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Abstract-- There is an increasing trend towards using the 

concept of risk assessment as an important tool in distribution 
system asset management. In an ongoing R&D project (RISK 
DSAM), the main objective is to investigate how information 
about risk exposure can improve maintenance and reinvestment 
decisions in an electrical distribution company. As the popularity 
of Bayesian Networks (BN) is increasing, the capacity of this 
methodology is being explored in the project.  The paper presents 
the BN framework and the link to risk based asset management 
of electrical distribution systems. Examples are included to 
illustrate the concept as well as a case study evaluating the risk of 
failure of an overhead line and its dependence of risk influencing 
factors such as maintenance intensity and environment.   
 

Index Terms-- Decision-making, Power distribution 
maintenance, Power distribution reliability, Risk analysis. 

I.  DISTRIBUTION SYSTEM ASSET MANAGEMENT 
HERE is an increasing trend towards using the concept of 
risk assessment as an important tool in distribution system 

asset management. Asset management is defined in [1] as 
“Systematic and coordinated activities and practices through 
which an organization optimally manages its assets, and their 
associated performance, risks and expenditures over their 
lifecycle for the purpose of achieving its organizational 
strategic plan”. Over the lifecycle, the distribution system 
assets and the overall distribution system are subjected to a 
variety of threats and uncertainties. Risk management is a 
suitable framework for addressing these challenges.  

Risk is defined as a combination of the frequency or 
probability, of occurrence and the consequence of a specified 
hazardous event [2]. Risk analysis attempts to answer three 
fundamental questions [3]: 

 
1. What can go wrong? 
2.  How likely is it to happen? 
3.  What are the consequences? 
 
The answer to the first question are the risk scenarios (S), 

describing the considered threats or hazards, while the answer 
to the second question is a probability statement regarding the 
different scenarios (p). 

The answer to the third question is a qualitative or 
quantitative description or evaluation of the consequences (C) 
of the different scenarios related to individuals, professionals,  
populations, property or the environment. 

Each risk scenario might hence be described by three 

parameters: <S,p,C> and the total risk picture is given by 
listing all risk scenarios with their associated probabilities and 
consequences. 

Risk scenarios can include threats or hazards, events and 
trends. Adverse weather, ageing overhead lines, overloading 
of components and lack of maintenance, are all examples of 
risk scenarios that might lead to faults in the system. Hence, 
understanding component failure mechanisms and how 
possible barriers (technology, maintenance, protection etc) 
influence the risk, are of great importance in asset 
management decision making. 

 In an ongoing R&D project (RISK DSAM1), the main 
objective is to investigate how information about risk 
exposure can improve maintenance and reinvestment 
decisions in a power distribution company. A risk 
management concept (flowchart) is developed to support the 
overall working process, and Bayesian Networks are explored 
in the project as a generic decision support methodology. 

The risk management concept and the application of BN 
are described in the following sections. The paper also 
includes some small examples and case studies that illustrate 
the possible application of BN to provide risk relevant 
parameters. 

II.  THE RISK DSAM RISK MANAGEMENT CONCEPT  
A generic flowchart for risk based distribution system 

management is given in Fig.1. The concept is largely based on 
combining distribution system planning concepts used by 
utilities for years and general risk management concepts 
described in standards like [1], [2] and[16].  

 
The flowchart consists of four main activities: 

 
1. Risk Study Planning 
2. Risk Scenario Identification 
3. Risk Modeling, Analysis and Decision Making 
4. Risk Communication  

 
The content of each activity is briefly described below. For 

further details see [4].  
 

                                                           
1 RISK DSAM is an R&D project funded by the Research Council of 

Norway, EdF and network companies. 
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Fig. 1.  A risk based distribution system management approach 

A.  Risk Study Planning 
This is largely a project planning activity identifying the 

motivation for the study, identifying the system to be studied, 
stakeholders involved, objectives and restrictions, and to 
decide on modeling ambition needed to fulfill the overall goal 
of the study in a cost effective way.  

B.  Risk Scenario Identification 
To perform risk management, a core activity is to identify 

the sources of risk, threats and uncertainties that might have 
harmful consequences. These hazards, when present, 
influence the distribution system and unwanted events with 
potential unwanted consequences. The hazard identification is 
supported by the historic track record and experience of the 
distribution system operator (DNO) as indicated in Fig.1.  

To evaluate the consequence of this unwanted event, it is 
necessary to identify the impact for all relevant stakeholders. 

The consequences might be classified in several ways. In 
the presented concept the following consequence categories 
are used: 
 

• Economy: Economic impact for the stakeholders 
involved 

• Safety: Occupational and public safety 
• Environment: Pollution, leakage etc. 
• Reputation: Branding and goodwill effects 
• Quality of supply: Interruptions, voltage quality 

impact 
• Contracts: Violation of contracts, regulations etc. 

 

C.  Risk Modeling, Analysis and Decision Making 
This main activity comprises: 

 
• The Risk Assessment i.e the overall process of risk 

analysis and risk evaluation 
• The Risk Treatment i.e. the process of selection and 

implementation of measures to modify risk 
• The Risk Acceptance i.e. the decision to accept the 

estimated risk being within the acceptable risk level 
for each risk criterion. 

D.  Risk Communication  
Risk communication is a parallel activity supporting the 

other  three activities  and serves the purpose of exchanging or 
sharing of information about risk between decision-makers 
and other stakeholders. 

III.  BAYESIAN NETWORKS SUPPORTING THE RISK 
MANAGEMENT CONCEPT  

Bayesian Networks constitute a modeling framework 
which has found applications in domains like, e.g., software 
reliability, fault finding systems, and general reliability 
modeling [5],[7],[9],[10],[11],[12],[13],[15]. As reliability 
modeling is an important part of the risk management concept, 
it is of interest to test the usefulness of BNs in distribution 
system risk management. BNs are more flexible than the 
traditional Fault Tree concept both in terms of modeling 
features and in the calculations scheme. BNs can model more 
complicated relationships between variables and do not 
require Boolean variables, but can support several variable 
types. BNs offer among others a compact presentation of the 
interactions in a stochastic system by visualizing system state 
variables and their dependencies.  

More specifically, the qualitative part of a BN consists of a, 
a directed acyclic graph where the nodes mirror the random 
variables, and the edges of the graph represents the 
conditional dependence between variables.  In a risk 
management context the sources of risk, the consequences, 
and the threats, all are random variables which might to some 
degree be dependent of each other.   

Bayesian Networks can be used to model and give decision 
support for large parts of distribution system asset 
management given in Fig.1. An example is given in Fig. 2:   
 
Sources of risk
(hazards/threats..)

Undesired events
(fault states…)

Consequences 

Support/intermediate variablesSources of risk
(hazards/threats..)

Undesired events
(fault states…)

Consequences 

Support/intermediate variables

 
 
Fig. 2.  Risk analysis modeled as a Bayesian Network 
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The oval shapes in the figure represent state variables and 
the arrows the causal relationships. The layers in the graph 
structure the variables in four main classes: 1) sources of risk 
variables used to describe hazards and threats for a 
component, group of components or a system; 2) unwanted 
events variables;  3) consequence variables describing 
possible unwanted effects of the risk scenarios; and 4) 
intermediate or support variables not directly fitting into the 
three other classes. 

Bayesian Networks are further described in the following 
section. 

IV.   BAYESIAN NETWORKS  
Bayesian Networks (BN) originated in the field of 

Artificial Intelligence, where it was used as a robust and 
efficient framework for reasoning with uncertain knowledge.  
BN constitute a modeling framework which is particularly 
easy to use in interaction with domain experts. A BN consists 
of two main parts:  
 

• A qualitative part – a directed acyclic graph  
• A quantitative part – a set of conditional probability 

functions 
 

Fig.3 gives an example of a small BN: 
 

Overhead line
fault

Adverse 
weather Overload

Long duration
outage

Overhead line
fault

Adverse 
weather Overload

Long duration
outage

 
 
Fig. 3.  Risk of overhead line outage. Example of a Bayesian Belief Network  

 
The BN model in Fig. 3 consists of four nodes which are 

explained below: 
 

1. {Adverse  weather} – a state variable giving the 
probability of adverse weather in the overhead line 
surroundings (snow, strong wind etc.) 

2. {Overload} – a state variable giving the probability 
of current overload with respect to the ampacity of 
the overhead line. 

3. {Overhead line fault} – a state variable giving the 
probability of an overhead line fault. 

4. {Long duration outage} – a state variable giving the 
probability of a long duration outage resulting from 
the overhead line fault. 

 
The arrows in the diagram represent dependencies between 

nodes – and can be interpreted as causal relationships. Hence 
the probability of an overhead line fault is dependent of the 

two parent states:  {Adverse weather} and {Overload}. (The 
example also indicates a causal relationship or correlation 
between {Adverse weather} and {Overload} which might be 
due to the fact that when adverse weather such as snow 
occurs, the load increases due to increased need for space 
heating, increasing the probability of line overload.  

The parents of any variable Xi is denoted: pa{Xi} , e.g.: 
 
pa{Overhead line fault} = {Adverse weather, Overload} 
 

The arrows in the graph represent the assertion that a 
variable is conditionally independent of its non-descendants 
given its parents in the graph. Hence, {Long duration outage} 
is conditionally independent of the variables {Adverse 
weather} and {Overload} given the variable {Overhead line 
fault}. 

The underlying assumptions of conditional independence 
encoded in the graph allow us to calculate the joint probability 
function as in (1): 
 

∏
=

=
n

i
ixpaixfxxf n

1
))(()( .....1  

 
(1) 

 
Hence, the conditional probability might be calculated, e.g. 

the probability of overhead line fault given the parents 
{Adverse weather, Overload}: 
 

f(Overhead line fault)|(Adverse weather, Overload) 
 

As stated in [5] one of the interesting properties of the BN 
framework is that it can be extended to represent decisions 
using so-called influence diagrams. The basis for the 
representation is utilities, which are quantified measures for 
preference. That is, a real number is attached to each possible 
scenario in question. Exploiting the probability updating of 
the BN framework, it is easy to calculate the expected utility 
for each decision option in a domain. The example given in 
Fig. 3 is expanded by introducing redundancy in terms of a 
second overhead line L2, feeding the load in parallel with the 
existing line L1. The utility of the expansion is evaluated by 
the expected costs of energy not supplied (CENS). The 
expanded BN model is shown in Fig. 4: 
 

Overhead line
Fault, L1

Adverse 
weather

Overload
L1

Long duration
outage

Overload
L2

Overhead line
Fault, L2

New line, L2

CENS

Overhead line
Fault, L1

Adverse 
weather

Overload
L1

Long duration
outage

Overload
L2

Overhead line
Fault, L2

New line, L2

CENS  
 
Fig.4.  Risk of overhead line outage. Example of a BN including decision 
node “New Line L2” and utility node “CENS”. Existing line is denoted L1. 
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The model given in Fig. 4 is entered into a BN tool2  with 
some sample data. For simplicity, all variables in the example 
are discrete two-state variables, i.e. yes/no-variable. In general 
BN allow both discrete multi state variables and to some 
extent continuous variables as shown in the case study 
presented later in the paper. 

The results based on the sample data are shown in Fig.5: 
 

Yes: 1.97
No: 98.03

Yes:  10.0
No:    90.0

Yes:    7.3
No:    92.7

Yes:  0.027
No:  99.973

Yes:      0.5
No:      99.5

Yes:  0.73
No:  99.27

New line, L2
Yes: 0.01066
No:   0

CENS

Yes: 1.97
No: 98.03

Yes:  10.0
No:    90.0

Yes:    7.3
No:    92.7

Yes:  0.027
No:  99.973

Yes:      0.5
No:      99.5

Yes:  0.73
No:  99.27

New line, L2
Yes: 0.01066
No:   0

CENS  
 
Fig. 5.  Risk of overhead line outage. Example of a BN with sample data  
 

The probabilities of the different variables are shown in the 
colored boxes, e.g. the probability of adverse weather is 10%. 
As {Adverse weather} has no parents, the probabilities shown 
for this node are the user input data. The utility of introducing 
a second overhead line is 0.01066 units compared to not 
introducing the new line. One unit is equal to 1 mill. NOK per 
year – the CENS reduction due to the introduction of a new 
line is approx. 11.000 NOK/year.  

V.  CASE STUDY   

A.  Introduction 
The study focuses on the calculation of the failure 

probability for a MV overhead line feeder, to assess the 
impact of different risk influencing factors, such as vegetation, 
age of the feeder, wind and maintenance strategy. For this 
purpose, a risk analysis is carried out using Bayesian 
Networks.  The variables are modeled based on available 
knowledge of the probability distribution for each random 
variable from historic fault statistics combined with expert 
judgment. The case study covers part of the overall concept 
presented in Fig.1 and illustrates some of the features of the 
BN method. 

B.  Modeling 
    1)  The Bayesian Belief Network: 

The Bayesian Belief Network studied is shown in Fig.6 : 

                                                           
2 Netica see.www.norsys.com 

 
Fig.6.  Overhead line model 
 

The top level represents the input variables (sources of risk 
variables). The mid level gives the intermediate variables of 
the network and the bottom level gives the output variable (the 
consequence variable). 

The values taken by the input variables are entered by the 
user depending on the type of overhead line (OHL), its age, its 
environment and if a reinforced maintenance strategy is 
carried out or not. 

The intermediate random variables depend on the values of 
the input variables and are the parents of the consequence 
variable - the failure probability density of the considered 
feeder in its environment. 
 
    2)  Random Variables Description: 

This section provides a discussion about the variables and 
the input information used in the case study. The random 
variables used are characterized in terms of: type (D=Discrete 
or C=Continuous). The features of variables used in the case 
study are summarized in Table I. 
 

TABLE I 
DESCRIPTION OF THE RANDOM VARIABLES  

 
Random 
Variables Type Possible Values 

Wood D Yes, 
No 

Wind D < 30km/h 
>30 km/h 

OHL D Family 1, 
Family 2 

Age D Young, < 37yrs 
Old > 37yrs 

Input 
Var. 

Reinforced
Maintenance D Yes, 

No 
Environ. 

Conditions C Index with possible values [0,6] 

Maintenance C Index with possible values [0,0.5] 
Studied 
feeder D Discrete table Inter. 

Var. 

Nominal 
Failure Rate C Range [0,1.3] faults/100km/yr 

Output 
Var. Failure C Range [0,10] faults/100km/yr  

 
 
 

Further details are given in the following tables: 
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          a)  Input random variables: 
The input variables, are set by the user and they are specific 

to the studied feeder (OHL & age), its location (wooded area 
& wind) and if a reinforced maintenance strategy is carried 
out or not. 

 
TABLE II  

FEATURES OF THE INPUT RANDOM VARIABLES  
 

Random 
Variables Remarks 

Wooded area 

Wood is set to Yes or No respectively if the feeder’s location 
is in a wooded area or not. 
Example : 30% of the OHL feeder is in a wooded area :  
P(Wood =Yes =30%) 
P(Wood =No =70%) 

Wind 

Depending on the yearly mean wind speed during one hour, if 
it is lower than 30 km/h or higher than 30 km/h  
the variable takes the value Inf 30 or Sup 30. 
Example. Localisation in a windy area – 40% of the length 
subjected to wind > 30 km/s :  
P(Wind=Inf 30)  =60% 
P(Wind=Sup 30)  =40% 

OHL 

MV Overhead Lines construction : 
Example: If 55% of the length of the feeder is of family 1 and 
the rest is of type family 2: 
P(OHL=Family1) =55% 
P(OHL=Family2) =45% 

Age 

If the feeder is older than 37 years then the variable is set to 
Old if not, it is set to Young. 
Example of a MV feeder where 80% is younger than 37 years:

%20%80 ==⇒== Old) P(Age Young) P(Age  

Reinforced 
Maintenance 

 

The variable is set to Yes, if Reinforced Maintenance has been 
carried out on the feeder else it is set to No. 
Example : Reinforced maintenance used at 30% length : 
P(Rein.Maint = Yes)  = 30% 
P(Rein.Maint = No)  = 70% 

 
          b)  Intermediate random variables: 

The intermediate random variables {Environment 
Conditions} and {Maintenance} correspond to a numerical 
coefficient (index) that impacts on the output variable’s 
probability density function. 
{System}acts as a reminder of the considered type of OHL 
and age whereas the {Nominal Failure Rate} gives the 
probability density function of the considered feeder without 
any external influence except ageing. 

As shown in the Table III, the parameters for the 
probability density function of the intermediate variables 
depend on the possible values of the parents nodes: 
 

TABLE III 
FEATURES OF THE INTERMEDIATE RANDOM VARIABLES  

 

Random 
Variables 

Parents 
 Node 

Conditional probability density function 
ode Value)Parents' Niate R.V./P(Intermed  

System Age, 
OHL 

Discrete table  

Nominal 
Failure Rate 

System 
)System,SSystemNormal (M  

Environment 
Wood, 
Wind ),, WindWood,SWindWoodNormal (M  

Maintenance Maint. 
)....  MainR,S MainRNormal (M  

The intermediate variables {Environment Conditions} and 
{Nominal Failure Rate} have been estimated based on 
experience feedback. For example, to model the “nominal 
failure rate” the following assumptions have been made:  
 
- a “material” failure rate has been defined as a function of 

the age of the component, based on recorded data-
experience feedback. The failure rate probability density 
function is modeled by a normal distribution shown in the 
Fig. 7 below. This ‘material’ failure rate corresponds to 
the intrinsic or nominal failure rate excluding external 
impact. 

- two categories of OHL have been considered based on 
failure rate recordings: Young OHL (< 37 years) and Old 
OHL (> 37 years) – see Fig.7 

 
 
 
 
 
 
 
 
 

 
 
 
 

 Material Failure Rate

0,10

0,30

0,50

0,70

0,90

1,10

1,30

[5;9] [10;14] [15;19] [20;24] [25;29] [30;34] [35;39] [40;44] [45;49]
A ge

Age splitting border: Normal Distribution 

Fig.7.  MV feeder material failure rate versus age 
 

The last intermediate random variable “Maintenance” is a 
continuous variable (see Table III) and is modeled based on 
expert judgment and experience. 
 
          c)  Output random variable: 

The output of the BN model is a continuous random 
variable which gives the failure rate probability density 
function of the OHL. This output variable depends on the 
values of the variables of its parents nodes. The conditional 
probability density function is assumed to be normal with the 
following mean value: 
 

].1[.. )nValue (Mai)Condv Value (EnSystemMeanMeanFailure −××=    (2)

 
• MeanSystem is a static value which depends on the 

feeder, each feeder has its own. 
• Value(Env.Cond) and Value(Main.) and  are the 

index values of the random variables {Environment } 
and{Maintenance}. 

 
The result is a normal distribution whose mean value 

depends on normal distributed random variables. 
The output random variable reflects the combination of all 

the risk influencing factors for the MV overhead line feeder:  
external factors (wind and wood), the intrinsic vulnerability of 
the components and the effect of reinforced maintenance. 
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C.  Results and Applications 
The BN model previously described has been used to study 

how the failure rate of a MV overhead line feeder may vary, 
by varying the values of the input variables. Two analyses 
have been performed. The first analysis has been focused on 
studying how changes in environmental conditions may affect 
the failure rate of the component. The second analysis has 
been focused on changes in the intrinsic characteristics of the 
line. 

 
    1)  Influence of the wind and wooded area on the failure 
rate: 

It has been assumed that the feeder under study is a young 
feeder of type 1 where no reinforced maintenance has been 
done. Three scenarios regarding the environmental conditions 
(wood and wind)  have been defined: 
 

TABLE IV 
SCENARIOS  

 
Scenario Wood Wind 

1 Yes = 0% Inf 30 =100% 
2 Yes = 50% Inf 30 =50% 
3 Yes = 100% Inf 30 =0% 

 
For each scenario, the failure rate’s probability density has 

been estimated. An output example from the BN estimation is 
given in Fig. 8: 
  

 
 
Fig. 8.  Failure rate probability density Scenario 2  
 

The main results are given in Table V. 
  

TABLE V 
RESULTS –FAILURE RATE EXPECTATION VALUES AND VARIANCE  

 
Scenario Mean Variance 

1 0,587 0.173 
2 1.160 0.543 
3 1.855 0.216 

  
Being subjected to a more severe environment (scenario 3) 

compared to a more favorable environment (scenario 1), the 
risk in terms of failure rate more than triples. 

The failure rate expectation value for scenario 2 has the 
largest uncertainty in terms of variance.  
 
    2)  Influence of the external factors on the failure rate: 

Consider an OHL feeder in a given environment, with 
partial reinforced maintenance specified as follows: 

 
Wood Wind OHL Age Reinforced  

Maintenance 
Yes = 50% 
No = 50% 

Inf 30 = 70% 
Sup 30 = 30% 

Family 1 = 50% 
Family 2 = 50% 

Young = 85% 
Old = 15% 

Yes = 40% 
No = 60% 

 
When comparing results for the node {nominal failure rate} 

in the Bayesian Network given in Fig. 6 with the node  
{failure}, one can judge the influence of the external factors 
such as wind, wood, and the maintenance strategy, see Fig. 9: 

 

 

Mean: 0.538     Variance: 0.2050 
Nominal Failure Rate 

Mean:0.933     Variance: 0.527 
Failure Rate 

 
Fig. 9.  Comparison of failure rate densities 
 

The close to doubling of the failure rate from 0.538 
faults/100km/year to 0.933 faults/100km/year is the net 
impact  of the external environment and the applied 
maintenance strategy.  

As illustrated, the BN model used in the case study allows 
for detailed studies of impact of various parameters on the risk 
in terms of failure rates which in term will be important input 
to asset management decisions. 

VI.  ADVANTAGES/DRAWBACKS OF BN IN DISTRIBUTION 
SYSTEM ASSET MANAGEMENT  

BNs have a great potential for application in asset 
management of distribution systems. The main advantage of 
this methodology is that it allows its users to describe all 
elements of the ‘risk’ picture like in well as they can imagine 
it. As illustrated in the examples in this paper, BNs can be 
used at an aggregated decision level as the example shown in 
Fig. 4 or at a very detailed level as shown in the case study. 
The method has the power of combining statistical data and 
expert judgments in deriving the estimates of system condition 
and performances, but also to simulate what can happen to a 
system in the future. 

The method allows for the definition of the most critical 
factors for the problem at hand, and models how the 
combination of these influencing factors leads to various 
(unwanted) events and consequences.  

The information provided by BNs can be used in decision 
making for distribution system asset management both as a 
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low level tool in the overall risk management concept or at a 
high level including decisions and costs/utilities directly in the 
BN model. 

Scenario analysis is a very popular decision support tool in 
many organizations. Using BN, scenarios with probabilities 
can be defined by varying for example the input probabilities 
of critical risk factors for a system under study.  

BNs can also be used in maintenance strategy making for 
groups of components. For example, when developing a 
maintenance strategy for coastal overhead lines, 
‘standardized’ BNs can be constructed to account for the risk 
factors common to this type of components: salt pollution, 
wind, age of the overhead line, etc.  

In addition, the BN approach can be used to improve the 
analysis of how combinations of different undesirable events 
(e.g. poor asset condition/asset ageing, severe weather events, 
fire, human error, geographical factors, etc), can contribute to 
unwanted consequences on the economics, environment, 
safety, security, quality of supply or on the reputation of a 
company.  

Some if not all of these criteria are inherently uncertain, 
being influenced by risk factors that often cannot be 
controlled by the decision maker. BN is an important tool here 
because it offers means for handling this uncertainty. Future 
work will focus on applications of the BN approach together 
with other decision support techniques such as those in the 
category of Multi-Criteria Decision Aid (MCDA). 

There are however several drawbacks concerning the use of 
BN in practice, by asset managers. Building BNs using 
statistical data or expert opinion can be both difficult and time 
consuming [5]. A BN model building comprises several steps: 
1) decide what to model; 2) define variables; 3) define 
probabilities and the conditional relationships between the 
model components; 4) verify the model. This is typically an 
exercise that may require the intervention of a BN expert that 
guides the model building, asks relevant questions, and 
explains the assumptions that are encoded in the model to 
asset managers.  

Particularly difficult when building up BNs is to decide 
what probability data to use. In the example in section V 
probability density functions have been used which implied: 

 
• a choice of the probability distributions fitted to each 

physical phenomena: Normal, Weibull. 
• Include probability information from expert judgment by 

choosing the appropriate probability distributions even if 
the information is not complete. 

VII.  CONCLUSION  
This paper discusses the use of BN as a relevant tool for 

risk assessment in distribution systems asset management. The 
method gives decision makers a good visualization of 
relationships between risk influencing factors, system states 
and risk consequences (variables in the graph) as well as 
offering statistical estimation of the variables included. Hence, 
in general it contributes to estimation of the answers of the 

three fundamental questions of the risk analysis: 
 
1. What can go wrong? 
2.  How likely is it to happen? 
3.  What are the consequences? 

 
The examples and case study included, illustrates the 

relevance of the method in distribution system asset 
management when risk is involved.  
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