Johan Seland

Parallel Programming Patterns

SINTEF Petroleum Development Workshop - Session 3
Trondheim - 8. December 2010

SINTEF hetcomp.com

Overview

 Introduction and vocabulary
e Limits to performance
* Amdahls Law vs Gustafson Law

« (oncurrency
» Domain decomposition
« Task parallelism

« Synchraonization

* Fences
* Barriers
Mutexes

* Semaphores
» Testing parallel programs

SINTEF hetcomp.com

A word about patterns

A Pattern is:
* (enersl
 Reusable

* Based onaproven design
* Notdirectly translatable into code

 Originated in architecture
» (Christopher Alexander 1977

* Now part of the Software Eng. Vocabulary
* (Gangof Four, 1987

* Thereis also Anti-Patterns

SINTEF hetcomp.com

Vocabulary

* Task

» Sequence of instructions that operate together
- Thread (process)

* Anexecuting task
- (ore

« The underlying hardware executing a thread
* Load balancing/scheduling

* The mapping of threads to cores
« Race condition

* The outcomes varies as the scheduling of threads varies
* Deadlock

* Acycle of threads that are waiting on each other
* (ritical section

« Partof task that access a common resource

SINTEF hetcomp.com

Flynns Taxonomy of Computer Systems

Single Instruction, Single Data (SISD)

- Asequential computer Most TOP500
- Example: Mobile phones, low-end laptops supercomputers
. . . are based on

« Single Instruction, Multiple Data (SIMD) TV

« Asingle instruction applied to multiple data streams
* Example: Vector unit of CPUs, some GPUs
Multiple Instruction, Single Data (MISD)
« Multiple instructions on a single data stream.
Example: Fault tolerant systems (space shuttle)
Multiple Instruction, Multiple Data (MIMD)
« Multiple processors simultaneously executing different instructions on different data
* Example: Multi-Core CPUs, clusters, some GPUs

SINTEF hetcomp.com

Limits to performance

SINTEF hetcomp.com 6

Amdahls Law

* Presented by Gene Amdahl in 1967
 Validity of the Single Processar Approach to Achieving Large-Scale Computing Capabilities

« Find maximum expected improvement performance
» (verly pessimistic in practice
* (ontradicted by Gustafsaons Law

« Result: Theoretical speedup is limited by serial part of code

SINTEF hetcomp.com

Amdahls Law - Equations

« Total running time of serial program is given bu:
Ttotal(l) :Tsetup+T compute(l) +T final

* Using P processaors we get:

T compu e
T total() T setup o T final
* Therelative speedup is:
S (P) — Ttotal (1)
Ttotal (P)

SINTEF hetcomp.com

Amdahls Law - Equations ||

S (P) — Ttotal (1)

Ttotal (P)
The serial fraction is:
T . +T.
_ setup final ,O < ;/ < l
Ttotal (1)

Inserting this into S(P) give Amdahls Law:
S (P) — -Eti);[/al (1)
(7/ + T)Ttotal (1)
B 1
e

SINTEF hetcomp.com

Amdahls Law - Equations |l

* Assume an infinite number of processors

lim S(P) = lim ——— = 1

P—ow P—o>w 7/ + Ty

« The maximum perfarmance increase is bound by the serial fraction

SINTEF hetcomp.com

Plot of Amdahls law
20,00 / / —

18,00
16,00 / /
Parallel Portion /
14,00

—10% /
12,00 p——

s I/
10,00

00 % / //
8,00 95%

oo // /

6,00 =

Speedup

Yy

e

1 16 256 4 096

cores

Logarithmic scale

hetcomp.com

Gustafson Law

* Amdahls law does not incorporate increased problem size
* Weare interested in solving the largest passible problem in reasonable time

Ttotal (1)

yscaled
S(P)

Sisthenlinearin P

SINTEF

setup

T +P-T

setup

|

compute

final

Ttotal (

)

(P)+T

Yscaled T P(l_ 7/scaled)

* Assumey is independent of P

final

hetcomp.com

Plot of Gustafson law

4 500,00

Parallel Portion

4 000,00 —

— 0% //
3500,00 e
—50 % //
3.000,00 —75% <~
—90 % /// /
2 500,00 959%
o ///
2 000,00

1 500,00
1 000,00 /
500,00

1000 1500 2000 2500 3000 3500 4000 4500

cores

Speedup

SINTEF hetcomp.com

Gustafsons Law

4 500,00

4000,00 .
3 500,00 ///
= _

3 000,00 ////
S 2500,00
b //
& 2000,00
(7,)

1 500,00 /

500,00
500 1000 1500 2000 2500 3000 3500 4000 4500 Amdahls L
cores maanis Law
18,00 —

16,00 / //
14,00

12,00

10,00 / // —
00 /S

00 /-

4,00 —
6

Speedup

Logarithmic scale

2,00 /

256 4 096

cores

SINTEF hetcomp.com

Dicussion

» Experience shows that Amdahls law is overly pessimistic
« Butyou will always have some serial parts

* Many real world scenarios demonstrate almast linear speedup
* Some cases see superlinear speedup!

* Both models are simplified
« Parallelism also introduces overhead

« Don't forget Donald Knuth: Premature Uptimization is the root of all evil

* |sthe potential speedup worth the extra effort?
* Up front and maintenance wide?

SINTEF hetcomp.com

Concurrency

SINTEF hetcomp.com 16

Concurrency

Definition of CONCURRENCE
a: the simultaneous occurrence of events or circumstances
b : the meeting of concurrent lines in a point

Definition of CONCURRENT
a : operating or occurring at the same time
b:running parallel

from Merriam Webster

SINTEF hetcomp.com

http://www.merriam-webster.com/dictionary/concurrent
http://www.merriam-webster.com/dictionary/parallel[1]

Concurrency

« (oncurrency can be found at many levels

« (oncurrency exists in two forms:
1. Data parallel
2. Task parallel

* Not mutually exclusive
* Acomplex program will have bath
* The line between them is blurred

SINTEF hetcomp.com

Data parallelism

» The same task is executed as many threads on different pieces of the data

* Examples:
* Rendering
* (Dense) linear algebra
« FFTs
« Max/Min computations

* Web servers
* Doatabases

SINTEF hetcomp.com

Task parallelism

» Different, independent tasks
 Linked by sharing data

* Examples:
* GUlcode
* Logging
« Loading data
* Writing data
* Netwaorking
« Monitoring data?

» Hard to find enough tasks to scale to 10++ cores

SINTEF hetcomp.com 20

Discussion

« (oncurrency should be identified early
- #(ores on target hardware should be known before choasing algorithm
* (ood serial algorithms seldom make good parallel ones

SINTEF hetcomp.com 27

Synchronization

///

SINTEF hetcomp.com 2

Synchronization

* Most parallel programs require tasks to communicate
« Synchronization must be explicitly handled
Difficult to enforce automatically

« Threads are assumed to follow an agreed upon protocal
« Synchronization is expensive

Slows down the program
« (Common source of bugs

» Hardto find
* Hardtoreproduce

SINTEF hetcomp.com 23

llustrating the problem

int getNextId() {
static int lastIdUsed = 0;
return ++lastIdUsed;

}
« Assume two threads call getNextld()

Thread one Thread two lastidUsed
43 44 44
44 43 44
43 43 43

SINTEF hetcomp.com 24

Memary fences

* Modern CPUs have complex cache hierarchies
Typically three levels deep
« Afence ensures that all threads have a cansistent view of memory

» Typically invoked by higher level primitives

* Only meaningful in 8 shared memary setting
ECRE
N o0
Level 1 Level 1
IES ES I
Thread 1: Thread ¢:
v(ii] = 42; foo(v[i]);

SINTEF hetcomp.com 25

Barriers

* Synchronization point:
 Every thread must arrive before continuing

» Typically used at the end of an iteration
* Explicitly written by the programmer
* Usefulin cluster and shared memary processing

SINTEF hetcomp.com 2

Mutex

* Mutex = Mutual Exclusion

» Protects against the simultaneous use of 8 comman resource
« Example: global variable, network card, write ta file

* Themutexis a lock that protects the resource
« Threads must acquire the mutex befare entering a critical section
- |fthe mutex is busy the thread must wait (spin on the lock)

 Remember torelease the mutex!

- (Coding 3 mutex is not trivial - use libraries (which generally use HW)

SINTEF hetcomp.com 27

Declare and init lock

OpenMP Lock Example

int main () {
omp lock t lock;
omp init lock(&lock);

Wait or Aquire
#fpragma omp parallel shared (lock)

lock
{ // non-critical section
omp set lock(&lock);
// critical section..
omp unset lock(&lock);
// non-critical section
\ Release lock

SINTEF hetcomp.com 2

Semaphores

(Controls access to comman resources (note the plural form)

« Records how many units of a resource is available (counting semaphore)
» Hands out a permit to the resource

* Example:
* Alibrary with ten study rooms and ten keys
- Alibrarian (semaphaore) hands out keys to the rooms
« Students (threads) must wait if there are no free keys

« A mutex can be seen as a binary-semaphore
* A mutex has the concept of a3 “owner”

SINTEF hetcomp.com 29

Monitors

* Anobject designed to be safely used by several threads

« (ften implemented using mutex/semaphaores
« Javs, (# has language support

* Monitors often have mechanism far signaling callers when they are “ready

* Mutex/Semaphare: caller is responsible
* Monitor: callee is responsible

SINTEF hetcomp.com

Release lock before
returning

Monitor example

class A {
private:
Lock 1;
int lastIdUsed;
public: Client code does need not
int getNextId() ({ worry about locking
l.aquire();
int id = ++lastIdUsed;f

l.release() ;

return id; int main () |
} A a;
int id = a.getNextId();

SINTEF hetcomp.com

Debugging and testing parallel programs

* Notoriously hard
» Ensure unicore algorithm is correct

« Parameterize the "test space’ - make it as big as possible
« Vary number of cores
 Vary hardware platform
« Vary compiler settings
* Varyinput data
* Runtests in different order
* Runautomatically

SINTEF hetcomp.com

Conclusion

» Synchronization protocol must be agreed upon
« (Common source of bugs

SINTEF hetcomp.com

Reading list

PATTERNS
FOR PARALLEL
PHO(h\“Hl\h

SINTEF hetcomp.com

