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Abstract:  The proposed method is similar to the Ziegler-Nichols (1942) tuning method, but it is faster to 
use and does not require the system to approach instability with sustained oscillations. The method 
requires one closed-loop step setpoint response experiment using a proportional only controller with gain 
Kc0. Based on simulations for a range of first-order with delay processes, simple correlations have been 
derived to give PI controller settings similar to those of the SIMC tuning rules (Skogestad, 2003). The 
controller gain (Kc/Kc0) is only a function of the overshoot observed in the setpoint experiment whereas 
the controller integral time (τI) is mainly a function of the time to reach the peak (tp). Importantly, the 
method includes a detuning factor F that allows the user to adjust the final closed-loop response time and 
robustness. The proposed tuning method, originally derived for first-order with delay processes, has been 
tested on a wide range of other processes typical for process control applications and the results are 
comparable with the SIMC tunings using the open-loop model. 
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1. INTRODUCTION 

 
The proportional integral (PI) controller is widely used in the 
process industries due to its simplicity, robustness and wide 
ranges of applicability in the regulatory control layer. On the 
basis of a survey of more than 11 000 controllers in process 
industries, Desborough and Miller (2002) have reported that 
more than 97% of regulatory controllers utilise the PID 
algorithm. A recent survey (Kano and Ogawa; 2009) from 
Japan shows that the ratio of applications of PID control, 
conventional advanced control (feedforward, ratio, valve 
position control, etc.) and model predictive control is about 
100:10:1. In addition, the vast majority of the PID controllers 
do not use derivative action. Even though the PI controller 
only has two adjustable parameters, they are often poorly 
tuned. One reason is that quite tedious plant tests may be 
needed to obtain improved controller setting. The objective of 
this paper is to derive a method which is simpler to use than 
the present ones.  

To obtain the information required for tuning the controller 
one may use open-loop or closed-loop plant tests. Most 
tuning approaches are based on open-loop plant information; 
typically the plant’s gain (k), time constant (τ) and time delay 
(θ). One popular approach is direct synthesis (Seborg et al., 
2004) which includes the IMC-PID tuning method of Rivera 
et al. (1986). The original direct synthesis approaches give 
very good performance for setpoint changes but give sluggish 
responses to input (load) disturbances for lag-dominant 
(including integrating) processes with τ/θ larger than about 
10. To improve load disturbance rejection, Skogestad (2003) 
proposed the modified SIMC method where the integral time 
is reduced for processes with a large value of the time 
constant τ. The SIMC rule has one tuning parameter, the 
closed-loop time constant τc, and for “fast and robust” control 

is recommended to choose τc= θ, where θ is the (effective) 
time delay. However, these approaches require that one first 
obtains an open-loop model of the process. There are two 
problems here. First, an open-loop experiment, for example a 
step test, is normally needed to get the required process data. 
This may be time consuming and may upset the process and 
even lead to process runaway. Second, approximations are 
involved in obtaining the process parameters (e.g., k, τ and θ) 
from the data.  
 
The main alternative is to use closed-loop experiments. One 
approach is the classical method of Ziegler-Nichols (1942) 
which requires very little information about the process. 
However, there are several disadvantages. First, the system 
needs to be brought its limit of instability and a number of 
trials may be needed to bring the system to this point. To 
avoid this problem one may induce sustained oscillation with 
an on-off controller using the relay method of Åström and 
Hägglund, (1984). However, this requires that the feature of 
switching to on/off-control has been installed in the system. 
Another disadvantage is that the Ziegler-Nichols (1942) 
tunings do not work well on all processes. It is well known 
that the recommended settings are quite aggressive for lag-
dominant (integrating) processes (Tyreus and Luyben, 1992) 
and quite slow for delay-dominant process (Skogestad, 
2003). A third disadvantage is of the Ziegler-Nichols (1942) 
method is that it can only be used on processes for which the 
phase lag exceeds -180 degrees at high frequencies. For 
example, it does not work on a simple second-order process. 
 
Therefore, there is need of an alternative closed-loop 
approach for plant testing and controller tuning which avoids 
the instability concern during the closed-loop experiment, 
reduces the number of trails, and works for a wide range of 
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processes. The proposed new method satisfies the above 
concerns: In summary, the proposed method is simpler in use 
than existing approaches and allows the process to be kept 
under closed-loop control.  
 
An obvious alternative to the proposed method is a two-step 
procedure where one first identifies an open-loop model from 
the closed-loop setpoint experiment, and then obtains the PI 
or PID controller using standard tuning rules (e.g., the SIMC 
rules of Skogestad, 2003). This approach was used by 
Yuwana and Seborg (1982). We found that this two-step 
approach gives result comparable or slightly inferior 
(Shamsuzzoha and Skogestad, 2010) to the more direct 
approach proposed in this paper by using the SIMC method. 
In addition, the proposed approach avoids the extra step of 
obtaining the process parameters (k, τ, θ) and is therefore 
simpler to use.     

2. SIMC PI TUNING RULES 

In process control, a first-order process with time delay is a 
common representation of the process dynamics: 

-θske
g(s)=

τs+1
                                                                              (1) 

Here k is the process gain, τ the dominant lag time constant 
and θ the effective time delay. Most processes in the 
chemical industries can be satisfactorily controlled using a PI 
controller:  

( ) c
I

1
c s =K 1+

τ s
 
 
 

                                                                      (2)          

The PI controller has two adjustable parameters, the 
proportional gain Kc and the integral time τI. The ratio 
KI=Kc/τI is known as the integral gain. 
The SIMC tuning rule is widely used in the process industry 
and for the process in Eq. (1) is given as:   

( )c
c

τ
K =

k τ +θ
                                                                          (3) 

{ }I cτ =min τ, 4(τ +θ)                                                                 (4)                          

Note that the original IMC tuning rule (Rivera et al., 1986) 
always uses τI = τ, but the SIMC rule increases the integral 
contribution for close-to integrating processes (with τ large) 
to avoid poor performance (slow settling) to load disturbance. 
There is one adjustable tuning parameter, the closed-loop 
time constant (τc), which is selected to give the desired trade-
off between performance and robustness. Initially, this study 
is based on the “fast and robust” setting τc =θ, which gives a 
good trade-off between performance and robustness. In terms 
of robustness, this choice gives a gain margin is about 3 and a 
sensitivity peak (Ms-value) of about 1.6. On dimensionless 
form, the SIMC tuning rules with τc = θ become 

'
c c

τ
K =kK =0.5

θ
                                                                      (5) 

' c
I

I

kK 1 τ
K = =max 0.5,

τ θ 16 θ
 
 
 

                                                        (6)                                                                                                 

The dimensionless gains Kc΄ and KI΄ are plotted as a function 
of τ/θ in Fig. 1. We note that the integral term (KI΄) is most 
important for delay dominant processes (τ/θ<1), while the 
proportional term Kc΄ is most significant for processes with a 
smaller time delay. These insights are useful for the next step 
when we want to derive tuning rules based on the closed-loop 
setpoint response.  

3. CLOSED-LOOP EXPERIMENT 
               
As mentioned earlier, the objective is to base the controller 
tuning on closed-loop data. The simplest closed-loop 
experiment is probably a setpoint step response (Fig. 2) 
where one maintains full control of the process, including the 
change in the output variable. The simplest to observe is the 
time tp to reach the (first) overshoot and its magnitude, and 
this information is therefore the basis for the proposed 
method. 
We propose the following procedure: 

1. Switch the controller to P-only mode (for example, 
increase the integral time τI to its maximum value or set the 
integral gain KI to zero). In an industrial system, with 
bumpless transfer, the switch should not upset the process.  

2. Make a setpoint change that gives an overshoot between 
0.10 (10%) and 0.60 (60%); about 0.30 (30%) is a good 
value. Record the controller gain Kc0 used in the experiment. 
Most likely, unless the original controller was quite tightly 
tuned, one will need to increase the controller gain to get a 
sufficiently large overshoot.  

Note that small overshoots (less than 0.10) are not considered 
because it is difficult in practice to obtain from experimental 
data accurate values of the overshoot and peak time if the 
overshoot is too small. Also, large overshoots (larger than 
about 0.6) give a long settling time and require more 
excessive input changes. For these reasons we recommend 
using an “intermediate” overshoot of about 0.3 (30%) for the 
closed-loop setpoint experiment.    

3. From the closed-loop setpoint response experiment, obtain 
the following values (see Fig. 2): 

• Fractional overshoot, (∆yp - ∆y∞) /∆y∞ 
• Time from setpoint change to reach peak output 

(overshoot), tp  
• Relative steady state output change, b = ∆y∞/∆ys. 

Here the output variable changes are:  
           ∆ys: Setpoint change 
           ∆yp: Peak output change (at time tp) 
           ∆y∞: Steady-state output change after setpoint step test 

To find ∆y∞ one needs to wait for the response to settle, 
which may take some time if the overshoot is relatively large 
(typically, 0.3 or larger). In such cases, one may stop the 
experiment when the setpoint response reaches its first 
minimum and record the corresponding output, ∆yu.  
∆y∞ = 0.45(∆yp + ∆yu)                                                          (7)  
 

4. CORRELATION BETWEEN SETPOINT RESPONSE 
AND SIMC-SETTINGS 

 
The objective of this paper is to provide a more direct 
approach similar to the Ziegler-Nichols (1942) closed-loop 
method. Thus, the goal is to derive a correlation, preferably 
as simple as possible, between the setpoint response data 
(Fig. 2) and the SIMC PI-settings in Eq. (3) and (4), initially 
with the choice τc=θ. For this purpose, we considered 15 first-
order with delay models g(s)=ke-θs/(τs+1) that cover a wide 
range of processes; from delay-dominant to lag-dominant 
(integrating):  
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τ/θ=0.1,0.2,0.4,0.8,1.0,1.5,2.0,2.5,3.0,7.5,10.0,20.0,50.0,100 

Since we can always scale time with respect to the time delay 
(θ) and since the closed-loop response depends on the 
product of the process and controller gains (kKc) we have 
without loss of generality used in all simulations k=1 and 
θ=1. 

'
cK

'
IK

τ θ

Iτ τ= I 8τ θ=

 
Fig. 1. Scaled proportional and integral gain for SIMC tuning rule.       
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Fig. 2. Closed-loop step setpoint response with P-only control. 
 
For each of the 15 process models (values of τ/θ), we 
obtained the SIMC PI-settings (Kc and τI) using Eqs. (3) and 
(4) with the choice τc=θ. Furthermore, for each of the 15 
processes we generated 6 closed-loop step setpoint responses 
using P-controllers that give different fractional overshoots. 

Overshoot= 0.10, 0.20, 0.30, 0.40, 0.50 and 0.60 

In total, we then have 90 setpoint responses, and for each of 
these we record four data: the P-controller gain Kc0 used in 
the experiment, the fractional overshoot, the time to reach the 
overshoot (tp), and the relative steady-state change, b = 
∆y∞/∆ys.  

Controller gain (Kc). We first seek a relationship between 
the above four data and the corresponding SIMC-controller 
gain Kc. Indeed, as illustrated in Fig. 3, where we plot kKc 
(SIMC PI-controller for the corresponding process) as a 
function of kKc0 for the 90 setpoint experiments, the ratio 
Kc/Kc0 is approximately constant for a fixed value of the 
overshoot, independent of the value of τ/θ. Thus, we can 
write 

c

c0

K
=A

K
                                                                                 (8) 

where the ratio A is a function of the overshoot only. In Fig. 
4 we plot the value of A, which is obtained as the best fit of 
the slopes of the lines in Fig. 3, as a function of the 
overshoot. The following equation (solid line in Fig. 4) fits 
the data in Fig. 3 well,  
A=[1.152(overshoot)2 -1.607(overshoot)+1.0]                    (9) 
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Fig. 3. Relationship between P-controller gain kKc0 used in 
setpoint experiment and corresponding SIMC controller gain 
kKc.   

Actually, a closer look at Fig. 3 reveals that a constant slope, 
use of Eq.(8) and (9), only fits the data well for Kc΄=kKc 
greater than about 0.5. Fortunately, a good fit of the 
controller gain Kc is not so important for delay-dominant 
processes (τ/θ<1) where Kc΄<0.5, because we recall from the 
discussion of the SIMC rules (Fig. 1) that the integral gain KI 
is more important for such processes. This is discussed in 
more detail below. 

Integral time (τI). Next, we want to find a simple correlation 
for the integral time. Since the SIMC tuning formula in Eq. 
(4) uses the minimum of two values, it seems reasonable to 
look for a similar relationship, that is, to find one value (τI1 

=τ) for processes with a relatively large delay, and another 
value (τI2 =8θ) for processes with a relatively small delay 
including integrating processes. 

(1) Process with relatively large delay. For processes with a 
relatively large delay τ/θ<8 or θ>τ/8, the SIMC-rule is to use 
τI = τ. Inserting τ = τI into the SIMC rule for Kc in Eq. (5) and 
solving for τI gives:  

I1 cτ =2kK θ                                                                           (10) 
As just mentioned, for processes with a relatively large delay 
it is the integral gain KI=Kc/τI that matters most (Fig. 1) and 
to avoid that any error in Kc originating from our correlation 
Eq.(8) propagates into KI, we should in Eq. (10) use Kc = 
Kc0A, where A is given as a function of the overshoot in Eq. 
(9). In (10), we also need the value of the process gain k, and 
to this effect write  
kKc= kKc0.Kc/ Kc0                                                               (11) 
Here, the value of the loop gain kKc0 for the P-control 
setpoint experiment is given from the value of b: 
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Fig. 4. Variation of A with overshoot using data (slopes) 
from Fig. 3. 
 
To prove this, the closed-loop setpoint response is ∆y/∆ys = 
gc/(1+gc) and with a P-controller with gain Kc0, the steady-
state value is ∆y∞/∆ys = kKc0/(1+kKc0)=b and we derive 
Eq.(12). The absolute value is included to avoid problems if 
b>1, as may occur for an unstable process or because of 
inaccurate data. 
In summary, we have derived following expression for τI for 
a delay-dominant process:  

( )I1
b

τ =2A θ
1-b

                                                                     (13)    

One could obtain the effective time delay θ directly from the 
closed-loop setpoint response, but this is generally not easy. 
Fortunately, as shown in Fig. (5), there is a reasonably good 
correlation between θ and the setpoint peak time tp which is 
easier to observe. For processes with a relatively large time 
delay (τ/θ<8), the ratio θ/tp varies between 0.27 (for τ/θ= 8 
with overshoot=0.1) and 0.5 (for τ/θ=0.1 with all overshoots). 
For the intermediate overshoot of 0.3, the ratio θ/tp varies 
between 0.32 and 0.50. A conservative choice would be to 
use θ=0.5tp because a large value increases the integral time. 
However, to improve performance for processes with smaller 
time delays, we propose to use θ=0.43tp which is only 14% 
lower than 0.50 (the worst case).   
In summary, we have for process with a relatively large time 
delay:  

( )I1 p
b

τ =0.86 A t
1-b

                                                                (14)  

(2) Process with relatively small delay. For a lag-dominant 
(including integrating) process with τ/θ>8 the SIMC rule 
gives  
τI2=8θ                                                                                  (15)  
For τ/θ>8 we see from Fig. (5) that the ratio θ/tp varies 
between 0.25 (for τ/θ=100 with overshoot=0.1) and 0.36 (for 
τ/θ=8 with overshoot 0.6). We select to use the average value 
θ= 0.305tp which is only 15% lower than 0.36 (the worst 
case). Also note that for the intermediate overshoot of 0.3, the 
ratio θ/tp varies between 0.30 and 0.32. In summary, we have 
for a lag-dominant process  

I2 pτ =2.44t                                                                             (16) 

Conclusion. The integral time τI is obtained as the minimum 
of the above two values:  

( )I p p
b

τ =min 0.86A t , 2.44t
1-b

 
 
 
 

                                             (17) 
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Fig. 5. Ratio between delay and setpoint overshoot peak time 
(θ/tp) for P-only control of first-order with delay processes 
(solid lines); Dotted lines: values used in final correlations. 
 

5. ANALYSIS AND SIMULATION 
 
Closed-loop simulations have been conducted for 7 different 
processes and the proposed tuning procedure provides in all 
cases acceptable controller settings with respect to both 
performance and robustness. For each process, PI-settings are 
obtained based on step response experiments with three 
different overshoot (around 0.1, 0.3 and 0.6) and are 
compared with the SIMC settings. 

The closed-loop performance is evaluated by introducing a 
unit step change in both the set-point and load disturbance i.e, 
(ys=1 and d=1). To evaluate the robustness, the maximum 
sensitivity, Ms, defined as sM =max 1/[1+gc(iω)] , is used. 

Since Ms is the inverse of the shortest distance from the 
Nyquist curve of the loop transfer function to the critical 
point (-1, 0), a small Ms-value indicates that the control 
system has a large stability margin.  

The results for the 7 example processes, which include the 
different types of the process mainly stable, integrating and 
unstable plant dynamics, are listed in Table 1.  
All results are without detuning (F=1). The complete 
simulation results with additional examples are available in a 
technical report (Shamsuzzoha and Skogestad, 2010). As 
expected, when the method is tested on first-order plus delay 
processes, similar to those used to develop the method, the 
responses are similar to the SIMC-responses, independent of 
the value of the overshoot. Typical cases are E1, E2 (pure 
time delay) and E3 (integrating with delay); see Figs. 6-8.  

For models that are not first-order plus delay (typical cases 
are E4, E5 and E6, see Fig. 9 for E6 only), the agreement 
with the SIMC-method is best for the intermediate overshoot 
(around 0.3). A small overshoot (around 0.1) typically give 
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"slower" and more robust PI-settings, whereas a large 
overshoot (around 0.6) gives more aggressive PI-settings. In 
some sense this is good, because it means that a more 
"careful" step response results in more "careful" tunings. 
Also note that the user always has the option to use the 
detuning factor F to correct the final tunings. Case E7 (Fig. 
10) illustrates that the method works well for a simple 
unstable process with delay.  
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Fig. 6. Responses for PI-control of (5 1)sg e s−= +  (E1). 
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Fig. 7 Responses for PI-control of sg e−=  (E2). 
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Fig. 8. Responses for PI-control of sg e s−=  (E3). 
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Fig. 9. Responses for PI-control of ( )21 1g s s = +  

 (E6). 
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Fig. 10. Responses for PI-control of (5 1)sg e s−= −  (E7).  
 

6. CONCLUSION 
 
A simple and new approach for PI controller tuning has been 
developed. It is based on a single closed-loop setpoint step 
experiment using a P-controller with gain Kc0. The PI-
controller settings are then obtained directly from following 
three data from the setpoint experiment:  

• Overshoot, (∆yp - ∆y∞) /∆y∞ 
• Time to reach overshoot (first peak), tp  
• Relative steady state output change, b = ∆y∞/∆ys. 

If one does not want to wait for the system to reach steady 
state, one can use the estimate ∆y∞ = 0.45(∆yp + ∆yu). 
The proposed tuning formulas for the proposed “Setpoint 
Overshoot Method” method are: 

c c0K = K A F                                                                                                                 

( )I p p
b

τ =min 0.86A t , 2.44t F
1-b

 
 
 
 

                                                                                   

where, 2A= 1.152(overshoot)  - 1.607(overshoot) + 1.0 
    

The factor F is a tuning parameter and F=1 gives the “fast 
and robust” SIMC settings corresponding to τc=θ. To detune 
the response and get more robustness one selects F>1, but in 
special cases one may select F<1 to speed up the closed-loop 
response.  
The Setpoint Overshoot Method works well for a wide 
variety of the processes typical for process control, including 
the standard first-order plus delay processes as well as 
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integrating, high-order, inverse response, unstable and 
oscillating process.  

We believe that the proposed method is the simplest and 
easiest approach for PI controller tuning available and should 
be well suited for use in process industries.  
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( )5 1

se
s

−

+
 

2.75 0.10 3.60 0.733 2.338 7.240 1.50 
4.0 0.298 3.049 0.80 2.494 6.538 1.56 
5.75 0.599 2.705 0.852 2.592 6.030 1.60 
SIMC - - - 2.50 5.0 1.59 

E2 se−  0.10 0.10 2.0* 0.091 0.085 0.146 1.60 
0.30 0.30 2.0 0.231 0.187 0.321 1.53 
0.60 0.60 2.0 0.270 0.465 0.375 1.59 
SIMC - - - kc/τI=0.50 1.59 

E3 se
s

−

 
0.59 0.108 3.976 1.0 0.495 9.702 1.67 
0.80 0.302 3.282 1.0 0.496 8.008 1.70 
1.10 0.60 2.909 1.0 0.496 7.098 1.72 
SIMC - - - 0.50 8.0 1.70 

E4 ( ) ( )( )
( ) ( )

2 2

22

2 9 2 1 1 e

0.5 1 5 1

ss s s s

s s s

−+ + − + +

+ + +

 0.07 0.112 18.132 0.387 0.058 8.198 1.46 
0.12 0.301 15.043 0.519 0.074 8.667 1.61 
0.18 0.583 13.71 0.618 0.082 8.684 1.70 
SIMC - - - - - - 

E5 
( ) ( )

1
1 0.2 1s s+ +

 5.0 0.127 0.710 0.833 4.074 1.732 1.33 
15.0 0.322 0.393 0.937 9.031 0.958 1.74 
40.0 0.508 0.230 0.976 19.23 0.561 2.62 
SIMC - - - 5.5 0.80 1.56 

E6 

( )2
1

1s s +
 

0.32 0.106 8.985 1.0 0.270 21.923 1.51 
0.58 0.307 6.188 1.0 0.357 15.10 1.75 
1.15 0.610 4.492 1.0 0.516 10.961 2.30 
SIMC - - - 0.330 12.0 1.76 

E7 

( )5 1

se
s

−

−
 

3.10 0.10 4.647 1.476 2.636 10.54 2.12 
4.0 0.30 3.671 1.333 2.487 7.852 2.33 
5.30 0.607 3.164 1.233 2.379 6.475 2.67 
SIMC - - - - - - 

 

Table 1: PI controller setting for proposed method and comparison with SIMC method (τc=θeffective) 
 

* For the pure time delay case (E4) use the end time of the peak (or add a small time constant to get tp in simulation).  
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