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Offline rendering five years ago

Shrek (Dreamworks/PGI)
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Interactive Rendering five years ago

Quake 3 (id Software)
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Offline Rendering today

Madagascar (Dreamworks/PGI)
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Interactive Rendering today

Project Gotham Racing
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Enter the GPU

This is because of the Graphical Processing Unit(GPU)

Fall 2002: Intel Pentium IV

3.06 GhZ

Fall 2007: Intel Core 2 Ext.

4× 3.00GhZ
582 million transistors
(Follows Moores Law)

Fall 2002: Nvidia GeForce 4

250 MhZ

Fall 2007: Nvidia Geforce 8

1.35 GhZ
680 million transistors
(Follows Moores Law)
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The PC of 2007

4 core CPU

96 Gflops(peak)
7750,- NOK

GPU

330 Gflops (observed)
4299,- NOK

Interconnects

1 GiB/s CPU ↔ GPU
21 GiB/s CPU ↔ system memory (peak)
55.2 GiB/s GPU ↔ graphics memory (observed)

It is quite clear where performance is located.
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Outline

1 Capabilities of GPUs

2 GPU Programming

3 Successful Applications
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Why are GPUs fast?

Traditional CPU designs use ≈ 50% of transistors for cache
and control logic, not computations

The nature of GPUs makes it easier to use additional
transistors for computation
This comes at the cost of flexibility

CPU industry is moving from “instructions per second” to
“instructions per watt”

“Power wall” is now all important
We can not scale voltage like we used to
We can not scale clock as we used to

Video game market drives innovation
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Characteristics of a GPU

Nvidia G80 - Released fall 2006

128 Stream Processors

Fused Multiply And Add
Trigonometric functions in once cycle
(almost) IEEE 754 Single-precision (32 bit)
Scalar processor

Core clock up to 1.35GhZ

Up to 2GiB Memory

680 million transistors

Two can be run in parallel

≈ 300 Watt (under load) → ≈ 1.1 Flops/Watt

≈ 0.7 Flops/Watt for Quad core CPU
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Floating point on GPUs (as of 2007)

Only 32-bit (single precision)

Announced 64-bit precision at half speed
Possible remedy: Correction steps in 64-bit precision

Lacks denormalized numbers

Lacks signalling of NaNs

Rounding mode can not be changed

Lower precision for division and square root

Floating point → integer conversion not fully IEEE-754
compliant
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Nvidia G80 block diagram

Very little of this is graphic specific

...but, assumes threads are independent
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Limitations of GPUs

If the GPU is so great, why are we still using the CPU?
You can not simply “port” existing code and algorithms!

Data-stream mindset required

Parallel algorithms
New data structures (dynamic data structures are troublesome)

Not suitable to all problems

Pointer chasing impossible or inefficient
Recursion

Debugging is hard

Hardware is designed without debug bus
Driver is closed

Huge performance cliffs

No standard API

More about this later...
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“Hyper-Core” computers

Speculation about the computer of the next decade:

10s of CPU cores

Use for scheduling
Use for “irregular” part of problem
Maybe higher precision (correction steps)

100s of GPU cores

Use for “regular” part of problem

NUMA (Non-Uniform Memory Access) for both

Programming languages must expose this
Runtime systems?
Always out-of-(some)-core

Clusters of these?

OpenMP/MPI not sufficient
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GPU Programming

GPUs have traditionally been closed architectures.

Must program them through closed-source graphics driver
Driver is like an OS (threads, scheduling, protected memory)

OpenGL/DirectX are standard, but

Designed for graphics, not general purpose computations
Many revisions of each standard

New revisions for each HW-generation

Allows for “capabilities”
Large variations between vendors

Both vendors now have dedicated GPGPU APIs

Nvidia CUDA (Compute Unified Device Architecture)
AMD CTM (Close To Metal)

GPGPU “version” of hardware as well
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Computer graphics 101

CPU

Geometry

Rasterize

Shade pixels

Display

Pre-2007: Hardware mimicked graphics APIs

It is possible to formulate many problems in
this framework

Uses graphics APIs
“Classical GPGPU”

DO NOT DO THIS ANYMORE!
(Unless for graphics)
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Nvidia CUDA (Compute Unified Device Architechure)

C-like API for programming newer Nvidia GPUs

Computation kernels are written in C

Compiles with dedicated compiler, nvcc

Kernels are executed as threads, threads organized into blocks

Programmer decides #threads, #threads/block, and
mem/block

Exposes different kinds of memory

Thread-local (register)
Shared per block
Global (not cached, write everywhere)
Texture (cached read only memory)
Constant(cached read only memory)

Some synchronization primitives

cudaMalloc, cudaMemcpy for allocating and copying
memory
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Properties of APIs

Vendor Specific Portability

F
le

xi
b

ili
ty Nvidia CUDA

AMD CTM

Shading Languages

Fixed Function
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Hyperbolic Conservations Laws

Most high-resolution schemes for conservations laws are
explicit

Explicit schemes are embarrassingly (pleasantly?) parallel

Algorithm is numerically stable, suitable for single-precision

Complex schemes → High number of arithmetic operations
per memory operation

Finite speed of wave propagation → Easy to decompose
computational domain into subdomains

Overcomes lack of memory on GPUs
Obvious potential for cluster implementations
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Hyperbolic Conservations Laws Cont.

Scheme with low arithmetic intensity

Grid size CPU ms1 GPU ms Speedup

128× 128 2.22 0.23 9.5
256× 256 9.09 0.46 19.8
512× 512 37.10 1.47 25.2

1024× 1024 1248.00 5.54 26.7

Scheme with high arithmetic intensity

Grid size CPU ms GPU ms Speedup

128× 128 30.6 1.27 24.2
256× 256 122.0 4.19 29.1
512× 512 486.0 16.80 28.9

1024× 1024 2050.0 68.30 30.0

1Per time step
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3D Euler Equations

Images show a circular explosion inside a cubic container

Runtimes per time step in seconds of the Rayleigh-Taylor
instability on a N × N × N grid.

Grid Size CPU ms GPU ms Speedup

493 5.23e-1 4.16e-2 12.6
643 1.14e-0 8.2e-2 13.9
813 1.98e-0 1.72e-1 11.5
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Matrix Multiplication
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Single Pass Multi Pass

Speedup is around 30× for dense matrix multiply

7× for PLU factorization
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Geometry Processing

Self intersections Dynamic silhouette refinement

Algebraic Geometry Preparation of FEM grids
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Conclusion

The GPU is the only parallel processor that has seen
widespread success

Allows us to experiment with 100s of cores today

Not just a toy anymore

Future is definitively parallel, but what kind of parallel?

Memory management is a very open problem
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