vt =

∑

p∈PPSV
v

TMAX
pt uvp, (9)

where PPSVv represents the set of feasible departure patterns for PSV v; and uvp indicates

that PSV v uses pattern p when equal to one, and zero otherwise. TMAX
pt is the maximum

duration of a voyage departing on day t and using PSV pattern p. For example, if a PSV

departs on Monday, Wednesday and Saturday, the maximum duration of the voyages sailed

by this PSV departing on Monday and Saturday will be of two days in order to be ready

for the next departure. The voyage departing on Wednesday, on the other hand, can last

three days since there are three days from Wednesday to Saturday.

Furthermore, let QMIN
v and QMAX

v represent the minimum and maximum supply

quantity carried by PSV v when starting a voyage, and let NMIN and NMAX be the

minimum and maximum numbers of installations visited by any voyage. The penalized

11

cost φvt of a voyage rvt is then calculated as follows:

φvt = cvt + ωDmax{0, TMIN
vt − τvt, τvt − TMAX

vt }
+ ωQmax{0, QMIN

v − qvt, qvt −QMAX
v }

+ ωNmax{0, NMIN − nvt, nvt −NMAX},
(10)

where ωD, ωQ and ωN are the penalty parameters per unit violation of the constraints on

duration, capacity and number of visited installations, respectively; and τvt, qvt and nvt

are the duration, utilized capacity on the PSV and the number of installations visited by

voyage rvt, respectively. Finally, the penalized cost φs of an individual s is the sum of the

penalized costs of all its voyages.

Diversity contribution and biased fitness. Relying solely on solution cost for individ-

ual evaluations can lead the search towards a premature convergence, where all solutions

become identical due to an excessive selection pressure. Hence, as in Vidal et al. (2012), we

complement the evaluation of an individual by a measure of its diversity contribution ∆(s),

which represents the individual’s contribution to the population diversity. Given a distance

metric δH(s1, s2) between two solutions s1 and s2, the diversity contribution ∆(s) of a

solution s is measured as its average distance from its nCLO closest solutions, expressed as:

∆(s) =
1

nCLO

∑

s′∈NCLO(s)

δH(s, s′), (11)

where NCLO(s) is the set of the closest solutions to solution s. The distance metric

δH(s1, s2) used in this equation is a normalized Hamming distance, computed as:

δH(s1, s2) =
1

2|N |
∑

i∈N
(1(πi(s1) 6= πi(s2)) + 1(Vi(s1) 6= Vi(s2))), (12)

where Vi(s) is the set of PSVs servicing installation i in individual s, and function 1(cond)

equals one if condition cond is true, and zero otherwise. This distance metric counts

the number of installations that have different departure patterns and the number of

installations that are serviced by a different set of PSVs. The sum of the two counts is

normalized by dividing it by two times the number of installations, giving a value in [0, 1].

The two measures, penalized solution cost and diversity contribution, help to evaluate

the quality of an individual. However, they have different scales and units. Following Vidal

et al. (2012), we rely on ranking to avoid any scaling issue: let RankC(s) and RankD(s) be

the ranks of individual s in terms of penalized cost and diversity contribution, respectively

(rank 1 being the best). Then, we define the final biased fitness of a solution as a weighted

12

sum of both ranks as follows:

BF (s) = RankC(s) +

(
1− nELI

|S|

)
RankD(s). (13)

In this equation, the parameter nELI governs the weight of the diversity contribution in

the evaluation. It also represents a number of elite solutions (in terms of penalized solution

cost) which are guaranteed to survive to the next generation when selecting out the worst

solutions in terms of biased fitness (when a sub-population is full, as described later in

Section 4.7).

4.4 Initial Population

The initial population is initialized by creating KINIT × µ individuals and allocating them

to the appropriate (feasible or infeasible) subpopulation. The number of individuals created

should be high enough to create diversity, but not too high to avoid spending extensive

computational effort on initial low-quality solutions. Depending on the problem instance

and its fleet size, it may be easy or difficult to generate initial feasible solutions. As a

consequence, one of the subpopulations may contain less than µ individuals at the end of

the initialization phase.

An individual s is created in three steps, one for each chromosome. In the first step,

the installation chromosome is created by randomly assigning an installation pattern

πi(s) ∈ PINSTi to each installation i. The set of days that need departures, denoted

T DEP (s), can then be obtained as the union of all the assigned installation patterns.

The second step consists in creating the PSV chromosome, by randomly assigning each

PSV v to a PSV pattern βv(s) that visits at least one day in T DEP (s), from the set of

feasible PSV patterns PPSVv for PSV v. When a PSV pattern is assigned, the days in the

pattern are removed from T DEP (s). If T DEP (s) 6= ∅ after each PSV has been assigned

a PSV pattern, i.e., at least one installation pattern have days with no PSV departing,

the second step is restarted. Note that, the PSV patterns could be randomly selected

from PPSVv , but making sure that every selected PSV pattern includes at least one day in

T DEP (s) significantly reduces the number of restarts, as the chance of having at least one

PSV departing on every day in T DEP (s) increases. The second step is also restarted if

the depot capacity (maximum number of voyages to be prepared) is violated on any day

during the planning horizon.

In the third step, the tour chromosome is created by allocating installations to (PSV,

day) couples. The set of installations that have a departure on day t, denoted Nt(s), can

be generated from the installation chromosome. Similarly, the set of PSVs that have a

departure on day t, denoted Vt(s), can be generated from the PSV chromosome. The tour

chromosome is created by iterating through all days in the planning horizon, and for each

13

day allocating each installation in Nt(s) to a randomly-selected PSV in Vt(s).
Each resulting individual undergoes a local search-based education procedure (described

later in Section 4.6), and is assigned to the appropriate subpopulation.

4.5 Parent selection and crossover

Crossover is the process where the chromosomes of two parent individuals, s1 and s2,

are combined into a new offspring individual snew. Each parent is selected by binary

tournament, i.e., randomly picking two individuals from the entire population and choosing

the one with the best biased fitness as the parent. The crossover procedure is described in

Algorithm 2 and in the following:

STEP 0. The algorithm begins by selecting which parts of the chromosome should be

inherited from which parent. This is done by dividing the set of (PSV, day) couples into

three disjoint sets Λ1, Λ2 and Λmix, containing the PSV and days which shall inherit data

from s1, s2 and both, respectively.

STEP 1. The next step aims to inherit information from s1. For each (PSV, day)

couple in Λ1, all departures are simply copied from s1 to snew. For the couples that are in

Λmix, two random cut-off points, α1
vt and α2

vt, are picked, and the installation sequence

between α1
vt (inclusive) and α2

vt (exclusive) is copied from s1 to snew. Note that α1
vt may

be larger than α2
vt, in which case the copied sequence is formed by removing the sequence

between α2
vt and α1

vt.

STEP 2. This step aims to transmit information from s2. Since the individuals are

not allowed to violate the constraints on the number of visits to each installation, the

spread of the departures, and the depot capacity, it is necessary to check their validity

when inheriting the installation visits from s2. These constraints are enforced through

the installation patterns and PSV patterns. Line 14 checks that there is not already a

departure to installation i on day t, and that the resulting installation pattern is part

of at least one of the feasible patterns for installation i. If the condition is not satisfied,

installation i cannot be copied to the voyage. If PSV v already departs on day t, there is

no change in the PSV pattern and the installation can safely be copied. If PSV v does

not depart, Line 17 checks that there is available depot capacity on that day, and that

the resulting PSV pattern is part of at least one feasible PSV pattern. Here, nPSVt (snew)

equals the number of PSVs departing on day t. If both of these requirements are satisfied,

a new voyage is created, and the installation is copied from s2 to snew.

STEP 3. After all feasible installation departures have been copied from both s1 and s2,

some visits to installations may still be missing. These visits are subsequently inserted

to obtain the offspring individual. To achieve this, we randomly choose an installation

missing one or more visits, and insert a visit to it in the cheapest position (in terms of the

penalized solution cost) among current voyages. This process is repeated until no missing

14

Algorithm 2 Crossover operator

1: Given two parent individuals s1 and s2

STEP 0: INHERITANCE RULE
2: Pick two random integer numbers between 0 and |T | × |V| according to a uniform

distribution. Let n1 and n2 be the smallest and the largest of these numbers, respectively
3: Randomly select n1 (PSV, day) couples to form the set Λ1

4: Randomly select n2 − n1 remaining couples to form the set Λ2

5: The remaining |V| × |T | − n2 couples make up the set Λmix

STEP 1: INHERIT DATA FROM s1
6: for each (PSV, day) (v, t) belonging to set Λ1 do
7: Copy the sequence of installation departures from rvt(s1) to rvt(snew)
8: end for
9: for each (PSV, day) (v, t) belonging to set Λmix do

10: Randomly (uniform distribution) select two cut-off points α1
vt and α2

vt and copy the
α1
vt to α2

vt substring of rvt(s1) to rvt(snew)
11: end for

STEP 2: INHERIT DATA FROM s2
12: for each (PSV, day) (v, t) ∈ Λ2 ∪ Λmix selected in random order do
13: for each installation departure i in rvt(s2) do
14: if t /∈ πi(snew) and ∃p ∈ PINSTi | p ⊃ (t ∪ πi(snew)) then
15: if t ∈ βv(snew) then
16: Copy installation i at the end of rvt(snew)
17: else if nPSVt (snew) < Bt and ∃p ∈ PPSVv | p ⊃ (t ∪ βv(snew)) then
18: Create new voyage rvt(snew) and insert installation i
19: end if
20: end if
21: end for
22: end for

STEP 3: COMPLETE INSTALLATION SERVICES
23: while there are installations with unsatisfied service frequency requirements do
24: i← random installation for which service frequency requirements are not satisfied
25: Let F be the set of feasible (PSV, day) combinations (v, t) with respect to the

feasible installation patterns, feasible PSV patterns and depot capacity based on
the visits already in snew.

26: if F = ∅ then
27: go to 1 . no feasible insertion, restart the procedure
28: else
29: Let ψ(i, v, t) be the minimum penalized cost for the insertion of installation i

into the voyage sailed by PSV v on day t.
30: Insert i at least cost position in rvt, where (v, t) = argmin(v,t)∈F ψ(i, v, t).
31: end if
32: end while

33: Return snew as the new offspring individual.

15

visits remain.

The design of this crossover operator ensures that snew satisfies the required numbers

of installation visits, has a feasible installation pattern and does not exceed the depot

capacity. Still, snew may contain voyages that violate the minimum and maximum bounds

on the number of installations, duration and PSV capacity. These violations will be taken

into account in the penalized cost.

4.6 Education and Repair

A local-search based education procedure is used to improve each initial solution and

offspring individual generated by the crossover. This procedure is performed in three steps:

voyage improvement, pattern improvement, and voyage improvement once again.

The voyage improvement procedure consists in a local search which aims to improve the

order of visits in each voyage, but does not change the installation or PSV patterns. The

pattern improvement procedure, on the other hand, attempts to improve the individuals

by changing these patterns.

4.6.1 Voyage improvement

Let the neighborhood Γ(u) of an installation u be defined as the h× n installations closest

to it (according to distance) in the voyage, where n is the number of installations visited on

the voyage and h ∈ [0, 1] is a parameter restricting the size of the neighborhood. The voyage

improvement procedure is a local search approach which evaluates, for each installation

pair u and v ∈ Γ(u), in random order, the solutions obtained by the following moves, where

x and y are the successors of u and v, respectively:

• (M1) Remove u and place it after v;

• (M2) Remove u and x and place u and x after v;

• (M3) Remove u and x and place x and u after v;

• (M4) Swap the position of u and v;

• (M5) Swap the position of u and x with v;

• (M6) Swap the position of u and x with v and y;

• (M7) Swap the position of x and v.

Any improving move, in terms of penalized cost, is directly applied to the solution, and

the voyage improvement stops once all moves have been consecutively evaluated without

solution improvement.

4.6.2 Pattern improvement

Three sub-procedures are performed in the following order in the pattern improvement

procedure: (1) changing installation departure patterns, (2) merging multiple voyages

16

departing on the same day, and (3) moving installation departures from short voyages to

other voyages. The last two sub-procedures aim to reduce the total number of voyages

sailed. The reason for this is that the distances between the depot and the installations

often are longer than those between installations, resulting in a high start-up cost for a

voyage. Therefore, fewer voyages usually lead to cheaper schedules.

Changing installation departure patterns. This sub-procedure iterates through all

installations once and, for each installation, attempts to improve its departure pattern.

This is done by removing all departures to the installation, looping through all feasible

departure patterns for the installation and reinserting the departures to the least costly

positions on the days given by the installation pattern. The pattern leading to the smallest

penalized cost is used if it leads to an improvement of the individual.

Merging voyages. This sub-procedure attempts to merge two voyages departing on the

same day into one. This is done by iterating through all days once and, for each day that

has more than one voyage, calculating the penalized cost of merging all combinations of

two voyages. The merging which reduces the penalized cost the most, if any, is performed

on that day.

Reducing the number of voyages. This sub-procedure aims to reduce the number of

voyages sailed by moving installation departures from days with short voyages to other

days, possibly changing several patterns at the same time to escape from local optima.

Let nREMt (s) be the smallest number of installation departures that need to be moved

to another day in order to reduce the number of voyages sailed on day t. The procedure

starts by selecting day t with the lowest nREMt (s), and changes the installation pattern

of those installations having a departure on t. Let PMOV
it be the set of feasible patterns

for installation i that do not contain day t. If this set is non-empty, i is movable and

is included in the set of movable installations with departures on day t, NMOV
t (s). If

nREMt (s) > |NMOV
t (s)|, there are not enough movable installations to remove a voyage, and

the procedure stops. Else, the procedure continues by finding the (installation, pattern)-

combination (i, p) that results in the lowest penalized cost, where i ∈ NMOV
t (s), p ∈ PMOV

it .

After the pattern is changed, the installation is no longer part of NMOV
t (s), hence nREMt (s)

is decreased by one. The procedure keeps changing the pattern of the installation with the

lowest move cost until nREMt (s) = 0. If the penalized cost of the individual is reduced as a

result of the procedure, the changes to the individual are performed; if not, it remains as

before the procedure started.

17

4.6.3 Repair

If the resulting individual after education is feasible, it is referred to as naturally feasible.

If it is infeasible, repair takes place with probability ρREP . The repair procedure consists

in applying the education algorithm with 10× higher penalty parameters. If the individual

still is infeasible, the education algorithm is run again with 100× higher parameter values.

4.7 Population management

Three different population management mechanisms are used to guide the search. These

are the survivor selection, penalty parameter adjustment and diversification mechanisms,

all explained below. The aim of these mechanisms is to maintain a good balance between

feasible and infeasible individuals, in order to maintain the diversity of the population as

well as high-quality individuals. These mechanisms impact the entire population simultane-

ously, contrary to crossover, education and repair, which only affect one individual at a time.

Survivor selection. Survivor selection discards both bad quality individuals and clones,

i.e., individuals that have a Hamming distance of zero to another individual. Survivor

selection is performed on a subpopulation whenever its size reaches its upper limit µ+ λ.

This mechanism iteratively removes individuals until there are µ individuals left, by first

removing clones; when no clones are left, removing the individuals with highest biased

fitness.

Penalty parameter adjustment. The penalty parameters (see Section 4.3) are adjusted

every 100 iterations, in order to guide the search towards a desired share of naturally

feasible individuals. Let ξD, ξQ and ξN be the share of naturally feasible individuals among

the last 100 generated individuals with respect to voyage duration, PSV capacity and

number of installations, respectively. Let ξREF be a method parameter, which represents

a target ratio of naturally feasible individuals. The penalty parameters are individually

adjusted as shown in Algorithm 3, where ζUP and ζDOWN are the adjustment factors for

the penalties.

Algorithm 3 Penalty parameter adjustment

1: for p = D,Q,N do . For each type of penalty
2: if ξp ≤ ξREF − 0.05 then
3: ωp = ωp × ζUP
4: else if ξp ≥ ξREF + 0.05 then
5: ωp = ωp × ζDOWN

6: end if
7: end for

18

Diversification. Finally, a diversification procedure is used to recover population diversity

when the algorithm becomes trapped in a local optimum. This procedure is called in case no

improvement has been made to the best individual the last IDIV iterations. Diversification

works by removing all but the best third of each subpopulation, in terms of biased fitness,

and generating KDIV × µ new individuals as in the population initialization.

4.8 Fleet minimization

The hybrid genetic search algorithm described in the previous sections minimizes the sailing

costs using a given fixed fleet. The objective of the SVPP is, however, to minimize the

total costs related to both the usage (chartering) and the operation of the PSVs. Hence,

finding a solution of the SVPP also requires to determine a good fleet size.

Recall that in the supply vessel planning problem faced by Statoil, the PSV charter

costs exceed significantly the variable sailing costs. As such, sailing cost reductions obtained

by increasing the fleet size can never offset the related increase in charter costs. This

implies that if there exists a feasible fleet of size k, then the size of the optimal fleet is at

most k.

The fleet size optimization procedure thus searches for the smallest number of vessels

needed to service all installations. It starts from fleet size |V| and iteratively attempts to

reduce the fleet size by one and search for a feasible solution. For instance, at fleet size

|V| − 1 the genetic search is run until the first feasible schedule is found; the fleet size

is then decremented and the method is run with a fleet size of |V| − 2. This process is

repeated until no feasible schedule can be found for a size kmin. Then, a final complete

genetic search is operated with a fleet size of kmin + 1 to optimize the sailing costs, and the

solution is returned.

5 Computational experiments

In this section, we evaluate the performance of the proposed heuristic for realistic SVPPs.

The algorithm is implemented in Java, and our tests are run on an Intel 2.4 GHz processor

with 8 GB memory and a single thread.

We use a total of 25 problem instances in our computational study, all of which are

based on real cases faced by Statoil in the North Sea as of April 2016. The instances

consider one supply depot, three to 27 offshore installations and 10 to 80 total weekly visits.

The complete list of instances can be visualized in Table 7, in Section 5.3. Each instance is

named after its corresponding number of installations and total number of weekly visits.

All instances consider a planning horizon of one week and a pool of six identical PSVs

from which Statoil selects for time charter. The resulting fleet size, routing and scheduling

decisions will be implemented every week for the months to come. The number of visits

19

required by an installation ranges from one to five per week, and the service time at each

installation ranges from one and a half to four hours. The supply depot is open for eight

hours (08.00-16.00) from Monday to Saturday and is closed on Sunday. Also, a PSV needs

to be at the supply depot before 08.00 to start on a new voyage the same day, and all

voyages depart from the depot at 16.00. Finally, every voyage sailed by a PSV is constrained

to visit between one and eight installations, and can last a maximum of three days.

In Section 5.1 we present the calibration of the parameters used in the metaheuristic.

The experimental results on the test instances are then analyzed in Section 5.2.

5.1 Parameter setting

The hybrid genetic search procedure is at the core of the proposed heuristic, and thus its

parameters must be carefully calibrated to efficiently solve the real test cases. In light

with Vidal et al. (2012, 2014), we observed that the values of most parameters do not

significantly affect the performance, as long as they are within reasonable ranges. In this

paper those parameters were set without calibration, to KINIT = 4 (construction heuristic

size factor) and KDIV = 4 (diversification size factor); ζUP = 1.2 and ζDOWN = 0.85

(penalty adjustment factors). The starting values of the penalties were set to higher values

of ωQ = ωT = ωN = 1000 to quickly reach the first feasible solution. Note that the

penalties are adjusted dynamically by the algorithm, and thus their initial values are of

secondary importance. However, carefully setting these values according to the scale of the

objective function allows to speed up the initial stage of the search.

We have also identified some parameters which have a more visible effect on the

performance of the metaheuristic. These parameters, their descriptions and final values

are shown in Table 1. The parameters ξREF and ηELI have been calibrated individually.

The four others have been calibrated in pairs, (µ, λ) and (INI , ηDIV), as they are

significantly correlated. The problem instances P-12-40, P-20-68 and P-27-80 were used

for the calibration, as they are representative of medium and large problems which are

challenging for Statoil. When a particular parameter or pair of parameters is calibrated,

the others are set to their standard value indicated in Table 1. Finally, since the heuristic

is non-deterministic, we report its average run time over five runs, as well as the percentage

gap between its average solution value z and the best known solution (BKS) value zbks for

the instance, computed as Gap(%) = 100× (z − zbks)/zbks.

Calibration of µ and λ. The minimum subpopulation size µ and the generation size λ

were calibrated together, since they both impact the diversity of the population. Table 2

displays the average run time and gaps for different combinations of µ and λ. The combi-

nation µ = 25 and λ = 75 was selected, as it leads to the lowest objective gaps for both

P-20-68 and P-27-80.

20

Table 1: Parameters calibrated and their values after calibration.

Param. Value Description

µ 25 Minimum subpopulation size

λ 75 Generation size

INI 5 000 Maximum number of consecutive iterations without improvement

ηDIV 0.1 Proportion of INI , such that IDIV = ηDIV × INI
ξREF 0.6 Target ratio of feasible individuals

ηELI 0.4 Proportion of elite individuals, such that nELI = ηELI × |S|

Table 2: Calibration of µ and λ

λ = 25 λ = 50 λ = 75 λ = 100

Instance µ Time (s) | Gap Time (s) | Gap Time (s) | Gap Time (s) | Gap

P-12-40

15 77.0 | 0.00% 95.8 | 0.00% 95.9 | 0.00% 120.9 | 0.00%

25 86.8 | 0.00% 100.6 | 0.00% 113.3 | 0.00% 148.8 | 0.00%

35 95.4 | 0.00% 110.8 | 0.00% 130.9 | 0.00% 182.3 | 0.00%

P-20-68

15 567.2 | 0.13% 743.9 | 0.10% 708.2 | 0.06% 651.4 | 0.08%

25 960.5 | 0.05% 724.8 | 0.05% 707.0 | 0.03% 814.0 | 0.06%

35 780.7 | 0.05% 963.2 | 0.04% 845.6 | 0.05% 1089.1 | 0.05%

P-27-80

15 818.3 | 0.32% 678.6 | 0.20% 868.0 | 0.19% 852.3 | 0.20%

25 746.5 | 0.22% 691.2 | 0.21% 867.0 | 0.15% 875.8 | 0.25%

35 899.2 | 0.17% 1230.9 | 0.23% 781.6 | 0.26% 1655.6 | 0.20%

Calibration of INI and ηDIV . From our preliminary experiments, a termination criterion

of at least 4000 iterations without improvement appeared to be necessary to ensure that

our algorithm does not terminate prematurely. We therefore set the base configuration to

INI = 5000, and compared it with a longer termination criterion of INI = 10000 iterations.

The diversity criterion, ηDIV , is the percentage value used to calculate IDIV = ηDIV × INI .
It determines how frequently the diversification is performed.

Table 3 shows the results for different combinations of INI and ηDIV . Increasing INI

beyond 5000 did not improve the solution quality but significantly increased the run time,

and thus we maintained this value. Moreover, ηDIV = 0.1 was selected, as it leads to the

best average gap for instance P-27-80. Note that the high average gap obtained when using

ηDIV = 0.7 and INI = 10000, for instance P-27-80, was caused by one run with a solution

containing five PSVs, while the other runs used four. This happened because no feasible

21

Table 3: Calibration of INI and ηDIV .

INI = 5 000 INI = 10 000

Instance ηDIV Time (s) | Gap Time (s) | Gap

P-12-40

0.1 89.6 | 0.00% 152.1 | 0.00%

0.4 81.9 | 0.00% 146.5 | 0.00%

0.7 86.5 | 0.00% 147.3 | 0.00%

P-20-68

0.1 753.5 | 0.05% 1 077.7 | 0.07%

0.4 781.5 | 0.05% 1 196.7 | 0.05%

0.7 602.2 | 0.09% 1 024.8 | 0.05%

P-27-80

0.1 781.3 | 0.18% 1 229.8 | 0.21%

0.4 1 023.2 | 0.21% 1 061.8 | 0.18%

0.7 789.9 | 0.22% 1 257.8 | 4.60%

solution was found with four PSVs during this particular run. A poor initial population and

a high value of ηDIV may be the reason for this behavior, since a high ηDIV leads to less fre-

quent diversifications and thus increases the impact of a poorly diversified initial population.

Calibration of ξREF . This parameter acts as a target for the ratio of feasible individuals

in the population, during penalty adaptations (Section 4.7). A high value for ξREF leads

to higher penalties, hence guiding the search towards more feasible solutions. Table 4

reports the average run time and gap obtained with different values of ξREF on the selected

instances. From our experiments, ξREF = 0.6 led to the lowest average objective gap for

instances P-20-68 and P-27-80, and was chosen as the final calibrated value.

Table 4: Calibration of ξREF .

ξREF = 0.2 ξREF = 0.4 ξREF = 0.6 ξREF = 0.8

Instance Time (s) | Gap Time (s) | Gap Time (s) | Gap Time (s) | Gap

P-12-40 99.1 | 0.00% 93.1 | 0.00% 85.9 | 0.00% 82.2 | 0.00%

P-20-68 733.6 | 5.65% 779.7 | 0.11% 639.0 | 0.06% 578.6 | 0.08%

P-27-80 902.8 | 0.23% 778.9 | 0.22% 713.9 | 0.18% 949.0 | 0.28%

Calibration of ηELI . Finally, ηELI represents the proportion of elite individuals within

the population. It is used in the biased fitness measure described in Section 4.3. A higher

value of ηELI increases the importance of the penalized cost and decreases the importance

of the diversity contribution, resulting in increased elitism in the search. Table 5 reports

22

the calibration results for ηELI . The best gap was attained with ηELI = 0.4 for a moderate

increase of run time, and thus this value was selected for the algorithm.

Table 5: Calibration of ηELI .

ηELI = 0.2 ηELI = 0.4 ηELI = 0.6 ηELI = 0.8

Instance Time (s) | Gap Time (s) | Gap Time (s) | Gap Time (s) | Gap

P-12-40 141.3 | 0.00% 149.5 | 0.00% 140.5 | 0.00% 131.2 | 0.00%

P-20-68 947.3 | 0.11% 1 079.9 | 0.05% 948.5 | 0.05% 762.6 | 0.11%

P-27-80 829.9 | 0.38% 1 348.5 | 0.20% 1 045.7 | 0.25% 778.3 | 0.27%

5.2 Comparison with the commercial solver

We compare the performance of the proposed metaheuristic with the resolution of the

voyage-based model (Section 3 – used by Statoil) by means of the commercial solver Xpress

7.8. We refer to the latter approach as the VBM method.

The generation of candidate voyages is an essential component of the VBM method, and

requires to produce, for each feasible subset of installations (with respect to the constraints

on the load and number of visits), the voyage with the smallest sailing cost and duration.

In Halvorsen-Weare et al. (2012), this task was done by solving a set of TSPs since the

number of installations was relatively small. This generation approach, however, becomes

time-consuming for larger instances, such that we have developed a more efficient dynamic

programming (DP) algorithm for this task.

Dynamic programming solution approaches are frequently used to solve variants of

shortest path and traveling salesman problems, in which partial paths are represented

by labels (Ahuja et al., 1993). The algorithm starts from the trivial path including only

the supply depot, and then builds new paths by extending each existing label to a new

installation. Dominance rules are used to eliminate labels during the generation. Moreover,

in contrast with the approach of Halvorsen-Weare et al. (2012), where the constraints on

the load and number of visits were implicitly satisfied due to the prior selection of feasible

sets of installations, the algorithm must now satisfy those constraints during the extension

of the labels. This is done via resource constraints (Irnich and Desaulniers, 2005), allowing

to further reduce the number of labels at each step of the algorithm.

Table 6 now compares the performance of the metaheuristic with that of the VBM

approach. We restrict this comparison to the set of instances with up to 14 installations

and 48 weekly visits, since P-14-48 is the largest instance for which the VBM method can

find a feasible solution within an allowed time limit of 10,000 seconds. The first group

of columns provide the results of the VBM approach: the numbers of voyages generated,

the run time taken by the voyage generation phase, the optimality gaps at the end of the

23

Table 6: Results of solving the instances with up to 14 installations using the VBM method
and the proposed heuristic based on 10 runs.

VBM Heuristic

Problem #Voyages Voy. Gen. Optimality Total Gap from

instance Generated Time (s) gap Time (s) VBM Time (s)

P-3-10 7 0.4 0.0% 0.5 0.00% 17.2

P-4-13 15 0.4 0.0% 0.5 0.00% 26.5

P-5-16 31 0.5 0.0% 0.6 0.00% 60.4

P-6-17 63 0.6 0.0% 0.7 0.00% 60.6

P-7-22 127 0.7 0.0% 1.6 0.00% 66.4

P-8-26 255 0.7 0.0% 3.8 0.00% 74.1

P-9-29 510 0.8 0.0% 12.9 0.00% 96.4

P-10-32 1012 0.9 0.0% 69.9 0.00% 93.5

P-11-36 1980 1.8 0.0% 197.9 0.00% 118.4

P-12-40 3796 5.8 0.0% 43.1 0.00% 129.6

P-13-44 7098 23.0 22.3% >10,000 -0.03% 238.5

P-14-48 12,910 77.3 19.4% >10,000 -0.60% 166.9

method, and the total run time, including both the generation of the voyages and the

resolution of the model with Xpress. The remaining columns present the results of the

hybrid genetic algorithm: its average gap over ten runs (relative to the best primal solution

produced by the VBM method) and average run time.

From Table 6, we observe that the proposed heuristic outperforms the VBM method in

terms of solution quality and time. The VBM method can solve to optimality the instances

with up to 40 weekly visits, but for the next two larger problems, the optimality gap

remains very large when reaching the time limit of 10,000 seconds. To further examine

the potential of the VBM approach, we have also tested it on the same instances, but

assuming that the optimal fleet size is known (as this may be relevant in some application

contexts). For the instance P-14-48, when the fleet size is fixed to the optimal value of

three, the VBM approach can solve the problem to optimality in 224 seconds. However,

for a slightly larger problem (P-15-52), the time taken quickly increases to 3620 seconds,

and the method fails to find a feasible solution in 10,000 seconds for the next instance

(P-16-55). This shows that VBM still remains impracticable, on large problems, even with

the a-priori knowledge of an optimal fleet size.

In comparison, the hybrid genetic search systematically finds an optimal solution, on

every run, for all instances with up to 40 services, and it produces better solutions for the

last two cases. It requires more time on small instances than VBM, but the rate of increase

of the run time remains limited when the problem size grows. Such a good scalability is

essential for the success of the algorithm on larger test cases of Statoil. With this goal in

24

mind, the computational time and solution quality analyses are now extended to the larger

instances in the next section.

5.3 Stability and scalability

Table 7 summarizes the results of the proposed metaheuristic over 10 executions for all the

25 test instances, including the larger test cases from Statoil. The columns “#PSVs” and

“#Voyages” indicate the numbers of PSVs and voyages used (the initial fleet size being set

to six in all cases). We observe that these values were the same over the 10 runs, indicating

that the heuristic finds the same fleet size for all runs of each instance. The table also

shows the average run time over 10 executions, and the coefficient of variation (CV) of

the total cost, sailing cost and run time. The CV is calculated as the standard deviation

divided by the mean. The charter costs are not shown here, as they are always identical

over the 10 runs, due to the same fleet size found.

The average CV of the total cost and sailing costs are 0.02% and 0.19%, respectively,

and thus the heuristic appears to be very stable in terms of solution quality. To further

estimate the growth of the run time as the problem instances become bigger, we fitted the

run time of the method as a power law f(ns) = α× nβs of the number of weekly visits ns

(done as the least-squares regression of an affine function on the log-log graph). This

regression is depicted in Figure 4.

 10

 100

1000

 10 100

 Time(nserv)=1.81·10
-1·nserv

1.92

nserv

Figure 4: Growth of the run time as a function of the number of weekly visits to installations.
Log-log scale.

From these experimental analyses, the observed run time of the method grows in

O(n1.92s), i.e., subquadratically. This good behavior allows the algorithm to stand the test

of time as the operations of Statoil become larger and more integrated.

In addition, we remind that the proposed heuristic consists of two components: a

fleet optimization routine which checks for feasibility while reducing the fleet size, until

25

Table 7: Results of the proposed metaheuristic on all problem instances.

Coefficient of variation

Problem Total Sailing Run

instance #PSVs #Voyages Time (s) Cost Cost Time

P-3-10 2 4 17.2 0.00% 0.00% 8.18%

P-4-13 2 4 26.5 0.00% 0.00% 7.22%

P-5-16 2 4 60.4 0.00% 0.00% 7.37%

P-6-17 2 4 60.6 0.00% 0.00% 0.91%

P-7-22 2 5 66.4 0.00% 0.00% 0.58%

P-8-26 2 5 74.1 0.00% 0.00% 2.38%

P-9-29 2 5 96.4 0.00% 0.00% 6.85%

P-10-32 2 5 93.5 0.00% 0.00% 5.46%

P-11-36 2 5 118.4 0.00% 0.00% 14.11%

P-12-40 2 6 129.6 0.00% 0.00% 7.60%

P-13-44 3 6 238.5 0.00% 0.00% 4.49%

P-14-48 3 6 166.9 0.00% 0.00% 11.86%

P-15-52 3 7 254.9 0.00% 0.01% 24.51%

P-16-55 3 8 445.7 0.02% 0.18% 27.48%

P-17-59 3 8 421.2 0.01% 0.12% 28.12%

P-18-62 3 8 426.4 0.16% 1.22% 16.66%

P-19-65 3 9 542.3 0.04% 0.31% 16.67%

P-20-68 4 9 661.0 0.04% 0.34% 17.06%

P-21-69 4 9 973.5 0.04% 0.37% 26.09%

P-22-71 4 9 1030.0 0.03% 0.28% 22.73%

P-23-73 4 10 904.1 0.02% 0.21% 31.88%

P-24-74 4 10 672.7 0.03% 0.24% 35.55%

P-25-75 4 10 743.9 0.03% 0.26% 21.54%

P-26-78 4 10 873.8 0.05% 0.43% 36.38%

P-27-80 4 11 976.6 0.08% 0.68% 27.59%

Average 0.02% 0.19% 16.37%

26

no feasible schedule can be found for a size kmin, and then a final hybrid genetic search

on a fleet of size kmin + 1. Our experiments have shown that the fleet size optimization

procedure consumes around 10 to 30% of the total run time of the heuristic. Most of this

time is spent on confirming the infeasibility of the fleet size kmin. In contrast, checking

the feasibility of larger fleet sizes is easier for the algorithm: in most occasions, at least

one feasible solution is obtained when building the initial population; otherwise, the first

feasible solution is found within 2000 iterations in the worst case.

5.4 Effect of education

In Vidal et al. (2012), the authors presented a sensitivity analysis of the main components

of the HGSADC, and reported that the education impacts the objective value the most.

In our extension of the method, the education component involves a voyage improvement

and pattern improvement procedure, the latter being subdivided into three steps: an

improvement via single exchanges of installation departure patterns (similar to the pattern

improvement procedure proposed by Vidal et al. 2012), and two steps which aim to reduce

the number of voyages. Table 8 analyses the effect of different levels of education on the

three selected instances:

– No education means that no education is carried out at all;

– Simple education includes the same education procedure as in Vidal et al. (2012),

i.e., the voyage improvement procedure and the first pattern improvement step;

– Full education includes all mentioned education procedures.

Table 8: Impact of three different forms of education on the solution quality of the heuristic

No education Simple education Full education

Instance Time (s) | Gap Time (s) | Gap Time (s) | Gap

P-12-40 84.2 | 14.17% 116.6 | 0.00% 129.1 | 0.00%

P-20-68 140.8 | 1.06% 835.1 | 0.03% 1 125.1 | 0.02%

P-27-80 184.7 | 23.98% 681.8 | 0.24% 824.4 | 0.18%

From these experiments, we observe that the gap, in terms of objective value, is very

large when no education is performed. This confirms the well-known fact that the inclusion

of a local search-based education in the hybrid genetic algorithm contributes largely to

the search. The difference between the simple and full education is less marked. Still, the

complete education procedure led to some improvements of solution quality on the largest

instance, 0.18% compared to 0.24%, at the price of a 30% increase in terms of run time.

These differences are likely to become more significant as the instance size and the number

of PSV grow.

27

6 Conclusions

In this paper, we have studied a real life supply vessel planning problem (SVPP) faced by

the oil and gas company Statoil. Up to this date, the company had been using a solution

approach based on integer programming over a voyage-based model. This approach,

however, was limited to problems of small or medium size, with up to 14 installations and

48 weekly services. As the operations of Statoil become more consolidated, larger problems

must be solved and the current approach turns out to be impracticable.

To respond to this challenge, we introduced a new metaheuristic for this practical

problem, based on the Hybrid Genetic Search with Adaptive Diversity Control (HGSADC)

of Vidal et al. (2012). Our extension of this method has been specifically designed to

address additional problem features which are specific to maritime shipping, e.g., voyages

that span more than one unit of time, via a problem-tailored solution representation, new

crossover and education operators. Our computational experiments on real test instances

demonstrate the excellent performance of the new metaheuristic, which retrieves all known

optimal solutions on all runs, and improves the best known results for previous instances

which were not solved to optimality. The method also scales very well with problem size.

Experimentally, the run time of the heuristic appears to grow sub-quadratically, in O(n1.92s),

as a function of the number of installation visits per week. This growth is small enough

to envisage the resolution of much larger test cases, which arise when consolidating the

operations of more PSVs and onshore supply depots.

Many perspectives remain open with respect to this work. First, the method is not

necessarily limited to shipping, and can also be applied to many land-based transportation

applications which present similar features (e.g., long-haul routing optimization over

multiple time periods). Second, the proposed heuristic was designed to accommodate a pool

of vessels of equal characteristics according to the data given by Statoil, but an extension

to heterogeneous fleets is also possible via an extension of the PSV chromosome along with

dedicated local-search moves. Finally, the considered model is only a simplification of a

very complex situation, where various time and service level constraints impact the solution,

and different objectives interact. To better capture the trade-offs involved in such decisions,

it may be desirable to progress towards multi-objective optimization models to include

other practical concerns involved in Statoil’s daily operations, such as the robustness and

persistence of the planned schedules in case of disruption in some voyages due to bad

weather, or if Statoil decides to shut down an installation or open a new one.

28

Acknowledgments

The authors acknowledge financial support from project Maritim Offshore Logistikk Opti-

mering (MOLO) partly funded by the Research Council of Norway. The authors would

also like to thank Tor Toftøy and Ellen Karoline Norlund at Statoil.

References

Aas, B., Halskau Sr, Ø., and Wallace, S. W. (2009). The role of supply vessels in offshore

logistics. Maritime Economics & Logistics, 1(3):302–325.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algorithms,

and Applications. Pearson Prentice-Hall, Upper Saddle River, NJ, USA, 1 edition.

Cordeau, J.-F., Laporte, G., and Mercier, A. (2001). A unified tabu search heuristic for

vehicle routing problems with time windows. Journal of the Operational Research Society,

52(8):928–936.

Fagerholt, K. and Lindstad, H. (2000). Optimal policies for maintaining a supply service

in the Norwegian Sea. Omega, 28(3):269–275.

Francis, P. M., Smilowitz, K. R., and Tzur, M. (2008). The Period Vehicle Routing Problem

and its Extensions. In Golden, B. L., Raghavan, S., and Wasil, E. A., editors, The

Vehicle Routing Problem: Latest Advances and New Challenges, pages 73–102. Springer

US, Boston, MA.

Glover, F. and Laguna, M. (1997). Tabu search. Kluwer Academic Publishers, Norwell,

MA.

Halvorsen-Weare, E. E. and Fagerholt, K. (2011). Robust Supply Vessel Planning. In Pahl,

J., Reiners, T., and Voß, S., editors, Network optimization, INOC 2011, Lecture Notes

in Computer Science, volume 6701, pages 559–573. Springer.

Halvorsen-Weare, E. E. and Fagerholt, K. (2017). Optimization in offshore supply vessel

planning. Optimization and Engineering, 18(1):317–341.

Halvorsen-Weare, E. E., Fagerholt, K., Non̊as, L. M., and Asbjørnslett, B. E. (2012).

Optimal fleet composition and periodic routing of offshore supply vessels. European

Journal of Operational Research, 223(2):508–517.

Hoff, A., Andersson, H., Christiansen, M., Hasle, G., and Løkketangen, A. (2010). Industrial

aspects and literature survey: Fleet composition and routing. Computers & Operations

Research, 37(12):2041–2061.

29

Irnich, S. and Desaulniers, G. (2005). Shortest Path Problems with Resource Constraints.

In Desaulniers, G., Desrosiers, J., and Solomon, M. M., editors, Column Generation,

chapter 2, pages 33–65. Springer US.

Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.

Norlund, E. K. and Gribkovskaia, I. (2013). Reducing emissions through speed optimization

in supply vessel operations. Transportation Research Part D: Transport and Environment,

23:105–113.

Norlund, E. K., Gribkovskaia, I., and Laporte, G. (2015). Supply vessel planning under

cost, environment and robustness considerations. Omega, 57:271–281.

Pantuso, G., Fagerholt, K., and Hvattum, L. M. (2014). A survey on maritime fleet size

and mix problems. European Journal of Operational Research, 235(2):341–349.

Shyshou, A., Gribkovskaia, I., Laporte, G., and Fagerholt, K. (2012). A large neighbourhood

search heuristic for a periodic supply vessel planning problem arising in offshore oil and

gas operations. INFOR: Information Systems and Operational Research, 50(4):195–204.

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., and Rei, W. (2012). A hybrid genetic

algorithm for multidepot and periodic vehicle routing problems. Operations Research,

60(3):611–624.

Vidal, T., Crainic, T. G., Gendreau, M., and Prins, C. (2014). A unified solution framework

for multi-attribute vehicle routing problems. European Journal of Operational Research,

234(3):658–673.

Vidal, T., Crainic, T. G., Gendreau, M., and Prins, C. (2015). Time-window relaxations in

vehicle routing heuristics. Journal of Heuristics, 21(3):329–358.

30

	cover
	StatoilSVPP-R2
	Introduction
	Literature review
	The supply vessel planning problem
	Proposed methodology
	Overview of the hybrid genetic search procedure
	Individual representation
	Evaluation of individuals
	Initial Population
	Parent selection and crossover
	Education and Repair
	Voyage improvement
	Pattern improvement
	Repair

	Population management
	Fleet minimization

	Computational experiments
	Parameter setting
	Comparison with the commercial solver
	Stability and scalability
	Effect of education

	Conclusions

