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Abstract: We analyze the operational profitability of a hydropower system selling both energy and reserve capacity in a competitive
market setting. A mathematical model based on stochastic dynamic programming is used to compute the water values for the
system considering different power plant configurations. The uncertainties in inflow and both energy and reserve capacity prices
are considered through a discrete Markov chain. Subsequently, the system operation is simulated based on the obtained water
values to assess system performance and expected revenues from the two markets.

The model is applied in a case study for a Norwegian hydropower producer, showing how the power plant operation changes
and profitability increases when considering sale of reserve capacity. We emphasize on how the water values are influenced
by the opportunity to sell reserve capacity, and assess how the representation of non-convex relationships in the water value
computations as well as simulation influence the profitability.

discretized, so the overall problem size becomes computationally
intractable when considering systems with many reservoirs. Thus,
SDP-based scheduling models applied to multi-reservoir systems
often rely on aggregation-disaggregation techniques, such as in [4—
6]. Numerous other methodological approaches have been applied
to the scheduling problem, see e.g. [7, 8] for an overview. The
The increasing share of non-dispatchable renewable energystochastic dqal dynamic programming (SDDP) introduced in.[9] has
resources in Europe calls for efficient and reliable arrangements forbecome_ particularly popular. The SDDP method allows solving the
cheduling problem without discretizing the state variables, and is

balancing services. For large-scale energy storage operators, Sucfﬁwerefore computationally tractable for systems with multiple reser-
as hydropower producers, this development may change the marke

ducts tvoically being deli d. Todav. th d .o voirs. Although frequently addressed in recent literature, see e.g.
gg%rgg So f %F;Ir?wigeraetlig% ise ::\I{Ce):s éell?n;yénefg)?ri?l Lt’ﬁ:rzasfg?ég’d [10-14] the SDDP method does not easily facilitate non-convexities.
market. However, the flexibility of hydropower enables active con- Several approaches incorporating treatment of energy, reserve

tribution in reserve capacity and balancing markets as well, which in C2PaCiy and balancing markets in long- and medium-term
utio pacity 9 . e hydropower scheduling methods have recently been presented. Some
turn will challenge the way hydropower reservoirs traditionally have

authors have decomposed the scheduling problem into intra- and
been operated.

= hvd d th ted inal val fwat inter-stage problems, as discussed in [15], where the inter-stage
or a nydropower producer, the expected marginaj value ot wa elr'problem will take care of the longer-term and strategic decisions,
hereafter referred to as theater value express the opportunity

. S o e.g. how much water to use in a given week, while intra-stage
cost of water. Having the possibility to utilize the facilities for both _decisions concern the detailed operation using a much finer time-

energy generation and reserve capacity may impact the stratediG < iution. Based on this scheme [16] proposed a method for

evaluation and scheduling of resources. These products will to some - v i medium-term hydropower scheduling considering par-

extent r_ely on the same resource (water_), but _their resource deF)on'ticipation in both the day-ahead and secondary reserve markets.
ment will differ. Consequently, the. consideration of both prodycts Inter-stage decisions regarding operation of seasonal reservoirs are
will impact the water values, and_ in wrn the expect_ed operational found by use of SDP, and the shorter term intra-stage decisions, e.g.,
.F;r(g.'lt.?b'."ty Ofo? tr;])r/dro%ow?rthprotjectt.t Thi]ter:mpera'f[lk(])ntal pr%f' not related to sales of spinning reserves, are found by solving a multi-
ftabriity 1S use oughout the text to emphasize that we do no stage mixed-integer problem. A different method for incorporating
con5|dfer investment costs for the project, only profitability from sales of spinning reserves in a medium-term hydropower schedul-
op_?_rhatlon. | K tional olanni heduli f ing model based on linear programming was presented in [17]. It
e early works on operational planning (scheduling) o extends the hybrid SDP/SDDP algorithm in [18, 19] by allowing

hydropower reservoirs used the principles of stochastic dynamic : . ; :

; > sequential sales of reserve capacity and energy, treating both prices
programming (SDP) [1-3]. SDP decomposes the multi-stage plan-, g nastic. However, as documented in [20], the approximation
ning problem into a sequence of single-stage sub-problems that

can be solved by backward induction. The method allows explicit €°" introduced when linearizing non-convex system characteris-
: y : ; L P tics in the system simulation can be substantial, particularly when

representation of uncertainty (typically in inflow) and the represen- considering sales of reserve capacity.

tation |Ff nonllneakl]r and non-convexhrelﬁtlo&]?|ps. zlon'colnv.ex't'ehs This work concerns the assessment of operational profitability

typically occur when representing the head-dependent relationship, S o

between power output and water discharge, and the unit commit-for a hydropower plant considering sales of energy and spinning

; . reserve capacity. In Section 2 we present an SDP model suited
ment of generators. The major drawback of the SDP method 'S for computing water values in this market context. Although the
that the state variables (typically reservoir volumes) need to be

1 Introduction
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Nomenclature

Index Sets

B Set of reservation blocks within the week
G Set of hydropower generators

K Set of time steps within the week

Ky Set of time steps associated with bldck
St Set of state variables
Sg Setof stochastic state variables
Sp: Setof endogenous state variables
Decision Variables
at+1 Future expected profi€
v,6  SOS-2 variables
cp Reserved capacity, MW
p%k Generated energy, MWh/h
q,.  Discharge, /s
¢i  Spillage, ni/s
ugr ~ Status indicator for generator (on/off)
Vg Reservoir volume, M
act Decision variables

Incurred start-up cos€
Stochastlc Variables
¢ Weekly average reserve capacity pri€évMwW
A\E Weekly average energy pric€/MWh
1 Sum weekly inflow to reservoir, Mrh
Parameters
Bg Start-up coste
ngm  EnNergy equivalent, MW/ris
Ki Water value€/Mm?
P(...) Transition probability matrix
®(...) Water value matrix€/Mm3
T Duration of reservation block, hours
TE Duration of time steg, hours
T Relative duration of time step, fraction
Cl}i Reserve capacity price scaling coefficient
Cis Energy price scaling coefficient
F Conversion factor, from fifs to Mn?P/h
H Head for given initial reservoir volumen
HY  Reference headnp
K Last time step in week
Mgy Number of discharge points
Ng  Number of nodes per week in Markov model
Np  Number of discrete reservoir volumes
P(Qgm)Generated energy with dischargg,, MWh/h
Py, P Max./Min. capacity, MW
Qmm Mlnlmum river flow, r’r13/s
Qgm Discharge in poinin, m*/s
T Number of weeks in planning horizon
ymaz yyminpay IMin. reservoir volume, M
Vn Reservoir volume at point, Mm3
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SDP method has limited capability to address multi-resersys-
tems, it allows a detailed representation of the non-corsystem
characteristics, which are of particular importance whenser-
ing sales of spinning reserve capacity. In the presentedcemod
represent non-linearities using a mixed-integer lineagmmming
(MILP) formulation, where non-convex functional relatgbips are
approximated to piecewise linear functions. The modemaloep-
resentation of uncertainty in inflows and market prices.t8ys
operation is simulated using the water values obtained fhensDP
model. Consequently, by computing the water values andlating
system operation without convexifying non-convex relasioips, we
add to the existing literature by assessing the approxamagiror
in purely linear models such as [17]. We believe that the goreexl
model is well suited for detailed multi-market studies ofilgpower
systems with one or a few reservoirs and with inherit nonvegities
in the model formulation. Moreover, it can be used to benakma
the scheduling policies from state-of-the-art linear nisdand to
quantify the approximation errors in those.

In Section 3 we apply the model to a hydropower system in South
Western Norway to assess how investments in different géorer
technologies are expected to generate profit for the operdien
considering both the day-ahead energy and primary resapacity
markets.

2 Scheduling Model

We consider a single reservoir connected to a multi-geoepatwer
station suited for delivering energy and reserve capacitgepa-
rate markets. It is assumed that the reservoir operatordpgpwver
producer) is a risk-neutral price-taker in both marketss Hssump-
tion is fair for producers in the liberalized Nordic markétote
that the model can easily be extended to treat multiple vessr
but the computational burden will increase exponentiailg tb the
discretization of state variables.

2.1 Model Overview

We consider a planning period of one year comprising detisio
stages of one week. The overall decision problem is then tb fin
an operating strategy that maximizes the expected profitHer
entire planning period while respecting all relevant craists. The
decision problem can be formulated as a multi-stage sttichas
optimization problem, and the expectation is to be takerr tdve
stochastic variables. We assume that the probabilityibiigions of
the stochastic variables can be discretized, and thatgmobhn be
decomposed into weekly decision stages. Consequentlyeétiza-
tions of the stochastic variables for an entire week are knatthe
beginning of that week. The use of weekly decision stagehds t
standard approach when computing water values for produoer
the Nordic market. For further discussion of decision staged a
visualization of the corresponding scenario tree, pleasdAl].

In the decomposition to an SDP problem, we define a set of
system statess; that comprises all information passed from one
decision stage — 1 to the nextt. A subsetSp; C S; of these state
variables are endogenous to the optimization problem aficbwi
described in Section 2.3. The stochastic variables beialigesl at
the beginning of the current weelcan be defined as state variables
Sg,t C St, as described further in Section 2.2. Assuming we are in
state{s¢, s’} € S; at the beginning of decision stagethe decom-
posed decision problem in (1) is a function of the current kigce
profit J; resulting from the immediate decisioms, and the future
expected profit.

ai(sh, sp) = max {Jt(xt, sP,sf) + E[at+1(sf+17 sty1)|st
1)

IET Research Journals, pp. 1-9
© The Institution of Engineering and Technology 2015

2.2 Stochastic Variables

Three stochastic variables are considered in this work;stm
weekly inflow to the reservoir, and the weekly average enaryy
reserve capacity prices. We assume that the exogenousmando
variables are Markovian, so that (1) represents a Markoisidec
process. The Markovian property allows the conditionalbpil-
ity distribution of future states to only depend on the corrgtate.
Thus, we are able to capture the weekly correlations in thehsis-
tic variables up to the first lag. The expected future valuefion is
computed by taking the probability weighted average overNl;
discrete values iS5 ¢41. The process of defining the number of
discrete values (nodes) to represent each stochasticbheaiigin
essence a trade-off between the relative importance ottlcbastic
variable and computation time, see e.g. [22]. One the ond, laare
would like to have many nodes to obtain high accuracy, buthen t
other we know that the computational time increases exgaiign
with the number of states. The process of defining¥hgnodes in
our case study is further discussed in Section 3.

at(sh, st) = max {Jt(xt,sf,sf+1)

+ Z P(s{t1]st) - at+1(8f+178§+1)} 2
s{1€NE
In general we assume that the stochastic variables are auto-
and cross-correlated between weeks, and we compute atdiscre
Markov chain to represent these correlations. Similar @ggres
were presented in [23, 24].

2.3 Decision Problem

The decomposed weekly decision problem for weekformulated
as a MILP problem described by (3)-(19). For this problemrés-
ization of the current week’s stochastic variablesfnare known.
These are the sum weekly inflofy, the weekly average energy
price )\f and the weekly average reserve capacity pﬁEe The
initial state is defined by the initial storage and the stetibaari-
ables:sy = (wvg, I, /\,{5, )\tc . Note that for brevity of mathematical

formulation, the week index is only used to indicate charfgeesk.

> TG A” > gk + ZTbeC)\CCb

at(sf,sf) = max [

keK 9€g beB
=3 ygr o (v, siz)| @)
keK geg
Np
arp1(vg,si41) = a1 (Va,sipn) (4
n=1
Np
VK = Z nVn %)
n=1
Np
> m=1 (6)
n=1
vk+FTqu£€+Fqu,§:vk_1+7~'kI ,Vk (7
geg
MS'
Pgk = Y _ Ogm - P(Qgm) ,Vg,k (8)
m=1
3



M,
Ggr = D SgmQgm g,k ©)
m=1

M,
> Ggm =1 Vg (10)
m=1
Pk = Py Mugy Yo,k (1)
pgk S P;naxugk 7v.g7 k (12)
> g =D Py Mugy > ¢ Wbk €K (13)
9€g g€y
D P ugk =Y pgr >y Vb k€K (14)
geg geg
dodgtal Q™" vk (15)
9€g
Ygk > 5g . (ugk - ug,k—l) ,Vg,k
(16)
ugr —ugo =0 ,Vg a7)
YN < g < VT g (18)
0<c, <C™* Vb (19)

pvyquM]S eRT ,ar+1 €R

uwe{0,1} ,y S0OS2,6 SOS2

Qg,m—l Sng < Qg,m+1 ,Vg,m = 2~]\/[g -1 (22)
m—1 n H
P(Qgm) = Z ;}0 (Qgiv1 — Qqi) ,Yg,m=2.Mg
=1
' (23)

The variablesiy,, indicate the use of each point for a gen-
erator. The generatiop,,, is not necessarily a concave function of
discharge, thus we model it as a SOS-2, by adding (10) andrirgu
that at most twd g, could be non-zero for each generator, and that
these should be adjacent. The minimum and maximum generatio
limits are enforced by (11) and (12), respectively.

The reserve capacity, is used for both down-regulation in (13)
and up-regulation in (14). In line with the current marketisture
for reserve capacity in Norway, reserve capacity is soldachs b
covering a set of time steps,, e.g. all weekdays from midnight
to 8:00 am. The reserve capacity sales result in a resenaccap
ity requirement which is tied to the entire power station &ndts
the opportunities in the day-ahead market. In this work veattr
the reserve capacity as a symmetric product, which is inwite
the primary reserve market in Norway, but this requiremean c
easily be relaxed by introducing separate variables forrdand
up-regulation. Note that constraints ensuring that therahvays
enough water to activate the sold reserve capacity coulddbeded,
as was done in [17, 26], but this was not considered of sigmific
importance in the presented case study.

The total amount of water discharged and spilled to the down-
stream river should meet a minimum river-flow requiremer(tLis).

The amount of energy sold to the day-ahead market and reserverhis constraint is motivated by environmental consideretiin the

capacity to the reserve market is optimized in (3) while aderéng
start-up costs and the expected future profit.

Rather than fixingvg and treat it in the intra-week SDP
algorithm, we let the model treat it as a decision variablésTech-
nigue was discussed in [25] and was referred to as re-ogtioiz
We discretize the reservoir volume into= 1..Np points, each
with a corresponding volum®),, and letV; = V™" andVy,,
V™% and apply (20). Discrete values for the future expected fprofi
a¢4+1(Vn, s¢, 1) are found in (21). These values are computed in
the SDP algorithm and serve as parameters in the weeklyidecis
problem, as will be described in Section 2.4.

Va1 SV <Vpy1 ,n=2.Np -1 (20)

arr1(Va, sir1) =1 (V1, si41)

n—1
+ Z ki-(Vis1 =V;) ,n=2.Np (21)
i=1

In (4) we requirec; 1 (vg, si11) to be a linear combination of
the discrete values in (21), where the variabjgsindicate the use
of each pointr. The final reservoir volumey is found in (5). The
functionas 11 (v, s¢y 1) is not necessarily convex, thus we model it
as a special ordered set of type 2 (SOS-2), by adding (6) ajuirre
ing that at most twoy,, could be non-zero, and that these must be
adjacent. Reservoir balances in (7) keep track of the reseral-
ume in each time step. Note that wherk = 1, vg enters as a initial
state on the right-hand side in (7).

Hydropower generation is modeled as a piece-wise lineatifum
of discharge in (8)-(10). The formulation allows a non-aaxnfunc-
tion where head effects are approximated. We discrqll?zmrough
each generatay into m = 1..M points, each with a corresponding
discharge?) gm, according to (22). A generation &f(Qgm ) can be
found in (23), and we requing,;, to be a linear combination of these
values in (8). Note thaP(Qgm) = 0 for m = 1.

case study.

A start-up costy is incurred whenever a generator goes from a
non-spinning to a spinning state. Incurred start-up costsgaven
by the variabley,, in (16). The time-coupling in (16) indicates that
each unit’s initial spinning stateyo at the beginning of the week
should enter the state space. In our experience this detsilittie
impact on the computed water values. Thus it was simplifi€d 7,
requiring that the initial spinning state should be equaht® spin-
ning state at the end of the week . The reservoir volume and the
reserve capacity are limited in (18) and (19), respectively

2.4 Solution Strategy

The SDP solution strategy is a combination of optimizationl a
backward induction, see Algorithm 1. We loop over fkig discrete
initial reservoir volumes in line 5 and th€x number of nodes in the
Markov model in line 7 to solve the weekly decision problentirie
10. For each nodef in the Markov model, the expected future profit
at(Vn, s¢) is computed in line 13. The water values are computed
in line 15.

The water values at the end-of horizon are initialized t@Zer
the first iteration. We consider a planning horizon of oneryaal
assume that the generation system and the expected maides pr
and inflow do not change after that year. Under these statidico
tions, we use the water values found for the beginning of tis fi
week ¢ = 0) in iterationj as the updated water values for the end
of the last week# = T') in iterationj + 1. The algorithm is solved
repeatedly until the expected water values in the waterevalatrix
& stabilize according to a pre-defined tolerarci line 20. Dif-
ferent convergence criteria can be defined, as discusseith 23],
but this is not further discussed here. Note that the contipataf
water values in line 15 is not strictly necessary, as onedcetdre
the expected future profit instead of the water values anidi 2a).
However, we prefer the direct formulation for clarity of pemtation
and to preserve adequate scaling of the optimization pnoble
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Algorithm 1 SDP algorithm

1:jeO,Aeoo,<I>jeO
2: whileA > edo

3 j—J+1

4 fort=T-1..0do

5: forn =1..Np do

6: H < H(n)

7 for si,; = 1.Ng do

8: {)\5-17 )\g_l, Ii41} < StochVar(s{yq)

9: ki — ®I(i,5{,1,t+1),i=1..Np—1
10: ai41(Vn, s{41) < Optimize (3) — (19)
11: end for

12: for sf = 1..Ng do

13: at(Vn, s7) < Zi\[;«flﬂ P(sty1ls?)-

at+1(vﬂ7 SteJrl)

14: if n > 1then . .
15: &I (Vi 5, 1) « Seleip)=an(sin=l)
16: end if o

17: end for

18: end for

19: end for
20: A=y

S ST T (Vi sf,8) — ® 7 (Vi 55, 1)

21:  ®ITL(V,, 56, T) « B9 (Vi 5%,0), Vn, s©
22: end while

3 Case Study

We applied the presented model to the Maudal watercoursatdd

in the south-western part of Norway. The system comprisésges
reservoir with 63 Mm storage capacity and a power station, as illus-
trated in Fig. 1. The system receives both storable and taratde
inflow, and the expected annual values are indicated in Figh#
non-storable inflow enters downstream of the generatotg;dyube
subtracted from the minimum flow requirement for the doweeatn
river.

Ion = 148.2 Mm3 /yr

ymar — g3 MmS

/

IY = 14.4 Mm3/yr

min

q

Fig. 1: Watercourse topology and technical data.

The operator considers reinvesting in generators, andlsaing
a set of different possibilities. One of the key uncertastimpact-
ing this investment decision is how much profit one shouldeekp
from selling reserve capacity in the future. Two differemtdstment
alternatives are compared in the following, cases A and By With
two generators and a total installed capacity of 24.8 MWhTezal
data for the different generators are shown in Table 1, dintythe
number of discrete discharge poinf&/§), maximum ¢"“*) and

have the ability of the Pelton turbine to run at low output &ivcer
reserve capacity. The maximum allowed sales of symmetsierve
capacity is 8.87 and 10.75 MW for case A and B, respectively. W
assume start-up costs of 1@and 50€ for the largest ;) and
smallest ¢2) generator, respectively. These values are similar to
those reported in [27].

Table1l Simulated cases.
| Case | unitno. [ My [ P [ P™™ | Type |

A g1 10 | 21.11 | 6.57 | Francis
A go 12 | 3.71 | 0.49 | Pelton
B g1 13 | 16.06 | 2.34 | Pelton
B g2 13 | 8.79 | 0.97 | Pelton

The two cases were analysed in two different modes. First, in
the E-mode we consider sales of energy only by letti6f*** = 0
in (19). Second, in th&E+C mode we allow selling in both the
energy and reserve capacity markets. The water values éarb
cases operated in the two different modes were obtained ing us
the model presented in Section 2 and then used to simulate the
hydropower plant operation in a sequential optimizaticrcpss.

The reservoir level was discretized iNp = 21 equidistant
points, which was considered appropriate for this pardicuéser-
voir. The process of finding the discretized stochasticaldeis is
described below. The Hourly energy prices were sampled from
an ARIMA(2,0,3) model fitted to day-ahead prices, while rese
capacity prices were sampled from a GARCH(1,1) model with
ARMA(1,1) as the mean process fitted to primary reserve grice
Both models were fitted with historical data from 2013-2005 f
Maudal’s price area, NO2 in NordPool. No significant coriela
between day-ahead and reserve capacity prices was obseryed
historical data, therefore independent models for the tieeppro-
cesses was chosen. From 1000 samples of each price a digicete
model comprising 15 price nodes per stage (5 energy and B/eese
capacity prices) was identified by following the approacécdssed
in [17]. No significant correlation between inflow and pricasv
detected in the historical record, which justifies our use aep-
arate inflow model. 1000 inflow samples generated from a VAR(1
model described in [28] were used to create 5 inflow nodestpges

The model was implemented in tA&/PL modeling language [29]
using the CPLEX optimization solver [30], version 12.6. Véed an
absolute MIPGAP ofie — 5. All tests were carried out on an Intel
Core i7-4940MX processor with 3.30 GHz and 32 GB RAM. In each
time stage, the state space is described\pyx N = 21x5x15
= 1575 discrete states. The decomposed weekly decisiorepnob
for case D for a given week comprise 1075 variables (443 pjnar
and 800 constraints. The SDP algorithm typically conveig&s10
iterations, and one iteration took on average approximatdiours
when using the MILP formulation. We emphasize that the model
has not been optimized for computational performance, apdat
that speed-up can be obtained e.g. by adjusting the def@#2s
structure, see [31, 32] for further details.

The results from this case study are presented in the follow-
ing subsections. First, the computed water values are satlin
Section 3.1. Subsequently, we present simulation resbigred by
using the computed water values for dispatch in Section 3.2.

3.1 Water Values

Fig. 2 show the water value surfaces for the median price raftwhi
node for the two modes for case B. The E+C mode (grey surface)
provides higher water values than the E mode (black surfaosj of
the time. In general the water values decrease faster witeasing
reservoir level in the E+C mode. In certain periods of therytee
water values are higher at high reservoir levels in the E méte
pronounced increase in mode E+C in Fig. 2 for the summer seaso

minimum (P™") generation and the generator type. The Francis (around week 25-30) is primarily due to expectation of higicas

generator in case A has a higher maximum efficiency, but does n
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Fig. 2: Water values for case B in the E+C (grey) and E (black)
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mode.

Reservoir volume [Mm3] Reservoir volume [Mm3]

Fig. 3: Water values for case B for week 15. Values for the E+C
mode (left) and the E mode (right) are shown.
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In order to explain the shape of the water value surface inZEig 3
we study two specific weeks in the Figs. 3 and 4. Water values fo g

weeks 15 and 25 for case B are presented in Figs. 3 and 4, for bot
modes. The bottom and top of the boxes indicate the lower pperu o
quartiles, respectively. Note that, in addition to undetiain energy

price and inflow, mode E+C also faces uncertainty in reseapac-
ItyprlcesThesreeperShapelntheE+Cm0de|nb0thFlgmand TTTTTTTTTITTI T T I TTITTITTT TTTTTTTTTITTI T T I TTITTITTT
indicate that the risk of spillage impacts the water valuesarn 0 9 18 27 36 45 54 63 0 9 18 27 36 45 54 63
the E+C mode. In the E+C mode sales of up-regulation resésves Reservoir volume [Mm3] Reservoir volume [Mms]
expected in the future, which in turn will limit the genenat@bil-
i ischar n n ntly incr he risk il Thi .

e?‘lféc():tdisSZvijgﬁt’ﬁ\ gi;.os.s?:%l:t?\etr)r/norce,eg(s)tehtF(iag. 2 amlmdi-s Fig. 4: Water values for case B for week 25. Values for the E+C

cate that the water value is likely to be higher in the E+C magde ~Mede (Ieft) and the E mode (right) are shown.
low reservoir levels. This is also evident in Fig. 2. In cartparts

of the year it will be optimal to have generators spinningrargy
prices below the water value for the purpose of deliverirgprees. 3.2 Simulation Results
Thus, water is needed both to sell energy and reserve capaiot

consequently the value of the scarce resource is higheriE#C

0.5

Simulations were run to study the system performance anthepe
mode. The consequence of a low reservoir in week 25 is oblyious tional profitability for the two cases in each mode. A set 0000

more pronounced in the E+C mode, since the producer may not bescenarios, each with weekly prices and inflows for one yearew
able to keep the units spinning. This impact is similar to twml sampled initially from the established Markov model andilisehe
typically be found when considering minimum flows [24]. simulations. The simulations were arranged as weekly dersisn
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sequence using the model formulation defined in Sectionii3tee
water values obtained from the SDP model.

In order to test the importance of accurate representafioomm
convexities, the simulations were run three times usingstimae
scenario set. In the first run, both the SDP model and the aimul
tions were run using the proposed MILP formulation in 2.3tHa
second run we relaxed the weekly decision problem in (3)-{@9
an LP problem to resemble the degree of detail typically used
medium- and long-term hydropower scheduling models. Binial
the third run we relaxed the weekly decision problem in thePSD
model and simulated using a MILP formulation. This comhiovat
resembles how practical hydropower scheduling is ofteriezhout,
simulating the system using a more detailed system repigsEn
than what is used when computing the water values. The esgbect
profits are presented in Table 2. All values are in percentdgiee
expected profit in the E mode for the respective case in run 1.

Table 2 Expected Profits. All values are in percentage of the expected profit
in the E mode for the respective case in run 1.

En. Cap.
Run | Case | Mode | SDP | Sim. | Sales | Sales | Total
1 A E MILP | MILP | 100.00| 0.00 | 100.00
1 A E+C | MILP | MILP | 94.16 | 13.17| 107.33
1 B E MILP | MILP | 100.00| 0.00 | 100.00
1 B E+C | MILP | MILP | 92.48 | 18.30| 110.78
2 A E LP LP | 100.33| 00.00| 100.33
2 A E+C LP LP 95.43 | 17.13| 112.55
2 B E LP LP 100.73| 0.00 | 100.73
2 B E+C LP LP 93.03 | 20.02| 113.05
3 A E LP | MILP | 99.76 | 00.00| 99.76
3 A E+C LP | MILP | 94.02 | 12.28| 106.30
3 B E LP MILP | 99.79 | 0.00 | 99.79
3 B E+C LP | MILP | 92.70 | 17.44| 110.14

In all three runs and in both cases the total profit increases
when the opportunity to sell reserve capacity is introdudéds is
expected since mode E in essence is a constrained versioads m
E+C. Table 2 also shows that the expected profit increases22y 5
and 2.27 percentage points for case A and B, respectivelyeiE+C

mode when comparing run 2 and run 1. The increase in expected

profit when relaxing the problem formulation is primarilyedto the
added flexibility of selling reserves without strictly resping the
minimum power output requirement and the non-convex prioiuc
function. Note that this flexibility is highly dependent oharac-
teristics of the hydropower system being studied, see 203.ffr a
similar test on a different system. Comparing run 3 with ruretiuc-
tion in expected total profit of 1.03 and 0.64 percentage tpas
observed for case A and B, respectively, in the E+C mode. difsis
ference serves to quantify the approximation error whegsliizing
non-convexities in the SDP water value computation. As ebqub
we obtain a better result when the simulation and the wateesare
based on the same model formulation. This improvement canes
a significant increase in computational effort due to the aasount
of weekly decision problems to be solved in the SDP model had t
added complexity of solving MILP problems over LP problems.
Fig. 5 shows reservoir trajectory percentiles for case Bhm t
E and E+C mode as stapled and solid-drawn lines, respectivel
The E+C mode follows a higher trajectory in the late wintetiqu
(weeks 10-15, before snow melt) to store enough water fosune
mer season. Due to sales of reserve capacity in the E+C madiey, w
is used more aggressively to keep the generators spinniimggdtie
summer season, giving a lower trajectory in autumn and earnler.
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Fig. 5: Reservoir trajectories for case B, mode E (stapled) and E+C
(solid-drawn). 0, 25, 50, 75 and 100 percentiles.

Fig. 6 shows the duration curve of generation for each geémrera
for case A operating in E (stapled) and E+C (solid-drawn) esod
Both units are operating in a larger percentage of time inBR€E
mode. Generatoy; operates approximately 30 % of the time at
around 15.44 MW in the E+C mode. This corresponds to the situ-
ation where the system sells the maximum rate of reservecitgpa
(8.87 MW). In this situationgs is running on minimum output,
leaving 3.22 MW (3.71 MW-0.49 MW) for up-regulation, whitg
provides 8.87 MW down-regulation and 5.65 MW up-regulation

Generation [MWh/h]

.

E——

T T T T T T T T T T
0O 10 20 30 40 50 60 70 80 90 100

Percentage of time

Fig. 6: Duration curves for the two generators in case A. E mode as
stapled lines, E+C mode as solid-drawn.

Fig. 7 shows the duration curve of generation for each gémera
for case B operating in E (stapled) and E+C (solid-drawn) @soés
for case A, both units are operating in a larger percentageedime
in the E+C mode. Moreover, generatgr produces less energy in
the E+C than in the E mode and is primarily run at minimum ottpu
to supporty; in delivering up-regulation reserves.
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Fig. 7: Duration curves for generation, case B. E mode as stapled
lines, E+C mode as solid-drawn. 13
4  Conclusion 14

Accurate water values are of great importance when angybia
operational profitability of new investments in or upgrapof exist- 15
ing hydropower stations. We present a model for optimal diglireg

of both energy and reserve capacity under uncertainty in- mar

ket prices and inflow. The model allows exact representatibn 16
non-convexities such as head dependent production furscaod
generator unit commitment. 17
The model was applied in a case study for a Norwegian
hydropower producer, showing how the operational profitstf 18

future investments in the generation system depends orhethabd
how reserve capacity sales is considered. The operatiaisrp
changes to less seasonal shifting of energy when a resepeeca 19
ity market is introduced. Moreover, the water values showasem
pronounced variation for different reservoir fillings wheonsider-

ing two markets, being more exposed to both the risk of missin 20
high-price periods and spillage.

Models based on linear programming are traditionally used f
long-term hydropower scheduling. The presented modehalkep-
resentation of non-convex system characteristics and lisswi¢éed
for systems with a few reservoirs. Thus, it can be used tolbenc 22
mark the scheduling policies from linear models, and to tiflan 5,
the approximation errors. This was demonstrated in the sasky,
showing that the linear approximation significantly ovéraated
the operational profitability. 24

In general, our findings point out the importance of takirgeree 25
capacity markets into account when upgrading and modeizi
existing systems. The long lifetime of such investmentsliespa
significant risk if future market opportunities are not tak&ito

2
account. 6
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