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Abstract

We present a model for operational stochastic short-term hydropower scheduling, taking into account the uncertainty
in future prices and inflow, and illustrate how the benefits of using a stochastic rather than a deterministic model can
be quantified. The solution method is based on stochastic successive linear programming. The proposed method
is tested against the solution of the true non-linear problem in a principal setting. We demonstrate that the applied
methodology is a first-order approximation to a formal correct head-of-water optimization and achieve good results
in tests. How the concept of stochastic successive linear programming has been implemented in a prototype software
for operational short-term hydropower scheduling is also presented, and the model’s ability is demonstrated through
case studies from Norwegian power industry. From these studies, improvements occurred in terms of the objective
function value and decreased risk of spill from reservoirs.
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1. Introduction

In Norway, power supply has traditionally been al-
most 100% hydropower. Hydropower optimization is
challenging, and the main reason is that decisions are
coupled in time; the optimization problem includes
state-variables such as reservoir levels and stochastic,
climate dependent variables where the most important is
inflow. Therefore, the full multi-dimensional optimiza-
tion problem is decomposed into sub-problems. Typi-
cally a long-, a medium- and a short-term sub-problem
is formulated, where each problem is solved by dedi-
cated solution techniques [1], as illustrated in Fig. 1.
This paper presents a model for the short-term opti-
mization of hydropower based on stochastic successive
linear programming and illustrates through case stud-
ies that the proposed methodology may give improved
decision support to producers acting under price and
inflow uncertainty, compared to using a deterministic
model.
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Long-term scheduling (1-5 years)

Stochastic models, SDP, SDDP
Power system simulation

Price forecasts

Mid-term scheduling (3-18 months)
Stochastic model SDDP
Multi-scenario deterministic model
Water course simulation

Reservoir targets
Water values

Short-term scheduling (2-14 days)

Deterministic models DP, LP, MIP
Bidding support+

Figure 1: Hydropower scheduling sub-problems.

Models for short-term hydropower scheduling have
typically focused on the constraints that are important
to get feasible or close to feasible generation sched-
ules for the period where the schedules are to be im-
plemented. This period may be different for different
systems, and in the Nordic region the watercourses are
typically scheduled for the next operating day accord-
ing to the daily clearing of the day-ahead market. The
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day-ahead market is the most important market place for
power in the Nordic countries with 84% market share in
2013 [2]. Short-term scheduling must consider many
constraints due to complex cascaded watercourses, con-
cession rules, shared ownership, multipurpose use etc.,
but also technical constraints like startup costs, genera-
tion ramping and various market constraints. In Scandi-
navia, uncertainty in variables such as inflow and market
prices are handled by frequent reapplication of models
with updated input parameters (also called rolling hori-
zon), or by adding safety constraints that limit the char-
acteristics of optimization models to produce too smart
schedules for the hydropower system. The cost of such
uncertainty imposed constraints is calculated from sen-
sitivity analyses or based on specific and practical sys-
tem experience. This works fine as long as some flexi-
bility is available in the hydropower system or in the dif-
ferent markets. The sequential structure of power mar-
kets creates needs and opportunities for rescheduling.
The volumes offered in the day-ahead spot market re-
flects expected production for each producer, but these
volumes can be adjusted in the intra-day market, Elbas,
as new information is revealed over time. In 2013, the
total traded volume in the Elspot day-ahead market at
Nord Pool was 349 TWh, while the volume traded on
Elbas was 4.2 TWh [2]. Producers may also participate
in the real-time balancing market for regulating power.
In the regulating power market producers bid to sell ad-
ditional power or buy back power from the market in or-
der to maintain the instantaneous balance between sup-
ply and demand. Fig.2 gives an overview of bid and
operating hours for the different markets under present
organization of markets in Norway.
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Figure 2: Hydropower dispatch in the Nordic markets.

The behavior of the markets is expected to be-
come much more volatile due to the transition towards
more renewable power production in the energy sys-

tems. The European Union Renewable Energy Direc-
tive 2009/28/EC [3], that was implemented in 2010, de-
fine binding targets for 20% renewable contribution to
total energy demand by 2020. From January 2012 a
joint certificate system was implemented in the Nordic
market to ensure development of 26.4 TWh of new
renewable energy towards 2020 [4]. To reach Euro-
pean and Nordic targets, intermittent production such
as wind- and solar power will play a major role. As a
consequence of the increased variability of inter-nordic
balancing and regulating power and new cables that are
planned from the Nordic system to the rest of Europe,
Nordic power prices may also become more volatile in
the future. Hydropower producers might then have to
use more of the capacity towards the intra-day market
or the balancing markets. To optimize production in the
future, hydropower utilities must therefore schedule the
watercourses in such a way that obligations in several
different markets can be honored. The challenge is to
maintain flexibility for fast changes in generation lev-
els without increased spillage or efficiency loss, and to
decide what part of the capacity to use in what mar-
ket. This task calls for an explicit representation of
the uncertainty of price and resource availability. Con-
tinued operation with multiple re-runs or manual rules
for maintaining system flexibility is difficult when the
boundary conditions are constantly changing, in which
case the safety limits should become an integrated part
of the operational decisions.

1.1. Short-term hydropower scheduling

The challenge of short-term planning is to handle
non-linear and non-convex elements together with state-
dependencies. Non-linearities are present almost ev-
erywhere in hydropower modeling, in efficiency curves,
reservoir curves, losses and so on. Examples of non-
convex elements are minimum generation and spill de-
scriptions. State-dependency also occur several places;
water flow through gates and hydraulic connections [5],
but regarding overall hydropower efficiency the state-
dependency in turbine curves are the most important.
Efficiency of hydro turbines depends on head and head
depends on reservoirs levels but also discharge depen-
dent losses above and sometimes below the turbine. The
head, or pressure height, the coming hour(s) depends
on the decision that the operator is making this par-
ticular hour. This makes it impossible to build an ex-
act efficiency curve for the turbines for coming hours
and in a two-week perspective errors might be large.
Different techniques are in use for handling this issue.
One method is to apply successive linear programming
(SLP) [1], [6], [7]. This method is implemented in



SHOP (Short-term Hydro Optimization Program) [7],
which is applied by most large producers in Scandi-
navia. A large effort has been put into the develop-
ment of this general hydro-scheduling model so that it
includes many details important for Scandinavian wa-
tercourses.

Another approach is found in [8]. There the non-
linear three-dimensional relationship between the head,
the water discharged and the power generated is handled
by discretization of a family of non-linear curves. This
leads to a mixed-integer linear model that uses binary
variables to represent which curve is used according to
the levels of stored water in the reservoirs. [9] presents
a non-linear model for head-dependent hydro systems
and shows that the non-linear formulation outperforms
a similar linear model that neglects head-dependency.

The models described in [5] - [9] are deterministic. In
the future, hydropower utilities must schedule the wa-
tercourses in such a way that flexibility for fast changes
in generation levels is obtained without loss of water or
efficiency. In other words, it is a need for an explicit
representation of the uncertainty of price and resource
availability. Application of a stochastic version of SLP,
stochastic successive linear programming, SSLP, for
this purpose is described in [10]. Other approaches with
higher focus on the stochastic representation and less
on hydropower details has also been investigated, for
instance in [11] and [12]. More detailed models based
on SSLP are reported in [13] and [14]. In [13] the in-
creased revenue from using a stochastic model varied
within [0;16%] and in [10] it was 1.3%. Both results
are excellent and could in monetary terms defend huge
investments both in terms of development of a software
model and implementation in the hydropower utilities.
In this paper we investigate whether the successive lin-
ear programming method can be extended to a stochas-
tic setting and if this new model can reproduce these
significant results based on real data.

The reminder of the paper is organized as follows.
In Section 2 we first describe how uncertainty in in-
put variables is specified in the model. Section 3 de-
scribes experience with a preliminary prototype imple-
mented in GAMS. This model was used for the initial
investigation of convergence qualities, and to test and
verify the implemented methodology for head-of-water
optimization. The pure linear model formulation is pre-
sented and we describe how the non-linear problem el-
ements are handled by an iterative solution procedure.
The implemented head-of-water optimization is derived
formally. We also formulate and solve a corresponding
non-linear problem formulation. In Section 4 we ex-
plain how we have implemented uncertain variables in

a prototype tool for short-term hydropower scheduling,
SHARM, and also the method’s capability to become
rich enough in detail and fast enough for operational
use. Section 5 explains a method for evaluating the so-
lutions from stochastic and deterministic models based
on the scenario tree. This method is then deployed to
three case studies in Section 6. Final conclusions are
provided in Section 7.

2. Modeling uncertainty

The most important candidates for stochastic vari-
ables in a short-term hydropower scheduling model are
inflow to one or more reservoirs and electricity prices.
The electricity market actually consists of several mar-
kets including the day-ahead spot market, intra-day and
balancing markets as shown in Fig. 2. All markets con-
tribute to the uncertainty when scheduling future gener-
ation, and should ideally be taken into account. In the
current implementation of the SHARM model however,
only the day-ahead spot market is considered, and the
spot electricity prices are the only stochastic prices in
the model. Section 6 shows plots of typical forecast dis-
tributions of price and inflow for a 1 week horizon.

The hydropower scheduling problem is specified as
a stochastic mixed-integer linear program, formulated
as a deterministic equivalent. Within this formulation,
the stochastic variables are specified in the form of a
scenario tree. An example of a simple scenario tree is
illustrated in Fig.3. Each node of the tree contains pos-
sible future realizations for each of the stochastic vari-
ables, and the branches are assigned transition probabil-
ities conditionally on the preceding node. Each root-to-
leaf path of the tree constitutes one scenario, such that
by scaling the transition probabilities for the branches
between the latter two stages to sum to 1, these prob-
abilities equal the scenario probabilities. In the exam-
ple in Fig. 3 the planning period consists of five time
steps (stages), the branching factor is two, and there are
two stochastic variables, price and inflow. The values
of these variables are given in parentheses above/below
each node of the tree, so that at the single node at tl,
both price and inflow is 2 energy units. The branch
probabilities are 0.5 for the transition from stage t2 to
t3, and 0.35 or 0.15 for the branches from stage t3 to t4.

In the example in Fig. 3 the tree branches at each
stage. For a model with an hourly time resolution and
a planning horizon of 1-2 weeks, the number of nodes
will rapidly become computationally intractable. As an
alternative, branching can be restricted to a limited num-
ber of stages. For example, as spot prices are settled for



Figure 3: An example scenario tree: A two-dimensional, five-stage
tree with binary branching.

24 hours at a time, branching every 24 hours seems rea-
sonable for the case of stochastic prices. Further, assum-
ing that a 24 hour ahead deterministic inflow forecast is
reliable enough might be a reasonable approximation.
In addition to limiting the number of branching points,
some form of tree reduction might be needed.

Several methods have been proposed for scenario tree
generation and reduction, see e.g. [16] for an overview.
In the case studies in Section 6 scenario trees are gener-
ated from the set of potentially multi-dimensional sce-
narios for inflow and price using the tree-generation al-
gorithm in [17] - [19]. Inflow and price scenarios can
be generated by stochastic simulation from a statistical
model fitted to historical data. Inflow scenarios for one
or more reservoirs can also be based on ensemble prog-
noses from a physical model like the HBV model [20]
or a distributed model such as the ENKI-model [21].
For the former, post-processing is needed to adjust for
bias and under-dispersion in practice [22]. However, for
the case studies we use unadjusted ensemble forecasts
for inflow. Scenario trees that adequately describe the
joint forecast distribution of inflow and price might pose
problems in terms of the size of the tree. Generation
of the joint forecast distributions and multi-dimensional
scenarios for inflow and price, as well as scenario tree
generation, are problems in their own right, and for sim-
plicity we look at price and inflow uncertainty sepa-
rately in the case studies of Section 6.

3. Testing aspects of the SHARM model

To study some important aspects of the stochastic hy-
dropower scheduling model implemented in SHARM,
numerical simulations based on a simplified represen-
tation of the full SHARM model has been conducted
using GAMS [23]. The simplified model is sufficient to
illustrate some main features of SHARM. We first de-
scribe a pure linear stochastic model. However, since

the problem actually is non-linear, this simple formula-
tion is not sufficient. Therefore, we show how the lin-
ear model is updated in an iterative process to account
for non-linearities. The model is also modified to ac-
count for head-of-water optimization and to give an in-
centive for convergence of the iterative process. Finally
we present a non-linear model formulation that is solved
numerically to verify results from the described iterative
procedure.

3.1. A pure linear model

The linear model formulation is provided in Egs. (1)
- (6). The model has hourly time-resolution, and the
typical planning period is 1-2 weeks. All symbols for
the linear model are explained in Table 1. Parameters
and sets are capitalized, while variables are not. Su-
perscripts are part of symbol names, while subscripts
are indices. In cases of parametric bounds for variables,
these constraints are specified as a part of the definition
in the list of symbols in Table 1. All variables are posi-
tive variables by definition unless otherwise stated.

max Z QO;P; Z Zim + Z Oiw; (D
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The problem is formulated as a linear programming
problem, where the objective given by Eq. (1), is max-
imized subject to the constraints in Egs. (2) - (6) and
the parametric constraints for variables given in Table
1. The objective function is the expected income from
hydropower production, plus the value of stored water
at the end of the planning period. The efficiency of hy-
dropower is increasing in an interval from zero to the
best-point production. To avoid non-convexities, we ap-
ply a formulation where there are only two steps on the
efficiency curve. The efficiency is reduced for produc-
tion above best-point. The use of water is therefore di-
vided into two variables corresponding to water-use up



to best-point and above best-point, cf. Eq. (2). To-
tal electricity production is the sum of used water mul-
tiplied with the corresponding energy conversion fac-
tor, cf. Eq. (3). The amount of water at the end of
each time-step represented by a node, is given by the
amount of water passed through from the previous time-
step for this branch of the stochastic tree, plus inflow
and production-water from upstream units in the river-
system, minus the amount of water used for production
and possible spillage, cf. Eq. (4). The value of stored
water at the end of the planning horizon is defined as
a step-wise function, cf. Eq. (5). If more water is
stored, the marginal value of water declines. The to-
tal amount of water available is the efficiency-weighted
sum of amounts in all reservoirs, cf. Eq. (6).

3.2. Iterative updating and avoiding flip-flop

The model defined by Egs. (1) - (6) is a linear model
that is straightforward to solve. However, in reality, a
higher head of water will add energy to each m* of uti-
lized water. This effect is important when scheduling
buffer reservoirs and must be implemented in the model.
Unfortunately, the model becomes non-linear if efficien-
cies are defined as variables, cf. Eq. (3). Therefore, we
apply an iterative approach. In each iteration, efficien-
cies are updated in accordance with the reservoir level in
the previous round, cf. Eqgs. (7) - (8). Additional sym-
bols are explained in Table 2. For simplicity, the applied
formulation implicitly assumes that reservoirs have flat
bottoms and straight walls.

bestonew __ pmin max miny _Xim
Eim - Eim + (Elm - Eim )Xmax (7)
m
best,new
rest,new __ yorest _im
Eim - Eim Ebest ®)
im

Solving the model in Eqgs. (1) - (6) iteratively, while
applying the updates in Eqgs. (7) - (8), typically gives
flip-flops between different solutions. None of the so-
lutions are actually consistent since the efficiencies that
correspond to the solution of the model will be differ-
ent from the assumed efficiencies when solving it. On
the other hand, the objective function is in many cases
rather flat close to the optimum. Thus, for our cases,
a small penalty for deviation from the previous-round
solution, cf. Eqgs. (9) - (10), was sufficient to provide
convergence.

im — Xim

Axiy =37 ©)
im — Xim

Pim = TpenAxim (10)

Table 1

: Symbols for pure linear model

Symbol

Explanation

Sets and Indices

Set I, index i
Set I°"?_index i
Set J, index j

Set M, index m

Variables

e,-j

Sim

Zim
Parameters

best
Eim

rest
Eim

start
Xm

max
Xm

1% prod

im

[max
J

0

Vim

max
Ym

best
Ym

Nodes in the stochastic tree

End nodes, 1,4 € 1

Linear segments for the end-
value function

Units. A unit is a reservoir plus
generator(s) directly below the
TEeServoir.

Use of j'" segment in function for
value of stored water at the end of
the planning horizon, ¢;; < L;."‘“‘
Spillage from reservoir

Value of stored water at end of
planning horizon

Reservoir storage, X" > X,
Reservoir storage at the end of
the time-step represented by i’s
parent node

Water used for power generation,
Yim < Y, me

Use of water at best efficency,
Vim < Y’Zest

Use of water in excess of best ef-
ficiency

Generated electricity

Best efficiency for generator
Above best-point effeiciency for
generator

Reservoir storage at start of plan-
ning period

Maximum reservoir storage
Water-course identification pa-
rameter, Vm:"d €10, 1}

Lenght of each time step in
marginal value function for
stored water at the end of the
planning horizon

Probability for node i

Spot price in node i

Inflow to reservoir i

Generator capacity for use of wa-
ter for generator

Maximum use of water at best ef-
ficiency

Marginal value of j* segment in
end-value function for stored wa-
ter at the end of the planning hori-
zon




Deviation from the previous round is measured by
Eq. (9), while the penalty for altered reservoir level in
Eq. (10) is included as a negative term in the objective
function. However, the penalty is exactly zero when the
algorithm converges, defined by x;,, = X

3.3. Head of water optimization

The iterative approach gives a solution of the linear
model so that the assumed efficiencies that enters into
the model are consistent with the corresponding evalu-
ated efficiencies post the optimization. Still, this does
not produce a true optimal solution for the problem.
The reason is that efficiencies are only updated between
each iteration, while the linear optimization model does
not take into account that an altered reservoir level will
give a different efficiency. If the efficiency is treated
as a variable, the model becomes non-linear and differ-
ent solution methods must be applied. However, in the
iterative approach, it is possible to formulate a linear
term that actually is a first-order approximation to the
missing mechanism in the linear model. This term can
be derived by evaluating how much higher production
would be due to higher efficiencies if the reservoir level
had been slightly higher, while all other variables are
assumed constant and equal to the previous solution in
the iterative loop. We evaluate this term by differentia-
tion of Eq. (3) with respect to the reservoir level, and
applying Egs. (7) and (8). In Appendix A we show that
this gives:

(g — EpERZ,,
S (Xim = Xim) (11)
m

extra _
Zim -

This linear term is included in the objective function
so that the efficiency-gain of increased reservoir levels
are accounted for in the linear model formulation, while
at the same time the term vanishes when the algorithm
converges ( x;; = Xi ). The new objective function for
the linear model is:

max Z OiP; Z (Zim + 2507 = Pim)

i€l meM
) 0wi= D pm (12)
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The successive linear model maximizes the objective
function in Eq. (12) subject to Eqs. (2) - (6) , (9) -
(11), and parametric constraints for the variables. Be-
tween each iteration efficiencies are updated in accor-
dance with Egs. (7) - (8).

Table 2: Symbols for updating pure linear model, and non-linear
model

Symbol Explanation

Variables

Axpyy Altered reservoir level compared to
previous iteration

Dim Penalty for altered reservoir level

5 Artificial generation - an incentive
that implements head of water opti-
mization in a linear model. Free vari-
able

eﬁ’rff’ Best efficiency for generator

elet Above best-point efficiency for gener-
ator

Parameters

E;’;j” Best-point efficiency when reservoir
1S empty

ED Best-point efficiency when reservoir
is full

f’,:”‘”ew Updated value for best-point effi-

ciency

Elet Updated value for efficiency above
best-point

Xim Reservoir level in previous iteration in
linear model

TPen Penalty parameter for deviations from
previous solution

Zim Electricity generated in previous solu-
tion of linear model

Sm Above best-point effeciency as rela-
tive value compared with best-point
effeciency

3.4. Non-linear model

For large numerical systems, it is typically harder to
solve a non-linear model using a non-linear solver than
solving a linear system using linear solver. However, for
the first simple tests, it is possible to define and solve
the problem both as a linear and non-linear problem. In
this way we have tested the above described iterative ap-
proach for a linear model against the solution when ap-
plying a non-linear model formulation. In the non-linear
model, efficiencies are variables instead of parameters:

best __ rmin max min Xim
Cim = Eim + (Eim - Eim xmax (13)
im

rest __ best
e =Sne (14)



Zim = ny,Ste?,f,Sl + y{:,lvte;fft (15)

In Eq. (14) the relative efficiency for the above best-
point production is set in accordance with the corre-
sponding relative efficiency applied in the linear model.
The produced amount is now given by Eq. (15). The
non-linear model maximizes Eq. (1) subject to Eqgs. (2),

(4) - (6) and (13) - (15).

3.5. Test settings

We define a system consisting of two coupled hydro-
power stations in the same water course, cf. Fig. 4.
Above each station/generator there is a reservoir. The
uppermost reservoir is ten times larger than the lower
reservoir (300 versus 30). Additional inflow in a full
reservoir gives spillage to a different water system, and
is hence a pure loss to the producer. The inflows to the
two reservoirs are perfectly correlated, with 50% prob-
ability for each of the two outcomes 0 and 4 in each of
the five periods in the planning period, except for the
first period where the inflow is 2, cf. Fig. 3. In addition,
the lower reservoir recieves production water from the
above station. The capacity, measured in water units, is
3 for the upper generator and 6 for the lower generator.
The highest possible efficiency is 1 for both generators
(full reservoir and best-point production up to 80% of
capacity). For additional water-use above best-point the
efficiency is reduced by a factor of 20%.

The marginal value of stored water at the end of the
planning period takes 10 different values that approxi-
mates a linear declining function between 2.24 and 0.8.
The same function is used for both reservoirs. The spot
price is 2.

Capacity =3
Production =1
h[0;2.4]=1
h[2.4;3]=0.8

Generator 1 LO]

30
Capacity =6
Production =1
h[0;4.8] =1

h[4.8;6]=0.8

Generator 2 O]

Figure 4: Example system for GAMS test: Two coupled hydropower
stations.

3.6. Test results

Fig. 5 shows objective values in different iterations
for three simulations with the linear model. The black
curve shows a flip-flop between two different solutions
when no penalty for deviation is included. The red curve
shows that the model converges after 6 iterations when
the penalty for previous-round iteration is included. The
blue curve shows how the converged solution is im-
proved when head-of-water optimization is included.
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Figure 5: Objective function with and without penalty for deviation
and head-of-water optimization.

Fig. 6 shows simulation results for 10 different ini-
tial reservoir levels in the two reservoirs, ranging from
empty reservoirs (0 %) to full reservoirs (100 %). For
each reservoir level, 10 different starting points has been
applied for the non-linear model. The figure shows av-
erage results for the linear model with and without head-
of-water optimization (blue and green columns respec-
tively), and for the non-linear model (red column).

One important finding here is that the applied head-
of-water optimization improves the model solution. De-
pending on the initial reservoir-level, the objective func-
tion was improved by up to 1.5% in our cases. The
variability of this result for the 10 different starting
points for each reservoir level was small. Apparently,
the improvement is largest when reservoirs are about
half-full, probably because the flexibility in the system
is largest in these circumstances. Another major find-
ing is that the applied iterative approach that includes
head-of-water optimization, finds a solution that is very
close to the optimal solution as calculated by the non-
linear model. On average, the objective function is
only 0.02% higher in the non-linear model. Therefore,
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Figure 6: Objective function for different initial reservoir fillings.

this test clearly indicates that the first-order approxi-
mation for the head-of-water optimization in the iter-
ative linear modeling approach provides good results.
However, these results do not prove that the method-
ology necessary will provide good results on all possi-
ble cases, nor do they prove convergence. Experience
from the SHOP model confirms that successive linear
programming shows adequate convergence for a large
range of system topologies and states, and the authors
believe that similar convergence properties will hold in
the stochastic setting.

4. The SHARM model

After implementation and testing in GAMS, a proto-
type model was implemented in C++ using experience
from implementation of the SHOP model [7]. The name
of the prototype is SHARM (Short-term Hydro Applica-
tion with Risk Modeling). The aim of this more detailed
implementation of the concept described in Section 3,
was to be able to perform preliminary tests in the hy-
dropower utilities. This means that the level of detail in
the prototype needed to be rich enough to describe all
important features — at least for simple watercourses —
to enable a realistic comparison of results with the cur-
rently used deterministic short-term model.

In the prototype implementation that was used for
testing in the utilities we allowed for uncertainty in in-
put parameters for inflow and price. As the model first
of all is for use in single watercourses it is only pos-
sible to model one stochastic price, but the stochastic
properties for inflow may be different for each reservoir.
This results in a multidimensional description of the un-
certainty and the scenario tree can potentially become
very large. In this initial approach we assumed that in-
flow and prices are uncorrelated. The SHARM model

does not rely on any particular method for generating
input inflow and price scenarios, as long as these can
be converted into a scenario tree. Thus, the model can
be combined with an external forecast module. The hy-
dropower utilities for which the model was tested have
different approaches to generation of inflow and price
forecasts.

The model is similar to the model already tested in
GAMS and to [13] but with some differences. First of
all the model uses iterations and a new iteration is an
incremental description of the previous iteration. Sec-
ond, the model uses a two mode approach for handling
turbine minimum generation without using binary vari-
ables. The concept of using an incremental descrip-
tion serves two purposes: speed and accuracy. Firstly,
solving an incremental model were the next LP or MIP
model is build as a A from the solution of the previous
iteration is like warm starting the solver. As the itera-
tions go fourth more and more variables will remain un-
changed which means that they will remain zero. This
can speed up the calculation. Secondly, the number of
segments in linearized curves typically defines the ac-
curacy of the produced result. An example is a 300
MW unit where minimum generation is 50 MW. If it
is known that this unit is running the efficiency curve
might be convex as such. Using 5 segments then leads
to 50 MW steps in the output curve. This is a large
step when closing in on maximum generation where ef-
ficiency typically drops fast. By building incrementally
the set point xy of the LP-model changes with the it-
erations and so does the segmentation of the lineariza-
tion. This means that the result comes close to the result
of a quadratic solution method. In practice this means
that the incremental solution can provide what the hy-
dropower owner considers a marginal balance between
market prices and unit efficiency. The principle of in-
cremental model building is shown in the Fig. 7. At
the same time this helps limit the traditional problem of
flip-flop between solutions when using successive linear
programming, as seen in Fig 5.
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Figure 7: Shifting linerarization points in incremental model building.

In many aspects the minimum generation is impor-
tant also in hydropower scheduling. When the turbines
run at low load, cavitation may occur, and this typically



limits minimum generation not to zero but to 30-40% of
nominal loading. This may vary strongly from turbine
to turbine and with pressure height above the turbine.
This constraint could easily prove important regarding
other operational constraints. This is handled by us-
ing binary variables to model minimum generation of-
ten combined with modeling of startup costs. Although
algorithms such as CPLEX has improved tremendously,
the dimensionality of modeling thousands of binaries is
a limit. This is still a practical limit in larger water-
courses with many cascaded plants, and solving a mul-
tidimensional scenario tree using MIP for the same wa-
tercourse is not yet possible. In the prototype we have
adapted a solution where mixed integer programming
can be applied for the first part of the tree while the
sub-trees further out in the tree will have to do with
a heuristic where unit commitment decisions are taken
based on the calculated strategy for running the water-
course following a fixed number of iterations. When
unit commitment decisions are fixed, turbine minimum
and inter-plant topology and losses can be included ex-
plicitly in the efficiency curves in the linear model, and
new iterations can be used so that all system constraints
are respected.

Based on the description above, the concept of the
SHARM prototype is illustrated in Fig. 8. First, the
model finds unit commitment (UC) plans for all hy-
dropower units and all time steps (left part). Then, with
locked UC, the model is solved with detailed efficiency
curves which enables quadratic adaptation in the lin-
ear model, resulting in detailed and accurate discharge
plans for turbines, gates etc. This is the same principle
of successive linear programming as is used in the op-
erational SHOP model described in [6] and [7] and the
method hence has a proven applicability for optimiza-
tion of short-term hydropower scheduling. In the case
studies in Section 6 we do not experience any flip-flop
between solutions and 3 iterations in UC mode followed
by 3 iterations of the detailed model yields a convergent
solution.

The functionality in the SHARM model does not in-
clude all functionality of the SHOP model. Hydraulic
connections that are important in many Norwegian wa-
ter courses have so far not been included, but the de-
scription in [5] can be included here as well. Start-up
cost is included as described in [6]. Functionality such
as primary and secondary reserve that is important in
an operational setting [15] has not been included. The
SHARM model also lacks time delay and static wave
propagation that are important in longer watercourses.
We have experience regarding how this can be included
and also how it may impact on convergence and calcu-
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Figure 8: Outline for the incremental SSLP method.

lation time in SLP. In principle all these elements can be
implemented also in the SSLP method but this have not
yet been tested fully.

In an operational setting, the computation time of the
stochastic model cannot exceed certain limits due to
routines in the hydropower companies and time con-
straints in the market. For the system in case A in
Section 6 the computational time is 165.75s for the
stochastic model with a 16-scenario, 7-day tree as in-
put, whereas it is 10.23s for SHOP when average values
for price and inflow is used as input. For the smaller
case in case study C, SHARM uses 20.41s compared to
SHOP’s 1.64s. The computation time of both the deter-
ministic and stochastic model are dependent on the time
horizon and the topology and size of the system under
study. Some systems are inherently more complex than
others, and some combinations of initial reservoir lev-
els also give the system more flexibility, and hence it
may be more challenging to find the optimal solution.
The computational time of the stochastic model is also
dependent on the size of the scenario tree. In [15] a
simulation study indicated that a reduction in tree size
of up to 22% does not affect the value of the optimal
solution by more than 0.02%, and hence different meth-
ods for scenario tree reduction may be used to lower the
computational time. In terms of operational use of the
model, it will be a trade-off between the longer compu-
tational time of stochastic modelling against the manual
analysis and multiple re-runs of a deterministic model.



5. Comparing stochastic and deterministic models
in SHARM

To quantify the benefits of the stochastic over the
deterministic model, the expected profit from operat-
ing the system according to the optimal decisions from
each of the two models should be calculated with re-
spect to the same forecast distribution for the uncertain
variables. The decision variables include scheduled pro-
duction on each generator and discharge in each gate
and bypass gate. In [13] results from a deterministic
and a set of stochastic models are compared by evaluat-
ing all models with respect to a large set of new simula-
tion scenarios. The models are thus compared by using
a different set of scenarios than those used to generate
the scenario tree, preventing the stochastic model to op-
timally adapt to the scenarios used for comparison of
the models [12]. In addition, the approach does not al-
low the deterministic model to be updated as new in-
formation becomes available. In practice, decisions are
re-scheduled at regular intervals based on the most re-
cent information on prices and inflows. For example, in
the case of a 24-hour market, as the NordPool market,
the scheduled decisions are typically updated daily, after
each spot market clearing. We therefore take an alter-
native approach for comparing the two models, where
the profit from the deterministic decisions is evaluated
with respect to the scenario tree used for the stochas-
tic model, using a step-by-step approach as described
below. By taking this approach we try to quantify the
performance of the stochastic model over the updated
deterministic strategy, if we assume that the scenario
tree is very close to the true forecast distribution. In
contrast, the approach of [13] compares how stochastic
and deterministic approaches compare on average with
respect to a new set of simulation scenarios assumed to
be the truth. Our selected approach implies that the ex-
pected profit from the stochastic model will always be
evaluated to be equal to or higher than that from the de-
terministic model, as illustrated in Fig. 9.

The expected profit from operating the system ac-
cording to the optimal decisions from the deterministic
model is evaluated by a step-by-step procedure similar
to that presented in [15]. Optimal first-stage decisions
are computed for a set of deterministic sub-problems at
each branching point of the tree. A branching point is a
point in time when at least one branching occurs. The
tree in Fig. 10 has branching points at t1, t2 and t3. The
approach is illustrated in Fig. 11.

In Step 1 the optimal solution to the deterministic
problem for the whole planning period is found. The de-
terministic forecast is computed as the point-wise prob-
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Figure 9: Expected profit from the stochastic model (full line) and
the deterministic model (dashed line) for a one-dimensional decision
variable.The values 7y, and mg,; are the expected profits for the op-
timal decisions ygoen and Yger, and mger evar i the expected profit for
decision yg,r evaluated with respect to the scenario tree.

Figure 10: Full tree with branching at t1, t2 and t3.

ability weighted mean. The three remaining steps cor-
respond to the branching points tl, t2, and t3. At each
branching point one deterministic sub-problem is speci-
fied for each successor branch. All sub-problems at each
branching point are solved simultaneously by a single
run of the SSLP algorithm, keeping decision variables
for time points prior to the branching point fixed to opti-
mal values from previous steps. In Step 2 there are two
successor branches at tl, leading to two deterministic
sub-problems. For example, branch 2 in Step 2 equals
branch 2 in the full tree between t1 and t2, the weighted
mean of branches 4 and 5 between t2 and t3, and the
weighted mean of branches 8-11 from t3 and onwards.
The sub-problems for branches 2 and 3 are solved si-
multaneously by running the SSLP algorithm using the
scenario tree consisting of the three branches 1, 2, and
3 in Step 2, keeping the decision variables for branch
1 fixed to the optimal values from Step 1. Since no
path from time t1 and onwards share the same branches,
the results should be similar to the ones obtained by
solving each of the two deterministic sub-problems one
at a time. At Step 3 there are four deterministic sub-
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Figure 11: Subtrees used in the evaluation method.

problems. In the single SSLP run at this step, decision
variables at branch 1 are kept fixed to the solution from
Step 1, and at branches 2 and 3 the values are fixed to
the solutions from Step 2.

The final step (Step 4) corresponds to solving the
stochastic problem for the full scenario tree, but fixing
all decisions prior to branching point t3 to values ob-
tained from previous steps. This step is equivalent to
evaluating the objective function for the deterministic
decisions, but using the forecast distribution defined by
the full scenario tree. The optimal objective for the final
step is therefore the sought for value for the expected
profit for the deterministic model. In the case studies
of Section 6, we refer to the strategy obtained from this
process as the determinitic strategy or the deterministic
solution.

A drawback of the evaluation method described
above is that the branching factor for the sub-problems
is reduced as the tree is traversed. In addition, the
length of the remaining planning period decreases as we
move from one branching point to the next. The future
will become less and less uncertain as the tree is tra-
versed, favouring the deterministic model. On the other
hand, the same scenarios are used for optimization and
performance evaluation of the stochastic model, poten-
tially favouring the stochastic model. What we do is
to quantify the reduction in solution quality by using
a deterministic model, if we assume that the stochas-
tic tree represents the truth”. The rolling horizon ap-
proach presented in e.g. [12], where new sub-trees and
corresponding deterministic forecasts are generated for
each branching node of the tree, is an alternative that
accounts for these short-comings of the proposed ap-
proach.
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6. Case studies

In this section we show three examples to illustrate
the potetial benefit of the stochastic model. Case A will
exhibit a situation where several reservoirs and power
plants are located along the same river system, thus giv-
ing the producer some flexibility for generation schedul-
ing under normal operating conditions. We look at a sit-
uation where the reservoir levels are high and volatile
inflows are expected in the coming week. Case B in-
vestigates price uncertainty for the same reservoir sys-
tem. Case C is devoted to a special and difficult situ-
ation where a single reservoir must handle potentially
very large inflows. In the examples where inflow is
stochastic and price is deterministic, we illustrate how
the stochastic model sees a risk of high inflows later in
the period and therefore reduce the reservoir volume by
producing more in order to avoid spill of water. When
price is stochastic, we focus on the allocation of pro-
duction to the highest priced hours. All case studies and
corresponding data have been made available to us by
hydropower producers participating in the industry test-
ing of SHARM.

6.1. Case A: Flexible hydro system, inflow uncertainty

In this example, SHARM is used for a real hy-
dropower system consisting of six reservoirs and six
plants. The system is illustrated in Fig. 12. The inflow
to all reservoirs is assumed to be stochastic, while the
spot price is deterministic and increasing with a daily
pattern throughout the planning period, as shown in Fig.
13. The prices are obtained from the price forecast
used by the hydropower producer in their daily opera-
tion scheduling

The multi-dimensional scenario tree for inflow is
generated by applying the scenario tree generation ap-
proach in [17] to a set of ensemble forecasts for the in-
flow, generated by the HBV model [20]. The 51 scenar-
ios for each reservoir are assigned equal probabilities.
This is a questionable assumption, and it is also a well-
known fact [22, and references therein] that hydrolog-
ical ensemble forecasts generated from meteorological
ensembles tend to underestimate the uncertainty. How-
ever, the decision to use the ensemble scenarios without
any additional processing was taken in cooperation with
system operators at the power companies and therefore
deemed valid for our test cases. It is further assumed
that the inflow profiles for the two most downstream
reservoirs are equal, so that the inflows differ only by
a constant. This leaves us with a five-dimensional sce-
nario tree. The structure of the total scenario tree and
the inflow values for one of the reservoirs are shown in



Figure 12: System topology for Case A.

Figs. 14 and 15. The future value of water is given
as a water value function, so that the water value de-
creases linearly by increasing reservoir level at the end
of the planning period. The mixed-integer problem of
the first iteration in the successive linear programming
procedure has 165 502 variables and 39 638 constraints,
and is solved in about 20s. Solving the problem with 3
iterations in UC-mode and 3 iterations with locked UC
as explained in Section 4 takes a total of 165.75s on an
Intel Core 3 GHz processor with 8 GB RAM.
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Figure 13: Deterministic price forecast for Case A.

Table 3: Results for case A. Numbers given realtive to the stochastic
objective function.

Stochastic  Deterministic
Income 9.43 7.54
End value 990.80 991.78
Penalties -0.22 -3.18
Start-up costs  -0.002 -0.005
Total 1000 996.12

12

I

15
14
1

11

1 12 24 36 48 60 72 84 96 110 126 142 158 174
Hour

.
3

!
I i 5

Figure 14: Scenario tree for inflow in Case A.
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Figure 15: Actual inflow scenarios for one of the reservoirs in Case
A.

Using the evaluation method described in Section 5,
the objective function is 0.39% higher for the stochastic
solution than for the deterministic solution. The break-
down of the objective function into income form power
sold, end reservoir value, start-up costs and penalties is
given in Table 3. Income is higher for the stochastic
model due to higher volumes produced during the op-
timization period. As a consequence, the end reservoir
storage is lower. The balance of producing today versus
saving water for later is more shifted towards producing
today for the stochastic model than for the deterministic
approach. The differences can be explained by the fact
the deterministic model do not see the same risk of spill
as is represented by the scenario tree in the stochastic
model. Seeing the low prices at the start of the period,
the deterministic model chooses a low production level
in order to save water for more favorable prices later in
the period or after the end of the time horizon. This
can be seen by comparing Figs. 13 and 16 which shows
the prices over the optimization time horizon and the
average production in the deterministic and stochastic
model. Saving water for later is a viable strategy when
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Figure 16: Average production in stochastic and deterministic models
for Case A.

the potential for large inflows is not accounted for, but it
is exactly in such situations that the strategy fails, as is
evident by the larger amount of spill from the determin-
istic model. In fact, there is 60% more spill from the de-
terministic than the stochastic model, 34 Mm? versus 14
Mm?, which leads to the higher penalties shown in Ta-
ble 3. The stochastic model, on the other hand, chooses
to produce at higher levels even for less favorable prices
in order to avoid spillage. Any losses due to produc-
ing at lower prices are offset by the gain from avoided
spillage, and hence the stochastic model provides a bet-
ter strategy in a setting where future inflows are uncer-
tain. The reservoir storage level in the most downstream
reservoir is shown in Fig.17, indicating that the bolder
strategy chosen by the deterministic model leads to spill
while the stochastic model keeps the reservoir within its
bounds for a larger set of hours.

The net gain of 0.39% is taken to be a representa-
tive estimate of the potential gain of using SHARM in
full/empty conditions rather than the current practice
of reapplication of a deterministic model, as the case
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Figure 17: Average reservoir level for the most downstream reservoir
in Case A.
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presented above is based on a realistic physical situa-
tion and applies information on inflow that is already
available to production schedulers at the utilities. Even
small gains are interesting to producers as the models
for short-term scheduling are applied every day for a
large portfolio of reservoir systems.

6.2. Case B: Flexible hydro system, price uncertainty

This case study investigates the same reservoir sys-
tem as in case A illustrated in Fig. 12, but with the
price represented as uncertain variables and the inflow
assumed to be deterministic. The inflow is taken as the
step-wise probability weighted average of the scenario
tree for inflow used in Case A. The price is represented
by applying the scenario tree generation method of [20]
to a set of forecasted market prices obtained from a
market analysis company, SKM Market Predictor AS
[24], which develops and supplies price forecasts to the
power industry. The 60 price scenarios are based on
different combinations of fundamental events that af-
fect the market price, such as electricity consumption
or transmission to or from connected areas. Prior to
the scenario tree generation, all scenarios are given the
same probability. This may be a questionable assump-
tion, as the probability of the individual scenarios de-
pends on the probability of the underlying events. As-
sessment of these probabilities is beyond the scope of
this paper. The structure of the scenario tree for price
is shown in Fig. 18, and the actual values are shown
in Fig. 19. The scenario tree has been generated using
a 24-hour branching period to reflect the daily clearing
of the day-ahead electricity market. The mixed-integer
problem of the first iteration in the successive linear
programming procedure has 337 702 variables and 81
542 constraints, and is solved in about 20s. Solving the
problem with 3 iterations in UC-mode and 3 iterations
with locked UC as explained in Section 4 takes a total
of 186.37s.

The initial reservoir storage is set at a lower level of
40%, in order to investigate the ability of the two mod-
els to select only the high-price hours for production.
If the reservoir level is higher, there is enough water in
the system to produce in most hours and the gain from
allocating production to the highest priced hours dimin-
ishes. When reservoir levels are high, the main empha-
sis is to reduce spill, whereas when reservoir levels are
low, optimal allocation of the water as a scarce resource
is more important. Looking at the price profiles in Fig.
19, it is evident that the main issue in this particular
case is to allocate production such that the nightly dips
in price are avoided and enough water is maintained in
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Figure 18: Scenario tree for price in case B.
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Figure 19: Actual price scenarios used in case B.

the system to be able to exploit the potential price peaks
towards the end of the period.

Table 4: Results for case B. Numbers given realtive to the stochastic
objective function.

Stochastic  Deterministic
Income 0.29 0.28
End value 999.71 999.60
Penalties -0.0 -0.0
Start-up costs  -0.004 -0.005
Total 1000 999.88

Table 4 gives the result for the objective functions of
the stochastic and deterministic method. The stochastic
method is in total 0.01% better than the deterministic
method, which may not be a significant result. This is
due to the large contribution of the end reservoir value
to the objective function. The numbers for revenues
from sales tells a different story: the improvement in
revenue is 2.71%. Fig. 20, which shows the average
production in the two models, shows that the solutions
are quite similar as the production volumes follow the
price profile closely. The stochastic model is to a larger
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extent able to avoid production in the low price hours,
and the stochastic model in total produces less than the
deterministic model. The deterministic model is actu-
ally more able to exploit the first and highest price peak,
and allocates slightly more production to this hour than
the stochastic model. For the two remaining peaks, the
stochastic model allocates more production. In terms of
obtained average prices, calculated as the total revenue
from sales divided by total production, the stochastic
model performs better: obtaining an average price of
25.00 €/MWh against the deterministic model’s 24.95
€/MWh, which yields an improvement of 0.19%.
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Figure 20: Average production for the stochastic and the deterministic
model in case B.

The results for price as uncertain variable indicates a
seemingly insignificant gain when measured for the to-
tal objective function value. However, in terms of rev-
enues the results indicate that the stochastic model gives
a strategy where production to a larger degree is allo-
cated to high-price hours than in the deterministic strat-
egy. This yields a higher obtained average price, which
will benefit producers in the short-term perspective.

6.3. Case C: Less flexible hydro system

The system under study in case C consists of one
reservoir and one plant. The reservoir is mostly sur-
rounded by mountains which make it hard to predict
when actual inflow peaks will occur. Peak inflow can
be higher than the nominal production discharge at the
plant which is about 20 m?/s, reducing the flexibility of
the system. In this case study, the reservoir level is as
high as 80% at the start of the 1 week optimization pe-
riod, and high inflows are expected. A scenario tree for
inflow is generated by using the scenario tree generation
method to a set of 51 ensemble scenarios for inflow. The
structure of the scenario tree and the actual values for
inflow are shown in Figs. 21 and 22.
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Figure 21: The structure of the scenario tree for case C.
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Figure 22: Actual inflow scenarios for the reservoir in case C.

Price is kept deterministic and is taken as the price
forecast used by the hydropower producer in their daily
operation scheduling. The value of water is represented
as a linear function of the reservoir levels at the end of
the planning period. The water value is low in compari-
son to the forecasted prices to reflect the high water level
in the system and the potential for spill. The mixed-
integer problem of the first iteration in the successive
linear programming procedure has 14 572 variables and
3 976 constraintss, and is solved in less than 1s. Solving
the problem with 3 iterations in UC-mode and 3 itera-
tions with locked UC as explained in Section 4 takes a
total of 20.41s.

Table 5 shows the objective function value results for
the stochastic and the deterministic models. The ob-
jective function is 8.9% better for the stochastic solu-
tion. This is again due to the fact that the deterministic
model chooses a low production level in the start of the
planning horizon, failing to recognize the risk of spill
if reservoir levels are allowed to rise prior to the po-
tentially very high inflows later in the period. This can
be seen from Fig. 23 which shows the reservoir stor-
age level in the three scenarios with highest amounts of
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spill, and Fig. 24 which show the point-wise weighted
average production in the stochastic and deterministic
models.

Table 5: Results for case C. Numbers given realtive to the stochastic
objective function.

Stochastic  Deterministic
Income 688.37 522.39
End value 312.29 402.73
Penalties -0.87 -10.66
Start-up costs  -0.20 -3.51
Total 1000 910.95
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Figure 23: The reservoir storage level in the three scenarios with high-
est spill in case C.
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Figure 24: The average production in the stochastic and deterministic
model in case C.

Looking at Fig. 23 it is evident that the determinis-
tic strategy of low (or variable) production in the start
of the period fails and leads to spill if the inflow later
on turns out to be high. The stochastic model is able
to avoid spill to a far greater extent by choosing to pro-
duce at high levels from the start. Spill occurs in both
models, but the amount is decreased by almost 90% in



the stochastic model, 0.09 Mm?, versus 0.7 Mm? in the
deterministic strategy. The large gain obtained by the
stochastic model in this particular case may not be ob-
tainable on an average basis, but it illustrates that ac-
counting for risk and making more robust production
schedules can be very valuable in some situations.

7. Summary and Discussion

7.1. Summary of work and testing

In this paper we have presented the concept of
stochastic short-term hydropower scheduling imple-
mented in the SHARM model, and illustrated the per-
formance of the model by examples. We have also illus-
trated how non-linearities can be handled in a in linear
model for stochastic short-term hydropower schedul-
ing. The improvement in terms of objective func-
tion value and decreased risk of spill by the stochas-
tic model is demonstrated in case studies, as well as
the model’s ability to allocate production to hours with
higher prices.

An elementary representation of the SHARM model
is also formulated in the paper. For this model, we
demonstrate that the applied methodology is a first-
order approximation to a formal correct head-of-water
optimization. Simulation results for three model for-
mulations are compared: An iterative solution method
with and without head-of-water optimization, and the
solution of the non-linear model. In our cases, the
head-of-water optimization improves simulation results
by approximately 1.5%. The non-linear model gives a
slightly better result (0.02%).

7.2. Discussion

Even though we have shown that the implemented
method is a first-order approximation for a head-of-
water optimization, we have not provided a formal proof
that could guarantee that the methodology will provide
almost optimal solutions for all cases. The test cases
for the simplified version of the SHARM model indi-
cate that the implemented method is well functioning.
On average, it provides a solution that is very close to
the solution of the corresponding non-linear problem
formulation. The relative performance we have docu-
mented compared to the solution of the non-linear prob-
lem is however valid only for those cases we have an-
alyzed. We have not demonstrated that the properties
of the non-linear problem formulation guarantee that
the solution of the non-linear model must be a global
optimum. However, we have not identified any non-
convexities in the optimization problem in the simple
model.

16

When we compare the results from using the stochas-
tic strategy to the deterministic strategyl on the basis of
the scenario tree, we find that the stochastic model gives
more robust results. The three examples shown in the
case studies are representative of what we have found
in testing together with the hydropower industry. There
are, however, some limitations to our chosen method of
evaluation. The branching factor (number of branches
at each branching point) is reduced as the tree is tra-
versed. The length of the remaining time horizon is also
reduced by traversing the tree. This will reduce the ac-
curacy of the stochastic model and may hence decrease
the value of stochastic modelling. On the other hand,
taking the stochastic tree as the ”truth” clearly benefits
the stochastic approach over the use of mean values in
the deterministic method. Ideally, evaluation should be
based on rolling time horizons for both methods, where
the process of updating input and reapplication of the
models often seen in hydropower companies could be
modelled to a larger degree.

In addition, we have only showed cases where either
inflow or price is uncertain. It is difficult to determine
which of price and inflow is more important to con-
sider as a stochastic parameter. The results from our
case studies indicate that inflow is more important since
larger gains are obtained by considering inflow uncer-
tainty than by considering price. This is however not a
general result, and we expect the relative importance of
price and inflow to depend on the system under study as
well as time of year. In the future, prices are expected
to become more volatile due to larger share of intermit-
tent renewables, and this will further increase the value
of considering uncertain prices. Having only one uncer-
tain variable does not fully utilize the potential of the
stochastic model in its current implementation where
both parameters can be described as uncertain. We ex-
pect the combination of inflow and price uncertainty to
further increase the added value of stochastic modelling.

7.3. Further work

A joint market formulation that accounts for the dif-
ferent electricity markets could be promising. The in-
stalled capacity for any given producer is a constraining
factor, even in cases where there is large flexibility for
the amount for available energy in the system. How to
develop consistent strategies for bidding into sequential
electricity markets could be an area of application for
the stochastic short-term model. In addition, inflow and
prices are often correlated. Methods for representing
correlated scenarios for inflow and price are therefore
of interest, and may further contribute to the application
of the stochastic model in practice. In a multiple market



setting, prices in additional electricity market must also
be adequately modelled. The SHARM model will be
further tested by the industry, both regarding cost bene-
fits and other application areas.

Appendix A.

In the following we derive how the produced amount
will be increased if the head of water increases because
of a higher reservoir level. We calculate this by dif-
ferenciation of Eq. (3) with respect on the reservoir
level. In this calculation, we treat the solution for all
variables as constants, given from the previous solution
of the model. Thus, this is a first-order approximation:

We define:
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max _ pmin
_ Eim Eim

max
X

Erest

best rest _im
(yim +yim E/,gst)dxim

im

(Epas — Epn)ELZ, .
= dx;, (Appendix A.1)

max
Xon

which gives equation (11).

2" = dzyy (Appendix A.2)
dXim = (Xim — Xim) (Appendix A.3)
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