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Abstract: We analyze the operational profitability of a hydropower system selling both energy and reserve capacity in a competitive
market setting. A mathematical model based on stochastic dynamic programming is used to compute the water values for the
system considering different power plant configurations. The uncertainties in inflow and both energy and reserve capacity prices
are considered through a discrete Markov chain. Subsequently, the system operation is simulated based on the obtained water
values to assess system performance and expected revenues from the two markets.
The model is applied in a case study for a Norwegian hydropower producer, showing how the power plant operation changes
and profitability increases when considering sale of reserve capacity. We emphasize on how the water values are influenced
by the opportunity to sell reserve capacity, and assess how the representation of non-convex relationships in the water value
computations as well as simulation influence the profitability.

1 Introduction

The increasing share of non-dispatchable renewable energy
resources in Europe calls for efficient and reliable arrangements for
balancing services. For large-scale energy storage operators, such
as hydropower producers, this development may change the market
products typically being delivered. Today, the producers’ primary
source of remuneration is from selling energy in the day-ahead
market. However, the flexibility of hydropower enables active con-
tribution in reserve capacity and balancing markets as well, which in
turn will challenge the way hydropower reservoirs traditionally have
been operated.

For a hydropower producer, the expected marginal value of water,
hereafter referred to as thewater value, express the opportunity
cost of water. Having the possibility to utilize the facilities for both
energy generation and reserve capacity may impact the strategic
evaluation and scheduling of resources. These products will to some
extent rely on the same resource (water), but their resource deploy-
ment will differ. Consequently, the consideration of both products
will impact the water values, and in turn the expected operational
profitability of a hydropower project. The termoperational prof-
itability is used throughout the text to emphasize that we do not
consider investment costs for the project, only profitability from
operation.

The early works on operational planning (scheduling) of
hydropower reservoirs used the principles of stochastic dynamic
programming (SDP) [1–3]. SDP decomposes the multi-stage plan-
ning problem into a sequence of single-stage sub-problems that
can be solved by backward induction. The method allows explicit
representation of uncertainty (typically in inflow) and the represen-
tation of nonlinear and non-convex relationships. Non-convexities
typically occur when representing the head-dependent relationship
between power output and water discharge, and the unit commit-
ment of generators. The major drawback of the SDP method is
that the state variables (typically reservoir volumes) need to be

discretized, so the overall problem size becomes computationally
intractable when considering systems with many reservoirs. Thus,
SDP-based scheduling models applied to multi-reservoir systems
often rely on aggregation-disaggregation techniques, such as in [4–
6]. Numerous other methodological approaches have been applied
to the scheduling problem, see e.g. [7, 8] for an overview. The
stochastic dual dynamic programming (SDDP) introduced in [9] has
become particularly popular. The SDDP method allows solving the
scheduling problem without discretizing the state variables, and is
therefore computationally tractable for systems with multiple reser-
voirs. Although frequently addressed in recent literature, see e.g.
[10–14] the SDDP method does not easily facilitate non-convexities.

Several approaches incorporating treatment of energy, reserve
capacity and balancing markets in long- and medium-term
hydropower scheduling methods have recently been presented. Some
authors have decomposed the scheduling problem into intra- and
inter-stage problems, as discussed in [15], where the inter-stage
problem will take care of the longer-term and strategic decisions,
e.g. how much water to use in a given week, while intra-stage
decisions concern the detailed operation using a much finer time-
resolution. Based on this scheme [16] proposed a method for
stochastic medium-term hydropower scheduling considering par-
ticipation in both the day-ahead and secondary reserve markets.
Inter-stage decisions regarding operation of seasonal reservoirs are
found by use of SDP, and the shorter term intra-stage decisions, e.g.,
related to sales of spinning reserves, are found by solving a multi-
stage mixed-integer problem. A different method for incorporating
sales of spinning reserves in a medium-term hydropower schedul-
ing model based on linear programming was presented in [17]. It
extends the hybrid SDP/SDDP algorithm in [18, 19] by allowing
sequential sales of reserve capacity and energy, treating both prices
as stochastic. However, as documented in [20], the approximation
error introduced when linearizing non-convex system characteris-
tics in the system simulation can be substantial, particularly when
considering sales of reserve capacity.

This work concerns the assessment of operational profitability
for a hydropower plant considering sales of energy and spinning
reserve capacity. In Section 2 we present an SDP model suited
for computing water values in this market context. Although the
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Nomenclature

Index Sets
B Set of reservation blocks within the week
G Set of hydropower generators
K Set of time steps within the week
Kb Set of time steps associated with blockb
St Set of state variables
SE,t Set of stochastic state variables
SP,t Set of endogenous state variables
Decision Variables
αt+1 Future expected profit,e
γ, δ SOS-2 variables
cb Reserved capacity, MW
pgk Generated energy, MWh/h
qDgk Discharge, m3/s
qSk Spillage, m3/s
ugk Status indicator for generator (on/off)
vk Reservoir volume, Mm3

xt Decision variables
ygk Incurred start-up cost,e
Stochastic Variables
λC Weekly average reserve capacity price,e/MW
λE Weekly average energy price,e/MWh
I Sum weekly inflow to reservoir, Mm3

Parameters
βg Start-up cost,e
ηgm Energy equivalent, MW/m3/s
κi Water value,e/Mm3

P(. . .) Transition probability matrix
Φ(. . .) Water value matrix,e/Mm3

τb Duration of reservation blockb, hours
τk Duration of time stepk, hours
τ̃k Relative duration of time stepk, fraction
ζCb Reserve capacity price scaling coefficient
ζEk Energy price scaling coefficient
F Conversion factor, from m3/s to Mm3/h
H Head for given initial reservoir volume,m
H0 Reference head,m
K Last time step in week
Mg Number of discharge points
NE Number of nodes per week in Markov model
NP Number of discrete reservoir volumes
P (Qgm)Generated energy with dischargeQgm, MWh/h
Pmax
g ,Pmin

g Max./Min. capacity, MW
Qmin Minimum river flow, m3/s
Qgm Discharge in pointm, m3/s
T Number of weeks in planning horizon
V max,VminMax./Min. reservoir volume, Mm3

Vn Reservoir volume at pointn, Mm3
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SDP method has limited capability to address multi-reservoir sys-
tems, it allows a detailed representation of the non-convexsystem
characteristics, which are of particular importance when consider-
ing sales of spinning reserve capacity. In the presented model we
represent non-linearities using a mixed-integer linear programming
(MILP) formulation, where non-convex functional relationships are
approximated to piecewise linear functions. The model allows rep-
resentation of uncertainty in inflows and market prices. System
operation is simulated using the water values obtained fromthe SDP
model. Consequently, by computing the water values and simulating
system operation without convexifying non-convex relationships, we
add to the existing literature by assessing the approximation error
in purely linear models such as [17]. We believe that the presented
model is well suited for detailed multi-market studies of hydropower
systems with one or a few reservoirs and with inherit non-convexities
in the model formulation. Moreover, it can be used to benchmark
the scheduling policies from state-of-the-art linear models, and to
quantify the approximation errors in those.

In Section 3 we apply the model to a hydropower system in South-
Western Norway to assess how investments in different generator
technologies are expected to generate profit for the operator when
considering both the day-ahead energy and primary reserve capacity
markets.

2 Scheduling Model

We consider a single reservoir connected to a multi-generator power
station suited for delivering energy and reserve capacity to sepa-
rate markets. It is assumed that the reservoir operator (hydropower
producer) is a risk-neutral price-taker in both markets. This assump-
tion is fair for producers in the liberalized Nordic market.Note
that the model can easily be extended to treat multiple reservoirs,
but the computational burden will increase exponentially due to the
discretization of state variables.

2.1 Model Overview

We consider a planning period of one year comprising decision
stages of one week. The overall decision problem is then to find
an operating strategy that maximizes the expected profit forthe
entire planning period while respecting all relevant constraints. The
decision problem can be formulated as a multi-stage stochastic
optimization problem, and the expectation is to be taken over the
stochastic variables. We assume that the probability distributions of
the stochastic variables can be discretized, and that problem can be
decomposed into weekly decision stages. Consequently, therealiza-
tions of the stochastic variables for an entire week are known at the
beginning of that week. The use of weekly decision stages is the
standard approach when computing water values for producers in
the Nordic market. For further discussion of decision stages and a
visualization of the corresponding scenario tree, please see [21].

In the decomposition to an SDP problem, we define a set of
system statesSt that comprises all information passed from one
decision staget− 1 to the nextt. A subsetSP,t ⊂ St of these state
variables are endogenous to the optimization problem and will be
described in Section 2.3. The stochastic variables being realized at
the beginning of the current weekt can be defined as state variables
SE,t ⊂ St, as described further in Section 2.2. Assuming we are in
state{set , s

p
t } ∈ St at the beginning of decision staget, the decom-

posed decision problem in (1) is a function of the current week’s
profit Jt resulting from the immediate decisionsxt, and the future
expected profit.

αt(s
p
t , s

e
t ) = max

xt

{

Jt(xt, s
p
t , s

e
t ) + E

[

αt+1(s
p
t+1, s

e
t+1)|s

e
t

]

}

(1)

2.2 Stochastic Variables

Three stochastic variables are considered in this work; thesum
weekly inflow to the reservoir, and the weekly average energyand
reserve capacity prices. We assume that the exogenous random
variables are Markovian, so that (1) represents a Markov decision
process. The Markovian property allows the conditional probabil-
ity distribution of future states to only depend on the current state.
Thus, we are able to capture the weekly correlations in the stochas-
tic variables up to the first lag. The expected future value function is
computed by taking the probability weighted average over the NE

discrete values inSE,t+1. The process of defining the number of
discrete values (nodes) to represent each stochastic variable is in
essence a trade-off between the relative importance of the stochastic
variable and computation time, see e.g. [22]. One the one hand, one
would like to have many nodes to obtain high accuracy, but on the
other we know that the computational time increases exponentially
with the number of states. The process of defining theNE nodes in
our case study is further discussed in Section 3.

αt(s
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t , s

e
t ) =max

xt

{

Jt(xt, s
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t , s

e
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+
∑

se
t+1

∈NE

P(set+1|s
e
t ) · αt+1(s

p
t+1, s

e
t+1)

}

(2)

In general we assume that the stochastic variables are auto-
and cross-correlated between weeks, and we compute a discrete
Markov chain to represent these correlations. Similar approaches
were presented in [23, 24].

2.3 Decision Problem

The decomposed weekly decision problem for weekt is formulated
as a MILP problem described by (3)-(19). For this problem thereal-
ization of the current week’s stochastic variables inset are known.
These are the sum weekly inflowIt, the weekly average energy
price λEt and the weekly average reserve capacity priceλCt . The
initial state is defined by the initial storage and the stochastic vari-
ables:st =

(

v0, It, λ
E
t , λCt

)

. Note that for brevity of mathematical
formulation, the week index is only used to indicate change of week.

αt(s
p
t , s

e
t ) = max

[

∑

k∈K

τkζ
E
k λ

E
∑

g∈G

pgk +
∑

b∈B

τbζ
C
b λ

C
cb

−
∑

k∈K

∑

g∈G

ygk + αt+1(vK , s
e
t+1)

]

(3)

αt+1(vK , s
e
t+1) =

NP
∑

n=1

γn · αt+1(Vn, s
e
t+1) (4)

vK =

NP
∑

n=1

γnVn (5)

NP
∑

n=1

γn = 1 (6)

vk + Fτk
∑

g∈G

q
D
gk + Fτkq

S
k = vk−1 + τ̃kI ,∀k (7)

pgk =

Mg
∑

m=1

δgm · P (Qgm) ,∀g, k (8)
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q
D
gk =

Mg
∑

m=1

δgmQgm ,∀g, k (9)

Mg
∑

m=1

δgm = 1 ,∀g (10)

pgk ≥ P
min
g ugk ,∀g, k (11)

pgk ≤ P
max
g ugk ,∀g, k (12)

∑

g∈G

pgk −
∑

g∈G

P
min
g ugk ≥ cb ,∀b, k ∈ Kb (13)

∑

g∈G

P
max
g ugk −

∑

g∈G

pgk ≥ cb ,∀b, k ∈ Kb (14)

∑

g∈G

q
D
gk + q

S
k ≥ Q

min
,∀k (15)

ygk ≥ βg ·
(

ugk − ug,k−1

)

,∀g, k
(16)

ugK − ug0 = 0 ,∀g (17)

V
min ≤ vk ≤ V

max
, ∀k (18)

0 ≤ cb ≤ C
max

,∀b (19)

p, y, qD, qS ∈ R
+ , αt+1 ∈ R

u ∈ {0, 1} , γ SOS2, δ SOS2

The amount of energy sold to the day-ahead market and reserve
capacity to the reserve market is optimized in (3) while considering
start-up costs and the expected future profit.

Rather than fixingvK and treat it in the intra-week SDP
algorithm, we let the model treat it as a decision variable. This tech-
nique was discussed in [25] and was referred to as re-optimization.
We discretize the reservoir volume inton = 1..NP points, each
with a corresponding volumeVn, and letV1 = V min andVNP

=
V max and apply (20). Discrete values for the future expected profit
αt+1(Vn, s

e
t+1) are found in (21). These values are computed in

the SDP algorithm and serve as parameters in the weekly decision
problem, as will be described in Section 2.4.

Vn−1 ≤ Vn ≤ Vn+1 , n = 2..NP − 1 (20)

αt+1(Vn, s
e
t+1) =αt+1(V1, s

e
t+1)

+

n−1
∑

i=1

κi · (Vi+1 − Vi) , n = 2..NP (21)

In (4) we requireαt+1(vK , set+1) to be a linear combination of
the discrete values in (21), where the variablesγn indicate the use
of each pointn. The final reservoir volumevK is found in (5). The
functionαt+1(vK , set+1) is not necessarily convex, thus we model it
as a special ordered set of type 2 (SOS-2), by adding (6) and requir-
ing that at most twoγn could be non-zero, and that these must be
adjacent. Reservoir balances in (7) keep track of the reservoir vol-
ume in each time stepk. Note that whenk = 1, v0 enters as a initial
state on the right-hand side in (7).

Hydropower generation is modeled as a piece-wise linear function
of discharge in (8)-(10). The formulation allows a non-convex func-
tion where head effects are approximated. We discretizeqD through
each generatorg intom = 1..Mg points, each with a corresponding
dischargeQgm, according to (22). A generation ofP (Qgm) can be
found in (23), and we requirepgk to be a linear combination of these
values in (8). Note thatP (Qgm) = 0 for m = 1.

Qg,m−1 ≤Qgm ≤ Qg,m+1 , ∀g,m = 2..Mg − 1 (22)

P (Qgm) =

m−1
∑

i=1

ηgiH

H0 · (Qg,i+1 −Qg,i) ,∀g,m = 2..Mg

(23)

The variablesδgm indicate the use of each pointm for a gen-
erator. The generationpgk is not necessarily a concave function of
discharge, thus we model it as a SOS-2, by adding (10) and requiring
that at most twoδgm could be non-zero for each generator, and that
these should be adjacent. The minimum and maximum generation
limits are enforced by (11) and (12), respectively.

The reserve capacitycb is used for both down-regulation in (13)
and up-regulation in (14). In line with the current market structure
for reserve capacity in Norway, reserve capacity is sold in blocks b
covering a set of time stepsKb, e.g. all weekdays from midnight
to 8:00 am. The reserve capacity sales result in a reserve capac-
ity requirement which is tied to the entire power station andlimits
the opportunities in the day-ahead market. In this work we treat
the reserve capacity as a symmetric product, which is in linewith
the primary reserve market in Norway, but this requirement can
easily be relaxed by introducing separate variables for down- and
up-regulation. Note that constraints ensuring that there is always
enough water to activate the sold reserve capacity could be included,
as was done in [17, 26], but this was not considered of significant
importance in the presented case study.

The total amount of water discharged and spilled to the down-
stream river should meet a minimum river-flow requirement in(15).
This constraint is motivated by environmental considerations in the
case study.

A start-up costβg is incurred whenever a generator goes from a
non-spinning to a spinning state. Incurred start-up costs are given
by the variableygk in (16). The time-coupling in (16) indicates that
each unit’s initial spinning stateug0 at the beginning of the week
should enter the state space. In our experience this detail has little
impact on the computed water values. Thus it was simplified in(17),
requiring that the initial spinning state should be equal tothe spin-
ning state at the end of the weekugK . The reservoir volume and the
reserve capacity are limited in (18) and (19), respectively.

2.4 Solution Strategy

The SDP solution strategy is a combination of optimization and
backward induction, see Algorithm 1. We loop over theNP discrete
initial reservoir volumes in line 5 and theNE number of nodes in the
Markov model in line 7 to solve the weekly decision problem inline
10. For each nodeset in the Markov model, the expected future profit
αt(Vn, s

e
t ) is computed in line 13. The water values are computed

in line 15.
The water values at the end-of horizon are initialized to zero in

the first iteration. We consider a planning horizon of one year and
assume that the generation system and the expected market prices
and inflow do not change after that year. Under these static condi-
tions, we use the water values found for the beginning of the first
week (t = 0) in iterationj as the updated water values for the end
of the last week (t = T ) in iterationj + 1. The algorithm is solved
repeatedly until the expected water values in the water value matrix
Φ stabilize according to a pre-defined toleranceǫ in line 20. Dif-
ferent convergence criteria can be defined, as discussed e.g. in [22],
but this is not further discussed here. Note that the computation of
water values in line 15 is not strictly necessary, as one could store
the expected future profit instead of the water values and avoid (21).
However, we prefer the direct formulation for clarity of presentation
and to preserve adequate scaling of the optimization problems.
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Algorithm 1 SDP algorithm

1: j ← 0, ∆←∞, Φj ← 0
2: while ∆ > ǫ do
3: j ← j + 1
4: for t = T − 1..0 do
5: for n = 1..NP do
6: H ← H(n)
7: for set+1 = 1..NE do
8: {λEt+1, λ

C
t+1, It+1} ← StochV ar(set+1)

9: κi ← Φj(i, set+1, t+ 1), i = 1..NP − 1
10: αt+1(Vn, s

e
t+1)← Optimize (3)− (19)

11: end for
12: for set = 1..NE do
13: αt(Vn, s

e
t )←

∑NE

se
t+1

=1 P(s
e
t+1|s

e
t )·

αt+1(Vn, s
e
t+1)

14: if n > 1 then
15: Φj(Vn−1, s

e
t , t)←

αt(s
e
t ,n)−αt(s

e
t ,n−1)

Vn−Vn−1

16: end if
17: end for
18: end for
19: end for
20: ∆←

∑T
t=0

∑NE

set=1

∑NP−1
n=1 |Φ

j(Vn, s
e
t , t)− Φj−1(Vn, s

e
t , t)|

21: Φj+1(Vn, s
e, T )← Φj(Vn, s

e, 0), ∀n, se

22: end while

3 Case Study

We applied the presented model to the Maudal watercourse, located
in the south-western part of Norway. The system comprises a single
reservoir with 63 Mm3 storage capacity and a power station, as illus-
trated in Fig. 1. The system receives both storable and non-storable
inflow, and the expected annual values are indicated in Fig. 1. The
non-storable inflow enters downstream of the generators, but can be
subtracted from the minimum flow requirement for the downstream
river.

Fig. 1 : Watercourse topology and technical data.

The operator considers reinvesting in generators, and is evaluating
a set of different possibilities. One of the key uncertainties impact-
ing this investment decision is how much profit one should expect
from selling reserve capacity in the future. Two different investment
alternatives are compared in the following, cases A and B, both with
two generators and a total installed capacity of 24.8 MW. Technical
data for the different generators are shown in Table 1, including the
number of discrete discharge points (Mg), maximum (Pmax) and
minimum (Pmin) generation and the generator type. The Francis
generator in case A has a higher maximum efficiency, but does not

have the ability of the Pelton turbine to run at low output to deliver
reserve capacity. The maximum allowed sales of symmetric reserve
capacity is 8.87 and 10.75 MW for case A and B, respectively. We
assume start-up costs of 100e and 50e for the largest (g1) and
smallest (g2) generator, respectively. These values are similar to
those reported in [27].

Table 1 Simulated cases.

Case unit no. Mg Pmax Pmin Type

A g1 10 21.11 6.57 Francis
A g2 12 3.71 0.49 Pelton

B g1 13 16.06 2.34 Pelton
B g2 13 8.79 0.97 Pelton

The two cases were analysed in two different modes. First, in
theE-mode, we consider sales of energy only by lettingCmax = 0
in (19). Second, in theE+C mode, we allow selling in both the
energy and reserve capacity markets. The water values for the two
cases operated in the two different modes were obtained by using
the model presented in Section 2 and then used to simulate the
hydropower plant operation in a sequential optimization process.

The reservoir level was discretized inNP = 21 equidistant
points, which was considered appropriate for this particular reser-
voir. The process of finding the discretized stochastic variables is
described below. The Hourly energy prices were sampled from
an ARIMA(2,0,3) model fitted to day-ahead prices, while reserve
capacity prices were sampled from a GARCH(1,1) model with
ARMA(1,1) as the mean process fitted to primary reserve prices.
Both models were fitted with historical data from 2013-2015 for
Maudal’s price area, NO2 in NordPool. No significant correlation
between day-ahead and reserve capacity prices was observedin the
historical data, therefore independent models for the two price pro-
cesses was chosen. From 1000 samples of each price a discreteprice
model comprising 15 price nodes per stage (5 energy and 3 reserve
capacity prices) was identified by following the approach discussed
in [17]. No significant correlation between inflow and price was
detected in the historical record, which justifies our use ofa sep-
arate inflow model. 1000 inflow samples generated from a VAR(1)
model described in [28] were used to create 5 inflow nodes per stage.

The model was implemented in theAMPLmodeling language [29]
using the CPLEX optimization solver [30], version 12.6. We used an
absolute MIPGAP of1e− 5. All tests were carried out on an Intel
Core i7-4940MX processor with 3.30 GHz and 32 GB RAM. In each
time stage, the state space is described byNP×NE = 21×5×15
= 1575 discrete states. The decomposed weekly decision problem
for case D for a given week comprise 1075 variables (443 binary)
and 800 constraints. The SDP algorithm typically convergesin 7-10
iterations, and one iteration took on average approximately 4 hours
when using the MILP formulation. We emphasize that the model
has not been optimized for computational performance, and expect
that speed-up can be obtained e.g. by adjusting the default SOS2-
structure, see [31, 32] for further details.

The results from this case study are presented in the follow-
ing subsections. First, the computed water values are analysed in
Section 3.1. Subsequently, we present simulation results obtained by
using the computed water values for dispatch in Section 3.2.

3.1 Water Values

Fig. 2 show the water value surfaces for the median price and inflow
node for the two modes for case B. The E+C mode (grey surface)
provides higher water values than the E mode (black surface)most of
the time. In general the water values decrease faster with increasing
reservoir level in the E+C mode. In certain periods of the year, the
water values are higher at high reservoir levels in the E mode. The
pronounced increase in mode E+C in Fig. 2 for the summer season
(around week 25-30) is primarily due to expectation of high prices
in the primary reserve capacity market for that season.

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 5



Reservoir volume [Mm3]

10

20

30

40

50

60

W
eek

10

20

30

40

50

W
ater value [10E

4 E
uro/M

m
3]

0.8

1.0

1.2

1.4

1.6

1.8

Fig. 2 : Water values for case B in the E+C (grey) and E (black)
mode.

In order to explain the shape of the water value surface in Fig. 2,
we study two specific weeks in the Figs. 3 and 4. Water values for
weeks 15 and 25 for case B are presented in Figs. 3 and 4, for both
modes. The bottom and top of the boxes indicate the lower and upper
quartiles, respectively. Note that, in addition to uncertainty in energy
price and inflow, mode E+C also faces uncertainty in reserve capac-
ity prices. The steeper shape in the E+C mode in both Fig. 3 and4
indicate that the risk of spillage impacts the water values more in
the E+C mode. In the E+C mode sales of up-regulation reservesis
expected in the future, which in turn will limit the generators abil-
ity to discharge, and consequently increase the risk of spillage. This
effect is evident in Fig. 3. Furthermore, both Fig. 3 and Fig.4 indi-
cate that the water value is likely to be higher in the E+C modeat
low reservoir levels. This is also evident in Fig. 2. In certain parts
of the year it will be optimal to have generators spinning at energy
prices below the water value for the purpose of delivering reserves.
Thus, water is needed both to sell energy and reserve capacity, and
consequently the value of the scarce resource is higher in the E+C
mode. The consequence of a low reservoir in week 25 is obviously
more pronounced in the E+C mode, since the producer may not be
able to keep the units spinning. This impact is similar to what will
typically be found when considering minimum flows [24].
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Fig. 3 : Water values for case B for week 15. Values for the E+C
mode (left) and the E mode (right) are shown.
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Fig. 4 : Water values for case B for week 25. Values for the E+C
mode (left) and the E mode (right) are shown.

3.2 Simulation Results

Simulations were run to study the system performance and opera-
tional profitability for the two cases in each mode. A set of 1000
scenarios, each with weekly prices and inflows for one year, were
sampled initially from the established Markov model and used in the
simulations. The simulations were arranged as weekly decisions in
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sequence using the model formulation defined in Section 2.3 and the
water values obtained from the SDP model.

In order to test the importance of accurate representation of non-
convexities, the simulations were run three times using thesame
scenario set. In the first run, both the SDP model and the simula-
tions were run using the proposed MILP formulation in 2.3. Inthe
second run we relaxed the weekly decision problem in (3)-(19) to
an LP problem to resemble the degree of detail typically usedin
medium- and long-term hydropower scheduling models. Finally, in
the third run we relaxed the weekly decision problem in the SDP
model and simulated using a MILP formulation. This combination
resembles how practical hydropower scheduling is often carried out,
simulating the system using a more detailed system representation
than what is used when computing the water values. The expected
profits are presented in Table 2. All values are in percentageof the
expected profit in the E mode for the respective case in run 1.

Table 2 Expected Profits. All values are in percentage of the expected profit
in the E mode for the respective case in run 1.

En. Cap.
Run Case Mode SDP Sim. Sales Sales Total

1 A E MILP MILP 100.00 0.00 100.00
1 A E+C MILP MILP 94.16 13.17 107.33
1 B E MILP MILP 100.00 0.00 100.00
1 B E+C MILP MILP 92.48 18.30 110.78

2 A E LP LP 100.33 00.00 100.33
2 A E+C LP LP 95.43 17.13 112.55
2 B E LP LP 100.73 0.00 100.73
2 B E+C LP LP 93.03 20.02 113.05

3 A E LP MILP 99.76 00.00 99.76
3 A E+C LP MILP 94.02 12.28 106.30
3 B E LP MILP 99.79 0.00 99.79
3 B E+C LP MILP 92.70 17.44 110.14

In all three runs and in both cases the total profit increases
when the opportunity to sell reserve capacity is introduced. This is
expected since mode E in essence is a constrained version of mode
E+C. Table 2 also shows that the expected profit increases by 5.22
and 2.27 percentage points for case A and B, respectively, inthe E+C
mode when comparing run 2 and run 1. The increase in expected
profit when relaxing the problem formulation is primarily due to the
added flexibility of selling reserves without strictly respecting the
minimum power output requirement and the non-convex production
function. Note that this flexibility is highly dependent on charac-
teristics of the hydropower system being studied, see e.g. [20] for a
similar test on a different system. Comparing run 3 with run 1, reduc-
tion in expected total profit of 1.03 and 0.64 percentage points is
observed for case A and B, respectively, in the E+C mode. Thisdif-
ference serves to quantify the approximation error when linearizing
non-convexities in the SDP water value computation. As expected,
we obtain a better result when the simulation and the water values are
based on the same model formulation. This improvement comesat
a significant increase in computational effort due to the vast amount
of weekly decision problems to be solved in the SDP model and the
added complexity of solving MILP problems over LP problems.

Fig. 5 shows reservoir trajectory percentiles for case B in the
E and E+C mode as stapled and solid-drawn lines, respectively.
The E+C mode follows a higher trajectory in the late winter period
(weeks 10-15, before snow melt) to store enough water for thesum-
mer season. Due to sales of reserve capacity in the E+C mode, water
is used more aggressively to keep the generators spinning during the
summer season, giving a lower trajectory in autumn and earlywinter.

0
10

20
30

40
50

60

Week no.

R
es

er
vo

ir 
vo

lu
m

e 
[M

m
3 ]

1 7 13 19 25 31 37 43 49

Fig. 5 : Reservoir trajectories for case B, mode E (stapled) and E+C
(solid-drawn). 0, 25, 50, 75 and 100 percentiles.

Fig. 6 shows the duration curve of generation for each generator
for case A operating in E (stapled) and E+C (solid-drawn) modes.
Both units are operating in a larger percentage of time in theE+C
mode. Generatorg1 operates approximately 30 % of the time at
around 15.44 MW in the E+C mode. This corresponds to the situ-
ation where the system sells the maximum rate of reserve capacity
(8.87 MW). In this situationg2 is running on minimum output,
leaving 3.22 MW (3.71 MW-0.49 MW) for up-regulation, whileg1
provides 8.87 MW down-regulation and 5.65 MW up-regulation.
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Fig. 6 : Duration curves for the two generators in case A. E mode as
stapled lines, E+C mode as solid-drawn.

Fig. 7 shows the duration curve of generation for each generator
for case B operating in E (stapled) and E+C (solid-drawn) modes. As
for case A, both units are operating in a larger percentage ofthe time
in the E+C mode. Moreover, generatorg2 produces less energy in
the E+C than in the E mode and is primarily run at minimum output
to supportg1 in delivering up-regulation reserves.
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Fig. 7 : Duration curves for generation, case B. E mode as stapled
lines, E+C mode as solid-drawn.

4 Conclusion

Accurate water values are of great importance when analysing the
operational profitability of new investments in or upgrading of exist-
ing hydropower stations. We present a model for optimal scheduling
of both energy and reserve capacity under uncertainty in mar-
ket prices and inflow. The model allows exact representationof
non-convexities such as head dependent production functions and
generator unit commitment.

The model was applied in a case study for a Norwegian
hydropower producer, showing how the operational profitability of
future investments in the generation system depends on whether and
how reserve capacity sales is considered. The operational pattern
changes to less seasonal shifting of energy when a reserve capac-
ity market is introduced. Moreover, the water values show a more
pronounced variation for different reservoir fillings whenconsider-
ing two markets, being more exposed to both the risk of missing
high-price periods and spillage.

Models based on linear programming are traditionally used for
long-term hydropower scheduling. The presented model allows rep-
resentation of non-convex system characteristics and is well suited
for systems with a few reservoirs. Thus, it can be used to bench-
mark the scheduling policies from linear models, and to quantify
the approximation errors. This was demonstrated in the casestudy,
showing that the linear approximation significantly overestimated
the operational profitability.

In general, our findings point out the importance of taking reserve
capacity markets into account when upgrading and modernizing
existing systems. The long lifetime of such investments implies a
significant risk if future market opportunities are not taken into
account.
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